SKYUNE RANCH MO DIFIED TRACT60922
 ADDENDUM

for County of Los Angeles

Prepared for:
County of Los Angeles Department of Regional Planning
Contact: Steven D. Jones, AICP, Principal
Regional Planning Assistance, Land Divisions
320 West Temple Street
Los Angeles, California 90012
213.974.6433

Prepared by:
PlaceWorks
Contact: JoAnn Hadfield, Principal, Environmental Services
3 MacArthur Place, Suite 1100
Santa Ana, California 92707
714.966.9220
info@placeworks.com
www.placeworks.com
Section Page

1. INTRODUCTION 1
1.1 PURPOSE OF ADDENDUM 1
1.2 CONTENT AND ORGANIZATION OF THIS ADDENDUM 3
2. ENVIRONMENTAL SETTING 5
2.1 PROJECT LOCATION 5
2.2 ENVIRONMENTAL SETTING 5
3. PROJECT DESCRIPTION 11
3.1 PROJECT BACKGROUND 11
3.2 MODIFIED PROJECT DESCRIPTION 11
3.3 COUNTY ACTION REQUESTED 14
4. ENVIRONMENTAL CHECKLIST 25
4.1 BACKGROUND 25
4.2 ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED 26
4.3 DETERMINATION (TO BE COMPLETED BY THE LEAD AGENCY) 26
4.4 EVALUATION OF ENVIRONMENTAL IMPACTS 27
5. ENVIRONMENTAL ANALYSIS 29
5.1 AESTHETICS 29
5.2 AGRICULTURE AND FOREST RESOURCES 40
5.3 AIR QUALITY 42
5.4 BIOLOGICAL RESOURCES 49
5.5 CULTURAL RESOURCES 59
5.6 ENERGY 65
5.7 GEOLOGY AND SOILS 68
5.8 GREENHOUSE GAS EMISSIONS 77
5.9 HAZARDS AND HAZARDOUS MATERIALS 81
5.10 HYDROLOGY AND WATER QUALITY 87
5.11 LAND USE AND PLANNING 102
5.12 MINERAL RESOURCES 104
5.13 NOISE 105
5.14 POPULATION AND HOUSING 111
5.15 PUBLIC SERVICES 114
5.16 RECREATION 121
5.17 TRANSPORTATION/TRAFFIC 123
5.18 UTILITIES AND SERVICE SYSTEMS 131
5.19 MANDATORY FINDINGS OF SIGNIFICANCE 140
6. LIST OF PREPARERS 143
7. REFERENCES 145

APPENDICES

Appendix A. Geotechnical Study
Appendix B. Traffic Study and Memo

Table of Contents

List of Figures

Figure
 Page

Figure 1 Regional Location 7
Figure 2 Local Vicinity 9
Figure 3 Approved TTM 15
Figure 4 Approved TTM vs. Proposed Concept Plan 17
Figure 5 Development Footprint Comparison 19
Figure 6 Modified Conceptual Lot Plan 21
Figure 7 Open Space and Trails Map 23
Figure $8 \quad$ Visual Simulation Comparison - Part 1 33
Figure $9 \quad$ Visual Simulation Comparison - Part 2 35
Figure $10 \quad$ Visual Simulation Comparison - Part 3 37

List of Tables

Table Page
Table 1 Modified Project Housing Product Breakdown 12
Table 2 Approved and Modified Development Comparison 13
Table 3 Approved and Modified Projects Housing Product Type Comparison 13
Table 4 Visual Simulation Impacted Comparison 31
Table $5 \quad$ Historic Energy Use in Los Angeles County, 2006-2013 66
Table 6 Approved Project vs. Modified Project, Projected Energy Use 67
Table 7 HMA Ordinance Consistency Analysis. 73
Table 8 Skyline Ranch Approved Project GHG Emissions 78
Table 9 Approved Project vs. Modified Project - Population 113
Table 10 Approved Project vs. Modified Project, Student Generation 118
Table 11 Modified Project Trip Generation Rates. 126
Table 12 Trip Generation Comparison 126
Table 13 Proposed Roundabouts LOS and Delay Summary 127
Table 14 Queue Lengths for Each Leg of Roundabouts. 127
Table 15 LOS, Delay \& Queue Summary at School and Park 128
Table 16 Approved Project, Estimated Water Demand 132
Table 17 Approved Project, Estimated Wastewater Generation. 133
Table 18 Approved Project, Estimated Solid Waste Generation 134
Table 19 Approved Project vs. Modified Project, Estimated Wastewater Generation 136
Table 20 Approved Project vs. Modified Project, Estimated Water Demand 137
Table 21 Sunshine Canyon and Chiquita Canyon Landfills Information 138
Table 22 Approved Project vs. Modified Project, Solid Waste Generation 139

1. Introduction

This Addendum is an analysis of proposed changes to the Skyline Ranch Project (Approved Project) (Approved Tentative Tract Map[TTM] No. 60922, County Project No. 04-075) for which an Environmental Impact Report (EIR) (State Clearinghouse No. 2004101090) prepared by the County of Los Angeles was certified on December 7, 2010. This document uses the County of Los Angeles' adopted CEQA checklist as a format to identify the appropriate level of environmental review (i.e., an addendum, supplemental EIR, etc.).

The Skyline Ranch EIR analyzed development of 622 acres of the 2,173-acre project site, which included a total of 1,313 total lots- 1,260 residential lots, an approximately 11 -acre elementary school site, 10 lots for park areas, 13 debris basin lots, 4 water tank/booster pump station lots, and 25 open space lots (1,313 total lots). This Addendum evaluates the incremental environmental impacts of proposed modifications to the Approved Project, including a realignment of Skyline Ranch Road, reduction of 40 residential lots (but inclusion of age-qualified homes and a recreation center), modifications to housing product types, relocation and expansion of park sites, and extension of multipurpose trails and bike lanes. After consideration of the incremental environmental impacts of the proposed modifications to the Approved Project, the County of Los Angeles will be able to clearly determine whether an addendum or supplemental EIR is required to provide appropriate analysis and legal defensibility.

1.1 PURPOSE OF ADDENDUM

1.1.1 CEQA Requirements

According to Section 21166 of CEQA and Section 15162 of the State CEQA Guidelines, when an EIR has been certified or a negative declaration adopted for a project, no subsequent EIR or negative declaration shall be prepared for the project unless the lead agency determines that one or more of the following conditions are met:

1. Substantial project changes are proposed that will require major revisions of the previous EIR or negative declaration due to the involvement of new significant environmental effects or a substantial increase in the severity of previously identified significant effects;
2. Substantial changes would occur with respect to the circumstances under which the project is undertaken that require major revisions to the previous EIR or negative declaration due to the involvement of new significant environmental effects or a substantial increase in the severity of previously identified significant effects; or

1. Introduction

3. New information of substantial importance that was not known and could not have been known with the exercise of reasonable diligence at the time the previous EIR was certified or the negative declaration was adopted shows any of the following:
a. The project will have one or more significant effects not discussed in the previous EIR or negative declaration.
b. Significant effects previously examined will be substantially more severe than identified in the previous EIR.
c. Mitigation measures or alternatives previously found not to be feasible would in fact be feasible, and would substantially reduce one or more significant effects of the project, but the project proponent declines to adopt the mitigation measures or alternatives.
d. Mitigation measures or alternatives that are considerably different from those analyzed in the previous EIR would substantially reduce one or more significant effects on the environment, but the project proponent declines to adopt the mitigation measures or alternatives.

Preparation of an Addendum to an EIR is appropriate when none of the conditions specified in Section 15162 (above) are present and some minor technical changes to the previously certified EIR are necessary.

After consideration of the potential environmental impacts of the proposed modifications to the Approved Project, the County of Los Angeles has determined that 1) none of the conditions requiring preparation of a subsequent or supplement to an EIR have occurred, and 2) the circumstances described in Section 15164 of the CEQA Guidelines exist. Therefore, an Addendum to the Skyline Ranch EIR has been deemed appropriate.

1.1.2 Scope of Analysis in this Addendum

The discretionary approval subject to CEQA for this project is the modification of Approved TTM 60922. As lead agency under CEQA for this action, the County of Los Angeles is required to evaluate the environmental impacts associated with this discretionary approval (modified tract map). The "scope" of the review for project-related impacts for this Addendum is limited to changes between the Approved Project and the requested modifications to the project (Modified Project). The previously certified environmental documentation and related approved mitigation for impacts associated with the Approved Project effectively serve as the "baseline" for the environmental impact analysis. This Addendum also addresses changes in circumstances or new information that would potentially involve new environmental impacts.

1.2 CONTENT AND ORGANIZATION OF THIS ADDENDUM

This Addendum uses the County of Los Angeles' adopted CEQA checklist, included as Section 2.0, Environmental Checklist, the analysis for each environmental topic is provided in Section 5.0, Environmental Analysis. Each environmental topic has the following subheadings:

- Summary of Impacts Identified in the Certified EIR (County Project No. 04-075)
- Impacts Associated with the Modified Project
- Adopted Mitigation Measures Applicable to the Modified Project
- Level of Significance After Mitigation

Formerly adopted mitigation measures as part of the Certified EIR are identified and carried forward or noted as being satisfied. Where necessary, mitigation measures have been updated, refined, and/or supplemented to ensure mitigation is implemented as intended for the Modified Project. Such changes are shown in strikeout/ underlined bold format and will be incorporated in the final mitigation monitoring program for the Modified Project.

1. Introduction

This page intentionally left blank.

2. Environmental Setting

2.1 PROJECT LOCATION

As shown in Figure 1, Regional Location, the 2,173-acre Skyline Ranch project site is in the community of Canyon Country in the Santa Clarita Valley of unincorporated Los Angeles County. The project site is north of Highway 14 (Antelope Valley Freeway) and the City of Santa Clarita. The site includes undeveloped parcels west of Sierra Highway between the Santa Clara River and Vasquez Canyon. Figure 2, Local Vicinity, shows the site roughly bounded by the Sierra Highway (Mint Canyon) to the east and southeast, residential communities in the City of Santa Clarita to the south and southwest, Plum Canyon Road to the west, Bouquet Canyon Road to the northwest, and Vasquez Canyon Road to the northeast.

Primary access to the project site is provided by the proposed extension of Whites Canyon Road (as Skyline Ranch Road) from Plum Canyon on the western boundary of the site and by Skyline Ranch Road and Sierra Highway in the southeast corner of the project site.

2.2 ENVIRONMENTAL SETTING

2.2.1 Existing Land Use

The project site is completely vacant and undeveloped. The site is dominated by irregular, brush-covered terrain with ridges between Plum Canyon to the north and Whites Canyon to the south.

Additionally, a substantial portion of the Cruzan Mesa Vernal Pools Significant Ecological Area (SEA) is in the northern two-thirds of the project site. This SEA was adopted by the County as part of the Santa Clarita Valley Area Plan Update: One Valley One Vision in November 2012. SEAs are officially designated areas within the County for their biological value. The Cruzan Mesa Vernal Pools SEA includes mesas, canyons, and interior slopes supporting coastal sage scrub or scrub-chaparral vegetation. The Cruzan Mesa vernal pool complex lies within an elevated, topographically enclosed basin atop an eroded foothill between Mint and Bouquet canyons. The Plum Canyon vernal pool, situated in a landslide depression on a hillside terrace, is smaller than the Cruzan Mesa pools, but possesses the same essential vernal pool characteristics as the larger system, and the two areas together form an ecologically functional unit. Refer to Section 5.4, Biological Resources, for additional information on the Cruzan Mesa Vernal Pools SEA.

2.2.2 Surrounding Land Use

Surrounding uses near the project site include undeveloped, open space to the north and northeast, existing and planned residential uses in the City of Santa Clarita and unincorporated Los Angeles County to the south and west, and residential uses in the community of Forest Park to the east near Sierra Highway.

2. Environmental Setting

The Angeles National Forest is further south of the site, and the Castaic Lake Recreation Area is to the northwest. The Santa Clara River flows in an east-west direction through the City of Santa Clarita.

2.2.3 General Plan and Zoning

According to the County of Los Angeles General Plan's Santa Clarita Valley Area Plan Land Use Policy Map, the entire project site is designated H2 (Residential 2, 0-2 dwelling unit [du]/acre) and RL 5 (Rural Land 5, 1 $\mathrm{du} / 5 \mathrm{acres}$) (Los Angeles 2012a). The area proposed for development under the Approved and Modified Projects are designated H 2 .

The County of Los Angeles Zoning Code designates the project site R-1 (Single-family residence), A-1-2 (Light agriculture), and A-2-2 (Heavy agriculture) (Los Angeles 2012b). The area proposed for development under the Approved and Modified Projects are zoned R-1.

Figure 1 - Regional Location

2. Environmental Setting

This page intentionally left blank.

Figure 2 - Local Vicinity

LEGEND	
-	PROJECT SITE
「-7	CITY BOUNDARY
3	SIGNIFICANT RIDGELINE
\square	HIGHWAY
\square	SANtA CLARA RIVER
	NATIONAL FOREST
	SIGNIFICANT ECOLOGICAL AREA (SEA)

2. Environmental Setting

This page intentionally left blank.

3. Project Description

3.1 PROJECT BACKGROUND

The Skyline Ranch project site occupies approximately 2,173 acres in unincorporated Los Angeles County. As shown on Figure 3, Approved TTM, the Approved Project includes development on approximately 622 acres of the 2,173-acre site with 1,260 single-family residential lots, an approximately 11.6-acre elementary school site, about 12 acres of public parkland to be dedicated to the Los Angeles County Department of Parks and Recreation, and about 6.2 acres of private parkland. Nearly three-quarters of the site (the northern 1,551 acres) would remain undeveloped, with approximately 1,355 acres dedicated or designated as natural open space through establishment of the proposed Skyline Ranch Conservation Area (SRCA). Approximately 166 acres of undeveloped land in the northern portion of the site would remain undeveloped and designated as Non-development/Continuing Use Area. Also, within the northern portion of the site, approximately 22 acres would be preserved as a Mitigation Exchange Area for 22 acres of preserve area within adjacent recorded Tract 46018 that would be disturbed due to the construction of Skyline Ranch Road. These three areas would preserve approximately 80 percent of the land in the County's Cruzan Mesa Vernal Pools SEA. No development associated with the Skyline Ranch Project would occur in the SEA areas.

A proposed trail would extend the existing Mint Canyon Trail from Vasquez Canyon Road to the Plum Canyon Fire Road along an existing dirt path and southwesterly toward a lookout point. The proposed trail easement would run approximately 2.2 miles within portions of the SRCA and Nondevelopment/Continuing Use Area. The Approved Project would include two miles of hiking trails, one mile of paseo trails, and eight miles of bike lanes.

3.2 MODIFIED PROJECT DESCRIPTION

The Modified Project includes minor technical changes to the approved Skyline Ranch project. Figure 4, Approved TTM vs. Proposed Concept Plan, shows the proposed conceptual site plan, which includes the modifications described below. Figure 5, Development Footprint Comparison, shows an overlay of the Modified and Approved Projects. The Modified Project would have a smaller development footprint within the footprint of the Approved Project. In total, the site would be divided into seventeen planning areas (PAs), designated PA A through Q , one park sites, seven recreation center sites, and one school site (see Figure 6, Modified Conceptual Lot Plan).

- Realignment of Skyline Ranch Road. The Modified Project would shift Skyline Ranch Road west of the original alignment. All residential development would be east of the roadway rather than divided by the original alignment. Skyline Ranch Road would maintain its designation as a secondary highway and is proposed to have roundabouts at intersections within the project boundaries. The two access points of Skyline Ranch Road at Plum Canyon Road (to the west) and Sierra Highway (to the southeast) would not change.

3. Project Description

- Reduction of residential development and inclusion of age-qualified housing. Residential development would be reduced from 1,260 to 1,220 lots (40 fewer units). The homes along the western edge of the property would be removed and/or shifted east of the realigned Skyline Ranch Road, and 284 units of age-qualified housing with a recreation center would be provided in the northern portion of the planned community in PAs G through K.
- Modifications to housing product types. A broader range of lot sizes and housing types is now proposed, including smaller, more affordable homes for first-time buyers or move-down buyers that were not included in the original plan. There would be a total of six product types and 1,220 dwelling units. The breakdown of housing product types is provided in Table 1 and Figure 6, Modified Conceptual Lot Plan, below.

Table 1 Modified Project Housing Product Breakdown

Product Type	Dwelling Units	Percentage of Total
Market Rate Units		
Grayson ${ }^{1}$	344	28
$55^{\prime} \times 90$ ' Lot	198	16
$50^{\prime} \times 100$ Lot	186	15
55' $\times 100$ ' Lot	119	10
$65^{\prime} \times 100$ ' Lot	89	7
Market Rate Subtotal	936	77\%
Age Qualified Units		
$55^{\prime} \times 90$ ' Lot	122	10
$50^{\prime} \times 100^{\prime}$ Lot	88	7
$65^{\prime} \times 90$ ' Lot	74	6
Age Qualified Subtotal	284	23\%
GRAND TOTAL	1,220	100\%
Note: du/ac = dwelling units per acre ${ }^{1}$ TRI Pointe Group's Grayson housing product is a motor court home design with $45^{\prime} \times 75^{\prime}$ ' condominium lots that include stub street access and are configured in six lots to create a court.		

- Relocation of park and recreation sites. The park sites proposed under the Approved Project would be relocated and combined into one large park adjacent to the school, as shown on Figure 4, Approved TTM vs. Proposed Concept Plan. Approximately 16.9 acres of public parkland to be dedicated to the Los Angeles County Department of Parks and Recreation would be relocated to be accessible without crossing streets-in particular without crossing Skyline Ranch Road. Seven recreation centers would be located within the Skyline Ranch community and connected by a multi-purpose trail system. Additionally, the Modified Project includes 2.7 acres of private parkland (a recreation center for age-qualified housing).
- Addition of multipurpose trails. The Modified Project would include 10.75 miles of pedestrian connections, which includes 3 miles of hiking trails, a 2.2 -mile trail easement, 3.3 miles of paseo trails, and 2.3 miles of multipurpose trails (see Figure 7, Open Space and Trails Map).

3. Project Description

- Extension of bike lanes. Bike lanes within the Skyline Ranch community would extend from 8 miles to 9.8 miles under the Modified Project.

A comprehensive comparison of the Approved and Modified Projects' land use development and housing product types is provided in Tables 2 and 3.

Table 2 Approved and Modified Development Comparison

	Approved Project	Modified Project
Developed Acres	$622 \mathrm{acres} \mathrm{(ac)}$	492 ac
Single Family	348	313
Slopes	277	178
Dwelling Units	1,260 units	1,220 units
Parks	18.2 ac	19.6 ac
Pocket Parks	3.7	6.5
Private Parks	2.5	2.7
Neighborhood Parks	12.0	10.5
Pedestrian Connections	5.2 miles	10.75 miles
Hiking Trails	2	3
Trail Easement	2.2	2.2
Paseo Trails	1.0	3.3
Multipurpose Trails	-	2.3
Bike Lanes	8 miles	9.8 miles
School	11.6 ac	11.9 ac

Table 3 Approved and Modified Projects Housing Product Type Comparison

	Approved Project	Modified Project
Grayson	-	344
55x90	-	198
50×100	-	186
55×100	-	119
55×105	658	-
60×100	-	-
60×105	337	-
65×100	-	89
70×105	265	-
Subtotal	1,260	936
Age Qualified		
55x90	-	122
50x100	-	88
65x90	-	74
Subtotal	0	284
Grand Total	1,260	1,220

3. Project Description

Additionally, the Modified Project would reduce the number of basins from 13 to 12, but the 4 water tanks at the northern portion of the developable area under the Approved Project would remain. Overall, the Modified Project would have a reduced development footprint within the Approved Project's development footprint (see Table 2 and Figure 5, Development Footprint Comparison). Compared to the Approved Project, grading quantities would decrease by approximately 18 and 19 percent for cut and fill quantities, respectively. The cut and fill quantities would decrease to approximately 17.1 million cubic yards (cy) cut and 16.9 million cy fill.

3.3 COUNTY ACTION REQUESTED

As part of the Modified Project, the following discretionary actions are required by the County of Los Angeles:

- Approval of Modification to Approved Tentative Tract Map No. 60922
- Approval of the Skyline Ranch Modified Tract 60922 Addendum

Figure 3 - Approved TTM

3. Project Description

This page intentionally left blank.

APPROVED TTM

PROPOSED CONCEPT PLAN

3. Project Description

This page intentionally left blank.

Figure 5 - Development Footprint Comparison

| c |
| :---: | :---: |
| LEGEND |
| APPROVED TTM DEVELOPMENT AREA
 PROPOSED PLAN DEVELOPMENT AREA |

3. Project Description

This page intentionally left blank.

Figure 6 - Modified Conceptual Lot Plan

3. Project Description

This page intentionally left blank.

Figure 7 - Open Space and Trails Map

LEGEND

	SCHOOL
	PARK
	SLOPE
	TRAILS
$\square \cdots]$	SITE BOUNDARY
$\cdots \cdots$	OWNERSHIP BOUNDARY
\cdots	

3. Project Description

This page intentionally left blank.

4. Environmental Checklist

4.1 BACKGROUND

1. Project Title: Skyline Ranch Modified Tract 60922 Addendum
2. Lead Agency Name and Address:

County of Los Angeles
Department of Regional Planning
320 West Temple Street
Los Angeles, CA 90012
3. Contact Person and Phone Number:

Steven D. Jones, AICP, Principal Regional Planning Assistant, Land Divisions
(213) 974-6433
4. Project Location: The 2,173-acre project site is in the Santa Clarita Valley north of Highway 14 and the City of Santa Clarita in unincorporated Los Angeles County. The site is roughly bounded by the Sierra Highway to the east and southeast, residential communities in Santa Clarita to the south and southwest, Plum Canyon Road to the west, Bouquet Canyon Road to the northwest, and Vasquez Canyon Road to the northeast.
5. Project Sponsor's Name and Address:

TRI Pointe Group
Mike McMillen, Vice President
19540 Jamboree Road, Suite 300
Irvine, CA 92612
6. General Plan Designation: H2 (Residential 2, 0-2 du/acre), RL 5 (Rural Land 5, 1 du/5 acres)
7. Zoning: R-1 (Single-family residence), A-1-2 (Light agriculture), and A-2-2 (Heavy agriculture)
8. Description of Project: The proposed project would modify Approved TTM 60922 within the development footprint of the Skyline Ranch property. Modifications include a realignment of Skyline Ranch Road, reduction by 40 residential lots (but inclusion of 284 units of age-qualified homes and a recreation center), modifications to housing product types, extension of trails and bikes lanes, and relocation of park and recreation center sites.
9. Surrounding Land Uses and Setting: Surrounding uses near the project site include undeveloped, open space to the north and northeast, residential uses in the City of Santa Clarita to the south and southwest, and residential uses in the community of Forest Park to the east.
10. Other Public Agencies Whose Approval Is Required: None.

4. Environmental Checklist

4.2 ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED

The environmental factors checked below would be potentially affected by this project, involving at least one impact that is a "Potentially Significant Impact," as indicated by the checklist on the following pages.

\square	Aesthetics
\square	Biological Resources
\square	Greenhouse Gas Emissions
\square	Land Use / Planning
\square	Population / Housing
\square	Transportation / Traffic

Agricultural and Forest Resources
\square Utilities / Service Systems

\square Air Quality
Cultural Resources \square Geology / Soils
Hazards \& Hazardous Materials \square Hydrology / Water Quality
\square Mineral Resources \square Noise
\square Public Services \square Recreation
\square Mandatory Findings of Significance

4.3 DETERMINATION (TO BE COMPLETED BY THE LEAD AGENCY)

On the basis of this initial evaluation:
\square I find that the proposed project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared.
\square I find that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the project have been made by or agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION will be prepared.

\square
I find that the proposed project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.

\square
I find that the proposed project MAY have a "potentially significant impact" or "potentially significant unless mitigated" impact on the environment, but at least one effect 1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.

I find that although the proposed project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier EIR or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR or NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the proposed project, nothing further is required.

Signature

Printed Name

Date

For

4. Environmental Checklist

4.4 EVALUATION OF ENVIRONMENTAL IMPACTS

In Section 5.0, the Addendum identifies the incremental effects of the Modified Project in comparison with the Approved Project. This comparative analysis has been undertaken, pursuant to the provisions of CEQA, to provide the factual basis for determining whether any changes in the project or its circumstances or any new information requires additional environmental review or preparation of a subsequent or supplemental EIR.

The incremental environmental changes of the Modified Project may involve one or more of the following: (1) new significant environmental impacts, (2) a substantial increase in severity of significant impacts previously identified, (3) substantial changes to the circumstances under which the project is undertaken involving such new impacts or such a substantial increase in the severity of significant impacts, or (4) new information of substantial importance as defined by CEQA Guidelines Section 15162. Under these circumstances, the lead agency shall prepare a subsequent or supplemental EIR. If the incremental changes of the Modified Project result in no impacts and/or minor technical additions or additions, the lead agency shall prepare an addendum. Therefore, the analysis in Section 5.0 will determine whether a supplemental/subsequent EIR or addendum is the appropriate means to analyze the Modified Project. The bases for findings listed in the Environmental Checklist are explained in Section 5.0, Environmental Analysis.

4.4.1 Terminology Used in the Checklist

For each question listed in the Environmental Checklist, a determination of the level of significance of the impact is provided. Impacts are categorized in the following categories:

Substantial Change in Project or Circumstances Resulting in New Significant Effects. A Subsequent EIR is required when 1) substantial project changes are proposed or substantial changes to the circumstances under which the project would be undertaken, 2) those changes would result in new significant environmental effects or a substantial increase in the severity of previously identified significant effects, and 3) project changes require major revisions to the EIR (CEQA Guidelines $\$ 15162$).

New Information Showing Greater Significant Effects than Previous EIR. A Subsequent EIR is required if new information of substantial importance that was not known and could not have been known with the exercise of reasonable diligence at the time the EIR was certified shows 1) the project would have one or more significant effects not discussed in the EIR; 2) significant effects previously examined would be substantially more severe than shown in the EIR; or 3) mitigation measures or alternatives previously found not to be feasible would in fact be feasible (or new mitigation measures or alternatives are considerably different) and would substantially reduce one or more significant effects of the project, but the project proponents decline to adopt the mitigation measure or alternative (CEQA Guidelines § 15162).

New Mitigation or Alternative to Reduce Significant Effect is Declined. A Subsequent EIR is required if new information of substantial importance that was not known and could not have been known with the exercise of reasonable diligence at the time the EIR was certified shows that mitigation measures or alternatives previously found not to be feasible would in fact be feasible (or new mitigation measures or

4. Environmental Checklist

alternatives are considerably different) and would substantially reduce one or more significant effects of the project, but the project proponents decline to adopt the mitigation measure or alternative (CEQA Guidelines §15162). A Supplement to an EIR can be prepared if the criterion for a Subsequent EIR is met, but only minor additions or changes would be necessary to make the EIR adequately apply to the Modified Project (CEQA Guidelines § 15163).

Minor Technical Changes or Additions. An Addendum to the EIR is required if only minor technical changes or additions are necessary and none of the criteria for a subsequent EIR are met (CEQA Guidelines § 15164).

No Impact. A designation of No Impact is given when the Modified Project would cause no changes to the environment as compared to the original project analyzed in the EIR.

5. Environmental Analysis

This section provides evidence to substantiate the conclusions in the environmental checklist. The section will briefly summarize the conclusions of the 2010 Skyline Ranch EIR and then discuss whether or not the Modified Project is consistent with the findings contained in the Skyline Ranch EIR. Mitigation measures referenced are from the Skyline Ranch EIR.

5.1 AESTHETICS

5.1.1 Summary of Impacts Identified in the Certified EIR

This section summarizes the analysis contained in Section 4.E, Visual Qualities, of the 2010 Certified EIR.

Construction Impacts

Development of the Approved Project would cause temporary visual impacts during construction, which is estimated to last approximately seven years. The grading operation would remove native vegetation and alter the natural landform of approximately 622 acres onsite. Other site preparation activities include roads, sewers, water, streets, dry utilities, entry monumentation, and landscaping/irrigation. These temporary activities would substantially degrade the visual quality of the site, mostly impacting the neighborhood to the southwest of the proposed development area due to the higher elevation of this neighborhood relative to the site. Single-family communities west of the project site near the intersection of Whites Canyon Road and the proposed Skyline Ranch Road would also observe landform alterations. Impacts of construction activities would be significant and unavoidable until construction activities are completed.

Visual Impacts

Photo simulations were prepared to illustrate the conceptual design, massing, and views of the Approved Project from short-range and long-range views. To reduce significant impacts on views toward the project site, onsite landscaping mitigation is provided. However, impacts associated with the change in views from the existing residential neighborhood to the west-particularly from residences west of the project site that are oriented to the east-would remain significant and unavoidable due to the alteration of a scenic vista and the modification of hillsides and ridgelines.

Light and Glare

Implementation of the Approved Project would introduce new sources of light and glare to the project site and surrounding areas. Project lighting would be typical of lighting in other residential neighborhoods south and west of the project site. Lighting will be shielded and concentrated along streets to the interior of the development area, rather than along the edges of the site. Lighting impacts would be less than significant.

5. Environmental Analysis

Glare is primarily a daytime occurrence caused by the reflection of sunlight or artificial light by highly polished surfaces, such as window glass or reflective materials and, to a lesser degree, from broad expanses of light-colored surfaces. The Approved Project would use building materials that are nonreflective in nature and typical of residential development throughout the area. Therefore, the project was not anticipated to have a significant impact associated with glare.

5.1.2 Impacts Associated with the Proposed Project

Would the Modified Project:

Issues	Substantial Change in Project or Circumstances Resulting in New Significant Effects	New Information Showing Greater Significant Effects than Previous EIR	New Mitigation or Alternative to Reduce Significant Effect is Declined	Minor Technical Changes or Additions	No Impact
a) Have a substantial adverse effect on a scenic vista?				X	
b) Be visible from or obstruct views from a regional riding or hiking trail?				X	
c) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?					X
d) Substantially degrade the existing visual character or quality of the site and its surroundings because of height, bulk, pattern, scale, character, or other features?				X	
e) Create a new source of substantial shadows, light, or glare which would adversely affect day or nighttime views in the area?				X	

Comments:

a) Have a substantial adverse effect on a scenic vista?

Minor Technical Changes or Additions. Impacts to visual quality are due to the alteration of landform and development of rural hillside areas. As approved, the character of the Skyline Ranch master-planned residential community has a scenic backdrop, primarily to the north and northeast of natural open space consisting of vegetated steep terrain, canyons, and ridgelines. The proposed modifications to the Approved Project would consist of realigning Skyline Ranch Road, reducing residential lots by 40 units (but including 284 units of age-qualified homes and a community center), modifying housing product types, relocating and expanding park and recreation center sites, and extending multipurpose trails and bike lanes. These modifications would occur within the development footprint of the Approved Project, and no additional grading or construction would occur outside of the developable area analyzed in the previously certified EIR. Grading quantities would be reduced from 20.8 million cy each of cut and fill to 17.1 million cy of cut and 16.9 million cy of fill under the Modified Project.

5. Environmental Analysis

The Modified Project would shift the location of the residential lots within the project site farther north, away from existing uses to the south and west of the site (see Figure 4, Approved TTM vs. Proposed Concept Plan). Therefore, views from the south and west toward the Skyline Ranch community and rural hillsides to the north would be improved in comparison to the Approved Project. Figures 8 through 10, Visual Simulation Comparison, compare the visual impacts of the Approved and Modified Projects' development. The development footprint of the Approved Project is shown in purple, and the footprint of the Modified Project is shown in orange. Seven viewpoints from the south and west of the project site were chosen to represent major public views toward the site and are numbered on Figures 8 through 10:

1. Sierra Highway looking northeast
2. Sierra Highway looking west
3. Hawks Ridge Drive and Canyon Creek Drive looking west
4. Via Princessa and Whites Canyon looking north
5. Todd Longshore Park looking east
6. Canyon high School looking east
7. Canyon Springs Elementary School looking northeast

Table 4 compares the seven viewsheds' impact percentages based on development of the Approved Project and that of the Modified Project. The impact percentages compare how much of the complete viewshed (100 percent) is changed by development of the Approved and Modified Projects.

Table 4 Visual Simulation Impacted Comparison

Viewshed No.	Location	Impact Percentage		
	Approved Project	Modified Project	Percentage Change	
1	Sierra Highway looking northeast	2.72%	2.88%	0.16%
2	Sierra Highway looking west	5.07	6.08	1.01
3	Hawks Ridge Drive and Canyon Creek Drive looking west	4.77	1.12	-3.65
4	Via Princessa and Whites Canyon looking north	1.36	0.85	-0.51
5	Todd Longshore Park looking east	3.14	1.28	-1.86
6	Canyon High School looking east	3.30	1.05	-2.25
7	Canyon Springs Elementary School looking northeast	4.15	2.06	-2.09

All seven views toward the project site would have a decrease in impact percentage with the exception of Views 1 and 2 from Sierra Highway. However, this is because the Modified Project does not require expansive grading of the hillsides shown in Views 1 and 2, and would actually preserve the natural topography of the hills. Also, the changes in percentage impacted for Views 1 and 2 are nominal, approximately 0.2 and 1.0 percent, respectively.

Overall, scenic views looking toward the residential community under the Modified Project would be less impacted and remain more in character with existing conditions compared to development of the Approved

5. Environmental Analysis

Project. Therefore, the proposed modifications would have no new significant impact to scenic vistas in the project area.

b) Be visible from or obstruct views from a regional riding or hiking trail?

Minor Technical Changes or Additions. The Bouquet Canyon Trail, Mint Canyon Trail, and one unnamed trail are in the vicinity of the project site and are part of the approved adopted County trail system detailed in the Santa Clarita Valley Area Plan. The Bouquet Canyon Trail is approximately one mile northwest of the site and generally follows Bouquet Canyon Road. The Mint Canyon Trail is immediately north and northeast of the project site in an area proposed to remain as open space and adjacent to Sierra Highway and Sand Canyon Road.

Similar to the Approved Project, the Modified Project would include a trail easement of approximately 2.2 miles that would connect to the Mint Canyon Trail to the north and the existing Plum Canyon fire road to the south. The proposed development under the Approved and Modified Projects would not be visible from the Mint Canyon or Bouquet Canyon trails due to irregular topography looking southerly toward the developable area. Therefore, modifications to the Approved Project would have no new significant impacts to regional trails.
c) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?

No Impact. The project site is not visible from a designated scenic highway, and the Modified Project would not impact scenic resources within a state scenic highway (Caltrans 2011). The incremental differences of the proposed modifications to the recorded map do not result in substantial impacts to scenic resources. Therefore, no new significant damage to scenic resources would occur as a result of the Modified Project or changed circumstances.
d) Substantially degrade the existing visual character or quality of the site and its surroundings because of height, bulk, pattern, scale, character, or other features?

Minor Technical Changes or Additions. Skyline Ranch Road would maintain its approved roadway crosssection details, including roundabouts at intersections within the project boundary. Modifications include reducing the number of residential lots by 40 units (but including age-qualified housing and a community center) and modifying housing product types (see Tables 2 and 3). As detailed in Table 3, the Modified Project would have fewer and smaller houses compared to the Approved Project, and the lots would be shifted north within the project site, farther away from existing residential uses to the west and south. The homes would be built with a similar character to the existing suburban community. Therefore, these modifications would not degrade the visual character or quality of the proposed Skyline Ranch community.

Figure 8 - Visual Simulation Comparison - Part 1

(2) SIERRA HIGHWAY LOOKING WEST

5. Environmental Analysis

This page intentionally left blank.

Figure 9 - Visual Simulation Comparison - Part 2

(3HAWKS RIDGE DR \& CANYON CREEK DR LOOKING WEST

(4)VIA PRINCESA \& WHITES CANYON LOOKING NORTH

5. Environmental Analysis

This page intentionally left blank.

Figure 10 - Visual Simulation Comparison - Part 3

(5) TODD LONGSHORE PARK LOOKING EAST

©CANYON HIGH SCHOOL LOOKING EAST

(©CANYON SPRINGS ELEMENTARY SCHOOL LOOKING NORTH EAST

5. Environmental Analysis

This page intentionally left blank.

5. Environmental Analysis

e) Create a new source of substantial shadows, light, or glare which would adversely affect day or nighttime views in the area?

Minor Technical Changes or Additions. Outdoor nighttime lighting in residential areas is generally limited to security lighting and street lighting. The reduced development footprint and 40 -unit reduction in residential lots under the Modified Project would reduce the overall need for lighting in the developable area of the project site. Additionally, similar to the Approved Project, the Modified Project would be required to comply with the exterior lighting, signage, parking lot, and security standards of the Los Angeles County Code.

General requirements include maximum fixture heights, shielding standards, and limits on the intensity of light that can be reflected onto neighboring properties (light trespass). Compliance with existing codes would ensure that lighting would not result in outdoor illumination that would exceed established standards. Therefore, nighttime lighting and glare impacts would not be greater than those identified in the certified EIR, and impacts would remain less than significant.

5.1.3 Adopted Mitigation Measures Applicable to the Modified Project

Construction Impacts

4.E-1 During construction, the applicant or his contractors shall locate equipment, stockpiles, and staging areas out of direct public or private view to the extent feasible.

Visual Impacts

4.E-2(a) To reduce the significant aesthetic impact associated with graded slopes and paved terrace drains along the southern entrance to the project site, the slopes on both sides of proposed Skyline Ranch Road shall be revegetated and landscaped as soon as feasible following grading and roadway development. Landscaping in this area shall be selected and planted to screen proposed terrace drains from public views and to merge ornamental and native materials such that sharp contrasts in form and color with undeveloped areas are avoided.
4.E-2(b) A landscape plan for the planned residential development shall be prepared by a Landscape Architect with a plant palette that will merge ornamental and native materials such that shape contrasts in form and color are avoided with adjacent undeveloped areas. Trees and shrubs on streets, slopes and ridgelines should emphasize mounded rather than columnar forms (such as palm trees and cypress). Plantings on the hillsides to the south and east of the entry road shall be specifically selected, sized, and placed to soften angular forms created by grading at the interface of manufactured slopes and natural hillsides. Furthermore, every effort shall be made as grading plans are finalized and during grading to create rounded landforms that are generally reflective of the natural topography of the area. Planting of common landscape areas shall be undertaken as soon as possible following grading to avoid prolonged view degradation. Landscaping on the site shall be routinely maintained by a homeowners association and/or through Covenants, Conditions and Restrictions (CC\&Rs)

5. Environmental Analysis

throughout the life of the project. The landscape plan shall be subject to review and approval by the County prior to issuance of any grading permits.

5.1.4 Level of Significance After Mitigation

The Modified Project would only result in minor technical changes or additions to the previously certified EIR, and would not result in significant impacts upon implementation of applicable regulatory requirements and mitigation measures.

5.2 AGRICULTURE AND FOREST RESOURCES

5.2.1 Summary of Impacts Identified in the Certified EIR

Impacts to agricultural resources were closed out in the Initial Study prepared for the 2010 Certified EIR. The Approved Project would have no impact on prime, unique, or farmland of Statewide importance; would not conflict with existing zoning for agricultural use or with a Williamson Act contract; would not conflict with existing zoning for forest land or timberland; would not result in the loss of forest land or conversion of forest land to non-forest use; and would not involve other changes to the existing environment that may involve the conversion of either farmland or forest land to non-farm or non-forest land.

5.2.2 Impacts Associated with the Proposed Project

Would the Modified Project:

Issues	Substantial Change in Project or Circumstances Resulting in New Significant Effects	New Information Showing Greater Significant Effects than Previous EIR	New Mitigation or Alternative to Reduce Significant Effect is Declined	Minor Technical Changes or Additions	$\begin{gathered} \text { No } \\ \text { Impact } \end{gathered}$
a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?					X
b) Conflict with existing zoning for agricultural use, with a designated Agricultural Opportunity Area, or with a Williamson Act contract?					X
c) Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code § 12220 (g)), timberland (as defined in Public Resources Code § 4526), or timberland zoned Timberland Production (as defined in Government Code §51104(g))?					X

5. Environmental Analysis

Issues	Substantial Change in Project or Circumstances Resulting in New Significant Effects	New Information Showing Greater Significant Effects than Previous EIR	New Mitigation or Alternative to Reduce Significant Effect is Declined	Minor Technical Changes or Additions	$\begin{gathered} \text { No } \\ \text { Impact } \end{gathered}$
d) Result in the loss of forest land or conversion of forest land to non-forest use?					X
e) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use?					X

Comments:

a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?

No Impact. The Modified Project would not involve changes outside of the development footprint already analyzed in the 2010 Certified EIR. Therefore, similar to the Approved Project, the Modified Project would have no impact on prime farmland, unique farmland, or farmland of statewide importance.
b) Conflict with existing zoning for agricultural use, or a Williamson Act contract?

No Impact. Based on the Santa Clarita Valley Area Plan Zoning Map, the developable area of the project site (southern 492 acres) is zoned R-1 (Single-family residence) and does not have land under Williamson Act contracts (Los Angeles 2012b, DOC 2013). The remaining undevelopable area of the project site is zoned A-1-2 (Light agriculture) and A-2-2 (Heavy agriculture); however, no development is proposed in these areas. Thus, no impact would occur.
c) Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section $12220(\mathrm{~g})$), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))?

No Impact. Although the northern portion of the project site is zoned A-1-2 and A-2-2, no development is proposed in these areas. Therefore, no impact would occur.
d) Result in the loss of forest land or conversion of forest land to non-forest use?

No Impact. See response to Section 5.2.2(c), above.
e) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to nonforest use?

No Impact. See response to Section 5.2.2(b) and (c), above.

5. Environmental Analysis

5.2.3 Adopted Mitigation Measures Applicable to the Modified Project

No mitigation measures related to agricultural resources were outlined in the 2010 Certified EIR.

5.2.4 Level of Significance After Mitigation

The Modified Project would have no impact on agriculture or forestry resources.

5.3 AIR QUALITY

5.3.1 Summary of Impacts Identified in the Certified EIR

This section summarizes the analysis contained in Section 4.H, Air Quality, of the 2010 Certified EIR.

Construction Impacts

Construction of the Approved Project has the potential to create air quality impacts through the use of heavy-duty construction equipment and through vehicle trips generated from construction workers traveling to and from the project site. In addition, fugitive dust emissions would result from demolition and construction activities. Based on project construction emissions modeling, regional emissions from construction phases would exceed the South Coast Air Quality Management District (SCAQMD) daily significance thresholds for $\mathrm{PM}_{10}, \mathrm{PM}_{2.5}, \mathrm{CO}, \mathrm{NO}_{\mathrm{x}}$, and volatile organic compounds (VOC). Regional construction emissions for SO_{x} would not exceed daily significance thresholds. Therefore, project construction activities would result in a temporary but significant and unavoidable regional air quality impact.

Based on localized construction air quality analysis, development of the Approved Project could cause exceedance of the PM_{10} and $\mathrm{PM}_{2.5}$ incremental thresholds but would not cause ambient concentrations to exceed NO_{2} or CO ambient air quality standards. Localized impacts to PM_{10} and $\mathrm{PM}_{2.5}$ would be significant and unavoidable.

An assessment of toxic air contaminants (i.e., diesel particulate emissions) yielded that the project would not emit carcinogenic or toxic air contaminants that individually or cumulatively exceed the maximum individual cancer risk of ten in one million. Additionally, compliance with SCAQMD Rule 1166 and 1113 would limit the amount of VOC emissions from potentially contaminated soils or architectural coating sand solvents. Thus, no construction activities or building materials would create objectionable odors.

Operational Impacts

Operational emissions would be generated by area and mobile sources as a result of normal day-to-day activities on the project site. At buildout and in full operation, the project would generate total emissions that would exceed the SCAQMD recommended thresholds for regional $\mathrm{CO}, \mathrm{VOC}, \mathrm{NO}_{\mathrm{x}}, \mathrm{PM}_{2.5}$, and PM_{10}. Thus, operational emissions would result in significant and unavoidable air quality impacts. Additionally, the Approved Project would contribute to regionwide emissions on a cumulative basis, and therefore, the project's contribution to cumulative air quality impact is concluded to be significant and unavoidable.

5. Environmental Analysis

Additionally, single-family residences on the project site would be occupied while later phases of construction activities would be occurring. Concurrent construction and operational emissions would exceed SCAQMD daily thresholds for $\mathrm{CO}, \mathrm{NO}_{\mathrm{x}}, \mathrm{PM}_{10}, \mathrm{PM}_{2.5}$, and VOC. Thus, regional air quality impacts from concurrent construction and operational activities would be significant and unavoidable.

Based on traffic intersection analysis for local area CO impacts, the Approved Project would not have a significant impact upon 1-hour or 8 -hour local CO concentrations due to mobile source emissions (primarily vehicle exhaust). Therefore, sensitive receptors would not be significantly affected by CO emissions generated by the net increase in traffic. Localized operational air quality impacts would be less than significant.

The Approved Project would not generate substantial quantities of toxic air contaminants (TACs). Any air pollutants to the project vicinity which would be well below any levels that would result in a significant impact on human health. As such, no significant impact on human health would occur.

The Approved Project does not include any uses identified by the SCAQMD as being associated with odors. Therefore, the Approved Project would not create adverse odors as discussed above and would have no impact related to objectionable odors.

AQMP Consistency

The determination of air quality management plan (AQMP) consistency is primarily concerned with the longterm influence of the Approved Project on air quality in the Southern California Air Basin (SoCAB) and whether or not a project will exceed the assumptions utilized in preparing the AQMP. Although the project may cause an exceedance of the localized PM_{10} and $\mathrm{PM}_{2.5}$ significance criteria, this exceedance would be short-term in nature. This impact would only occur during the grading phase of project construction and would not have a long-term impact on the region's ability to meet state and federal air quality standards. In addition, the Approved Project would comply with SCAQMD Rule 403 and would implement all feasible mitigation measures for control of PM_{10} and $\mathrm{PM}_{2.5}$. Also, the Approved Project would be consistent with the goals and policies of the AQMP for control of fugitive dust. Therefore, the Approved Project would be consistent with AQMP strategies to bring the SoCAB into PM_{10} and $\mathrm{PM}_{2.5}$ attainment. With regard to the second criterion, the Approved Project is well within and consistent with the population growth for the subregion identified in the Southern California Association of Governments (SCAG) Regional Transportation Plan and subsequent updates. Consequently, the Approved Project would be consistent with local air quality plans and policies.

5.3.2 Impacts Associated with the Modified Project

Regulatory Background

The environmental and regulatory settings for the Modified Project have changed since certification of the 2010 Certified EIR. The following discussion is provided to update conditions relative to development of the Modified Project.

5. Environmental Analysis

The SoCAB is designated nonattainment for $\mathrm{O}_{3}, \mathrm{PM}_{2.5}, \mathrm{PM}_{10}$, and lead (Los Angeles County only) under the California and National AAQS and nonattainment for NO_{2} under the California AAQS (CARB 2014a). ${ }^{1,2}$ SCAQMD prepares an AQMP that details measures taken to achieve the national and California AAQS. The most recent AQMP is the 2012 AQMP.

SCAQMD Air Quality Management Plan

SCAQMD is responsible for preparing the AQMP for the SoCAB in coordination with SCAG. After the Skyline Ranch EIR was certified in 2010, SCAQMD adopted the 2012 AQMP, which employs the most up-to-date science and analytical tools and incorporates a comprehensive strategy aimed at controlling pollution from all sources, including stationary sources, on- and off-road mobile sources, and area sources. It also addresses several state and federal planning requirements, incorporating new scientific information, primarily in the form of updated emissions inventories, ambient measurements, and new meteorological air quality models. The 2012 AQMP builds upon the approach identified in the 2007 AQMP for attainment of federal PM and ozone standards and highlights the significant amount of reductions needed. It also highlights the urgent need to engage in interagency coordinated planning to identify additional strategies, especially in the area of mobile sources, to meet all federal criteria air pollutant standards within the time frames allowed under the Clean Air Act. The 2012 AQMP demonstrates attainment of federal 24-hour $\mathrm{PM}_{2.5}$ standard by 2014 and the federal 8-hour ozone standard by 2023. It includes an update to the revised EPA 8-hour ozone control plan with new commitments for short-term NO_{x} and VOC reductions. The plan also identifies emerging issues—ultrafine $\left(\mathrm{PM}_{1.0}\right)$ particulate matter and near-roadway exposure and an analysis of energy supply and demand.

The SCAQMD is in the process of updating the AQMP. The 2016 AQMP will address strategies and measures to attain the 2008 federal 8-hour ozone standard by 2032 and the 2012 federal annual $\mathrm{PM}_{2.5}$ standard by 2021. The 2016 AQMP will also take an initial look at the 2015 federal 8-hour ozone standard. It will also update previous attainment plans for ozone and $\mathrm{PM}_{2.5}$ that have not yet been met (SCAQMD 2015).

[^0]
5. Environmental Analysis

Would the Modified Project:

Issues	Substantial Change in Project or Circumstances Resulting in New Significant Effects	New Information Showing Greater Significant Effects than Previous EIR	New Mitigation or Alternative to Reduce Significant Effect is Declined	Minor Technical Changes or Additions	$\begin{gathered} \text { No } \\ \text { Impact } \end{gathered}$
a) Conflict with or obstruct implementation of applicable air quality plans of the South Coast AQMD (SCAQMD) or the Antelope Valley AQMD?				X	
b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?				X	
c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)?				X	
d) Expose sensitive receptors to substantial pollutant concentrations?				X	
e) Create objectionable odors affecting a substantial number of people?				X	

Comments:

a) Conflict with or obstruct implementation of applicable air quality plans of the South Coast AQMD (SCAQMD) or the Antelope Valley AQMD?

Minor Technical Changes or Additions. By reducing residential development, the Modified Project would reduce impacts on housing and population projections within the SCAG region and would reduce vehicle trips relative to the Approved Project since fewer homes would be developed. Similar to the Approved Project, the Modified Project would not conflict or obstruct implementation of the SCAQMD's AQMP. Impacts would be less than significant.
b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?

Minor Technical Changes or Additions. The Modified Project would develop 40 fewer residential homes and require less grading compared to the Approved Project. The Modified Project would require 17.1 million cy of cut and 16.9 million cy of fill, approximately 18 and 19 percent less cut and fill than the Approved Project. The Modified Project would also reduce the number of residential lots by 40 and would result in a decrease in vehicle trips compared to that analyzed in the 2010 Certified EIR. This would result in a decrease of construction- and operational-phase air pollutant emissions due to a decrease in area, energy, and mobilesource emissions. Overall, air quality impacts would be less than generated by the Approved Project. The incremental difference would result in a beneficial impact. Mitigation measures applied for the previous project would be applicable to the proposed project.

5. Environmental Analysis

c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)?

Minor Technical Changes or Additions. The SoCAB is designated nonattainment for $\mathrm{O}_{3}, \mathrm{PM}_{10}, \mathrm{PM}_{2.5}$, and lead (Los Angeles County only) under the California and National AAQS, and nonattainment for NO_{2} under the California AAQS (CARB 2014a). In accordance with SCAQMD methodology, any project that does not exceed or can be mitigated to less than the daily threshold values does not add significantly to a cumulative impact (SCAQMD 1993). The CalEEMod modeling included in the 2010 Certified EIR demonstrates that unmitigated concurrent operation and construction emissions associated with the Approved Project would exceed thresholds for $\mathrm{CO}, \mathrm{NO}_{\mathrm{x}}, \mathrm{PM}_{10}, \mathrm{PM}_{2.5}$, and VOC.

The modifications to the project would result in a decrease of construction and operational air pollutant emissions compared to the Approved Project due to the decrease in residential units (40 fewer units). Mitigation measures applied for the Approved Project would also be applicable to the proposed Modified Project.

d) Expose sensitive receptors to substantial pollutant concentrations?

Minor Technical Changes or Additions. Sensitive receptors near the project site include residential areas to the west and south of the site, Canyon High School, Leona Cox Community School, Montessori Preschool, Super-8 Motel, Santa Clarita Little People Daycare and Preschool, and Travel Lodge (Los Angeles 2010). As stated above, the construction activities associated with the Approved Project would expose sensitive receptors to substantial pollutant concentrations that exceed PM_{10} and $\mathrm{PM}_{2.5}$ incremental thresholds. Construction equipment used to develop the Modified Project would be same as that of the Approved Project and would include, but not be limited to, concrete mixers, heavy-duty trucks, scrapers, dozers, graders, backhoes, pavers, and front-end loaders. Given that the Modified Project would reduce grading quantities, the overall development footprint, and the number of residential lots onsite, construction activities and associated pollutant concentrations would also be slightly reduced in the project area. Overall, development of the Modified Project would have a beneficial impact compared to the Approved Project.

e) Create objectionable odors affecting a substantial number of people?

Minor Technical Changes or Additions. The Modified Project would not emit objectionable odors that would affect a substantial number of people. The threshold for odor is if a project creates an odor nuisance pursuant to SCAQMD Rule 402, Nuisance, which states:

A person shall not discharge from any source whatsoever such quantities of air contaminants or other material which cause injury, detriment, nuisance, or annoyance to any considerable number of persons or to the public, or which endanger the comfort, repose, health or safety of any such persons or the public, or which cause, or have a natural tendency to cause, injury or damage to business or property. The provisions of this rule shall not apply to odors emanating from agricultural operations necessary for the growing of crops or the raising of fowl or animals.

5. Environmental Analysis

The types of facilities that are considered to have objectionable odors include wastewater treatments plants, compost facilities, landfills, solid waste transfer stations, fiberglass manufacturing facilities, paint/coating operations (e.g., auto body shops), dairy farms, petroleum refineries, asphalt batch plants, chemical manufacturing, and food manufacturing facilities. Residential developments are not associated with foul odors that constitute a public nuisance; therefore, odor impacts would be less than significant.

During construction activities, equipment exhaust and application of asphalt and architectural coatings would temporarily generate odors. Any construction-related odor emissions would be temporary and intermittent, and would not affect a significant number or people. Neither the Approved Project nor the Modified Project would generate substantial odors, and impacts would be less than significant.

5.3.3 Adopted Mitigation Measures Applicable to the Modified Project

The following mitigation measures were taken directly from the 2010 Certified EIR. All of these mitigation measures apply to and would be implemented for the Modified Project. Modifications to the original mitigation measures reflect changes in current emission control technologies and are identified in strikemt to indicate deletions and underlined/bold to signify additions.

Construction Emissions

(1) Regional Emissions
4.H-1(a) Develop and implement a construction management plan, as approved by the County of Los Angeles prior to issuance of a grading permit, which includes the following measures recommended by the SCAQMD to implement SCAQMD Rule 403.
a. Ground cover shall be replaced in disturbed areas as quickly as practicable;
b. Soil stabilizers/dust suppressants shall be applied to inactive disturbed areas in sufficient quantity and frequency to maintain a stabilized surface;
c. Haul roads and site access roads shall be watered no less than three times daily;
d. Disturbed surfaces shall be watered no less than two times daily;
e. All stockpiles shall be covered with tarps as soon as practicable;
f. Travel speed on unpaved surfaces shall not exceed 15 miles per hour;
g. Provide a publicly visible sign and directly notify property owners in the vicinity of a contact person and telephone number to call regarding dust complaints; the contact person shall respond with appropriate corrective actions within 24 hours;
h. Prohibit construction vehicle idling in excess of 10 minutes;

5. Environmental Analysis

i. Stockpiles, haul routes, staging locations, and parking areas shall be located as far as possible from adjacent residential uses;
j. Pave or place gravel on all construction access roads at least 100 feet on to the site from the main road;
k. Configure construction parking to minimize traffic interference;

1. Provide temporary traffic controls when construction activities have the potential to disrupt traffic to maintain traffic flow (e.g., signage, flag person, detours);
m . Schedule construction activities that affect traffic flow to off-peak hours (e.g., between 7:00 P.M. and 6:00 A.M. and between 10:00 A.M. and 3:00 P.M.);
n. Develop a construction traffic management plan that includes the following measures to address construction traffic that has the potential to affect traffic on public streets:

- Consolidate truck deliveries
- Provide temporary dedicated turn lanes for movement of construction trucks and equipment on and off of the site;
o. Suspend use of all construction equipment operations during second stage smog alerts. Contact the SCAQMD at 800/242-4022 for daily forecasts;
p. Use electricity from power poles rather than temporary fossil fuel powered generators; and
q. Use methanol- or natural gas-powered mobile equipment and pile drivers instead of diesel if readily available at competitive prices.
4.H-1(b) Maintain construction equipment and vehicle engines in good condition and in proper tune as per manufacturers' specifications and per SCAQMD rules, to minimize exhaust emissions.
4.H-1 (c) All on-site heavy-duty construction equipment shall be equipped with diesel particulate traps as feasible.
(2) Local Emissions

Please refer to Mitigation Measures 4.H-1 (a), 4.H-1(b), and 4.H-1(c) above.

Operational Emissions

(1) Regional Emissions
4.H-2(a) Subdivisiond buildings will be required to exceed Title 24 of the California Code of Regulations (also known as the California Building Standards Code) 20052016 Building and Energy Efficiency requirements by 15 percent.

5. Environmental Analysis

4.H-2(b) Lighting for public streets, parking areas, and recreation areas shall utilize energy efficient light and mechanical, computerized or photo cell switching devices to reduce unnecessary energy usage.
(2) Concurrent Construction and Operational Activity

Please refer to Mitigation Measures 4.H-1 (a), 4.H-1(b), 4.H-1(c), 4.H-2(a), and 4.H-2(b) above.

5.3.4 Level of Significance After Mitigation

The Modified Project would only result in minor technical changes or additions to the previously certified EIR, and would not result in significant impacts upon implementation of applicable regulatory requirements and mitigation measures.

5.4 BIOLOGICAL RESOURCES

5.4.1 Summary of Impacts Identified in the Certified EIR

This section summarizes the analysis contained in Section 4.C, Biological Resources, of the 2010 Certified EIR.
As part of the Approved Project, approximately 1,355 acres in the northern portion of the project site would be dedicated or designated natural open space and managed through the establishment of the SRCA, which includes the Plum Canyon vernal pool and four artificial pools on the southern portion of Cruzan Mesa. Additionally, the Approved Project would provide approximately 21.6 acres for preservation as a "Mitigation Exchange Area" for 21.6 acres of preserve area that would be disturbed in the adjacent Tract 46018 due to the construction of Skyline Ranch Road.

Sensitive Plant Species

Three plant species on the California Native Plant Society's List 4 were detected onsite: Paso Robles navarretia, Peirson's morning-glory, and Palmer's grappling hook. However, their susceptibility to threat is considered low. The loss of these species resulting from the Approved Project is not expected to reduce regional population levels such that their existence is threatened. Therefore, impacts to these plant species are considered less than significant. Additionally, 43 acres (approximately 5,300 plants) of slender mariposa lily were mapped onsite. Only one acre (approximately 100 plants) would be impacted by the project; therefore, impacts are not considered to be substantial.

Sensitive Wildlife Species

A number of sensitive wildlife species or special-status species were either observed onsite or have the potential to occur onsite due to the presence of suitable habitat; however, considerable habitat for these species would be preserved onsite within the SRCA. Additionally, focused surveys for the Riverside fairy shrimp, San Diego fairy shrimp, and coastal California gnatcatcher did not detect any of these species within the study area. Thus, impacts to sensitive wildlife species are less than significant.

5. Environmental Analysis

Sensitive Plant Communities

Development of the project would impact coastal sage scrub (CSS), disturbed CSS, coastal sage-chaparral scrub, sycamore riparian woodland, and holly-leafed cherry scrub. Additionally, the Approved Project may result in temporary impacts to vegetation communities within a 50 -foot grading buffer zone surrounding the permanent grading development footprint. Impacts to these plant communities would be significant prior to mitigation. Thus, the SRCA was proposed as part of the project to offset project impacts on the identified sensitive plant communities.

Wildlife Movement

Proposed open space areas in the northern portion of the project site would continue to foster wildlife movement between areas of the Angeles National Forest to the north and west (i.e., Lake Hughes, San Francisquito Canyon, Bouquet Canyon) and areas to the east and south (i.e., Placerita Canyon State Park, Tujunga Wash). In addition to the project's proposed SRCA, the Approved Project avoids impacts to the Cruzan Mesa, which contributes additional resources (i.e., water, foraging areas, vegetative cover) to facilitate wildlife movement. Therefore, impacts on wildlife movement corridors would be less than significant.

Jurisdictional Areas

Approximately 5.22 acres of waters of the U.S. under the jurisdiction of the Army Corps of Engineers (Corps) and Regional Water Quality Control Board (RWQCB) and 9.30 acres of streambed under the jurisdiction of the California Department of Fish and Wildlife (CDFW) would be permanently impacted by the Approved Project. Mitigation is provided to reduce impacts to these jurisdictional areas.

Oak Trees

The Approved Project would require the removal of two coast live oak trees (one onsite and one offsite in the City of Santa Clarita). The project applicant would be required to obtain oak tree removal permits from the city and County and replace the oak trees as detailed in the mitigation measure below.

5.4.2 Impacts Associated with the Modified Project

Regulatory Background

Cruzan Mesa Vernal Pools SEA

Significant Ecological Areas are officially designated areas within the County for their biological value. These areas warrant special management because they contain biotic resources that are considered rare or unique, are critical to the maintenance of wildlife, represent relatively undisturbed areas of County habitat types, or serve as linkages.

After the Skyline Ranch EIR was certified in 2010, the Santa Clarita Valley Area Plan Update: One Valley One Vision was adopted by the Board of Supervisors on November 27, 2012. As part of the updated plan, the Cruzan Mesa Vernal Pools SEA was adopted. A significant portion of the SEA is within the northern portion of the Skyline Ranch project site.

5. Environmental Analysis

The Cruzan Mesa Vernal Pools SEA includes mesas, canyons, and interior slopes, with Plum Canyon creek running east-west through the southern portion of the overall SEA. Uplands in the SEA consist of slopes and canyons supporting coastal sage scrub or scrub-chaparral vegetation. The Cruzan Mesa vernal pool complex lies within an elevated, topographically enclosed basin atop an eroded foothill between Mint and Bouquet canyons. The Plum Canyon vernal pool, situated in a landslide depression on a hillside terrace, is smaller than the Cruzan Mesa pools, but possesses the same essential vernal pool characteristics as the larger system, and the two areas together form an ecologically functional unit.

Wildlife diversity and abundance within the SEA are moderate, commensurate with the relative homogeneity of the natural open space habitat types. A number of local wildlife species are more or less dependent upon coastal sage scrub or scrub-chaparral formations, and other species are strictly limited to seasonal pool habitats. The vernal pools, when ponded, form aquatic habitats for a moderately diverse fauna of freshwater arthropods and other invertebrates, including native fairy shrimp, aquatic flies, diving beetles, water scavengers, ostracods, and snails. The only insect order presently known to have a vernal pool endemic within the SEA is Coleoptera, with one vernal pool ground beetle species thus far having been found.

Amphibians are relatively common in coastal sage scrub habitats with persistent surface hydrology during the breeding season, and the SEA supports abundant populations of Pacific chorus frog, western toad, and western spadefoot toad. At least two species of salamander may also be present within more moist areas of the surrounding canyons and chaparral.

Reptile populations in the SEA include numerous lizard species, including San Diego banded gecko, yucca night lizard, side-blotched lizard, western fence lizard, western skink, San Diego alligator lizard, coastal western whiptail, San Diego horned lizard, and silvery legless lizard. A robust snake fauna also would be expected within the SEA, including western blind snake, coachwhip ("red racer"), chaparral whipsnake, coastal patch-nosed snake, California rosy boa, San Diego gopher snake, California kingsnake, California mountain kingsnake, night snake, and southern Pacific rattlesnake.

Bird diversity within the SEA is related to habitat opportunities for year-round residents, seasonal residents, migrating raptors, and song birds. Open coastal sage scrub hosts a suite of birds typical of such sites at lower elevations over most of the coastal slopes of Southern California. The most productive sites for resident coastal sage scrub and chaparral birds are around riparian and freshwater systems, which also attract large numbers of migrants during spring and fall. The vernal pools attract moderate numbers of migrating waders and waterfowl, and provide important winter foraging areas for resident and migratory birds of prey. Coastal sage and chaparral birds resident or breeding within the SEA include ashy rufous-crowned sparrow, Bell's sparrow, black-chinned sparrow, lark sparrow, California thrasher, spotted towhee, California towhee, phainopepla, northern mockingbird, lazuli bunting, and several species of hummingbird, with additional species (western meadowlark, California horned lark, and perhaps also savannah and grasshopper sparrows) nesting and foraging in the grassland and ruderal habitats surrounding the vernal pools. Birds of prey observed around the vernal pools include red-tailed hawk, northern harrier, white-tailed kite, prairie falcon, and golden eagle. Barn owl, great horned owl, and common raven all nest in the cliffs surrounding Cruzan Mesa.

5. Environmental Analysis

Would the Modified Project:

Issues	Substantial Change in Project or Circumstances Resulting in New Significant Effects	New Information Showing Greater Significant Effects than Previous EIR	New Mitigation or Alternative to Reduce Significant Effect is Declined	Minor Technical Changes or Additions	$\begin{gathered} \text { No } \\ \text { Impact } \end{gathered}$
a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife (CDFW) or U.S. Fish and Wildlife Service (USFWS)?				X	
b) Have a substantial adverse effect on any sensitive natural communities (e.g., riparian habitat, coastal sage scrub, oak woodlands, non-jurisdictional wetlands) identified in local or regional plans, policies, and regulations or by CDFW or USFWS?				X	
c) Have a substantial adverse effect on federally protected wetlands (including, but not limited to, marshes, vernal pools, coastal wetlands, and drainages) or waters of the United States, as defined by $\S 404$ of the Clean Water Act or California Fish and Wildlife Code § 1600, et seq. through direct removal, filling, hydrological interruption, or other means?				X	
d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?				X	
e) Convert oak woodlands (as defined by the state, oak woodlands are oak stands with greater than 10% canopy cover with oaks at least 5 inch in diameter measured at 4.5 feet above mean natural grade) or otherwise contain oak or other unique native trees (junipers, Joshuas, southern California black walnut, etc.)?				X	
f) Conflict with any local policies or ordinances protecting biological resources, including Wildflower Reserve Areas (L.A. County Code, Title 12, Ch. 12.36), the Los Angeles County Oak Tree Ordinance (L.A. County Code, Title 22, Ch. 22.56, Part 16), the Significant Ecological Areas (SEAs) (L.A. County Code, Title 22, § 22.56.215), and Sensitive Environmental Resource Areas (SERAs) (L.A. County Code, Title 22, Ch. 22.44, Part 6)?				X	
g) Conflict with the provisions of an adopted state, regional, or local habitat conservation plan?				X	

5. Environmental Analysis

Comments:

a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife (CDFW) or U.S. Fish and Wildlife Service (USFWS)?

Minor Technical Changes or Additions. The Modified Project would include a realignment of Skyline Ranch Road, reduction of 40 residential lots (but inclusion of age-qualified homes and a community center), modifications to housing product types, relocation and expansion of park and recreation center sites, and extension of multipurpose trails and bike lanes. These modifications would be within a reduced 492-acre development footprint compared to the 622 -acre footprint of the Approved Project. Additionally, the proposed 1,355 -acre SRCA would preserve suitable habitat for sensitive and special status species within the project site. Thus, no new significant impacts or impacts of greater severity than those previously identified in 2010 Certified EIR would occur.
b) Have a substantial adverse effect on any sensitive natural communities (e.g., riparian habitat, coastal sage scrub, oak woodlands, non-jurisdictional wetlands) identified in local or regional plans, policies, and regulations or by CDFW or USFWS?

Minor Technical Changes or Additions. As stated above, the Modified Project would consist of minor modifications within the 622 -acre development footprint of the previously analyzed 2010 Certified EIR. Developable acres would be further reduced to 492 acres under the Modified Project, and the proposed SRCA would preserve 1,355 acres of natural plant habitat onsite. Therefore, no new significant impacts than previously identified would occur.
c) Have a substantial adverse effect on federally protected wetlands (including, but not limited to, marshes, vernal pools, coastal wetlands, and drainages) or waters of the United States, as defined by $\mathbb{\$} 404$ of the Clean Water Act or California Fish and Wildlife Code $\$ 1600$, et seq. through direct removal, filling, hydrological interruption, or other means?

Minor Technical Changes or Additions. Development of the Modified Project would be within the 622acre footprint of the Approved Project previously analyzed and mitigated for in the 2010 Certified EIR. The proposed SRCA would preserve jurisdictional areas of the Corps, RWQCB, and CDFW vernal pools and artificial pool habitats, as detailed in the Habitat Mitigation and Monitoring Plan for the Approved Project. No new significant impacts would occur under the Modified Project.
d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?

Minor Technical Changes or Additions. The modifications to the Approved Project would occur within the development footprint previously analyzed in the 2010 Certified EIR. The proposed SRCA would preserve approximately 1,355 acres of contiguous open space, which would protect wildlife movement within and through the project site. Similar to the Approved Project, the Modified Project would not impact the

5. Environmental Analysis

Cruzan Mesa vernal pools that are frequented by migrating waterfowl. Thus, no new substantial impacts would occur.
e) Convert oak woodlands (as defined by the state, oak woodlands are oak stands with greater than 10% canopy cover with oaks at least 5 inch in diameter measured at 4.5 feet above mean natural grade) or otherwise contain oak or other unique native trees (junipers, Joshuas, southern California black walnut, etc.)?

Minor Technical Changes or Additions. Similar to the Approved Project, development of the Modified Project would require the removal of the one isolated mature coast live oak tree onsite that has a 32 -inch diameter at breast height, and also potentially remove the one coast live oak trees offsite near the proposed installation of a 78 -inch storm drain in the City of Santa Clarita. Although the offsite coast live oak is not within the alignment the storm drain, trenching required for the installation of the storm drain falls within the drip line of the tree and could damage the root system. Therefore, the developer would be required to obtain oak tree removal permits from both the County and city. Mitigation from the 2010 EIR would also require oak tree restoration onsite. Thus, the Modified Project would not introduce new substantial impacts.
f) Conflict with any local policies or ordinances protecting biological resources, including Wildflower Reserve Areas (L.A. County Code, Title 12, Ch. 12.36), the Los Angeles County Oak Tree Ordinance (L.A. County Code, Title 22, Ch. 22.56, Part 16), the Significant Ecological Areas (SEAs) (L.A. County Code, Title 22, $\mathbb{\$} 22.56 .215$), and Sensitive Environmental Resource Areas (SERAs) (L.A. County Code, Title 22, Ch. 22.44, Part 6)?

Minor Technical Changes or Additions. As stated above, the County of Los Angeles has an oak tree ordinance (Los Angeles County Code Sections 22.56 .2050 through 22.56 .2260) that prohibits removal or damaging of oak trees and includes guidelines to avoid impacts to oak trees and their protected zones. The project applicant would be required to obtain oak tree removal permits to remove the two oak trees that would be impacted by development.

The County also has a wildflower reserve area ordinance, which protects wildflowers in designated areas, identified in the County code by section, township, and range numbers (Los Angeles County Code \rrbracket 12.36.020). The project site is not in any of the areas identified as wildflower reserve areas. Therefore, no impacts would occur.

A significant portion of the Cruzan Mesa Vernal Pools SEA falls within the northern portion of the project site. However, the development footprint of both the Approved and Modified Projects would be outside of the boundary, and no impact would occur to the SEA.

Overall, the Modified Project consists of minor technical changes to the Approved Project. No significant impacts to local policies or ordinances protecting biological resources would occur.
g) Conflict with the provisions of an adopted state, regional, or local habitat conservation plan?

Minor Technical Changes or Additions. As stated above, a significant portion of the Cruzan Mesa Vernal Pools SEA falls within the northern portion of the project site. However no development would occur within

5. Environmental Analysis

the SEA boundary. The proposed SRCA would preserve the northern 1,355 acres of the project site as open space. No new substantial impacts would occur under the Modified Project.

5.4.3 Adopted Mitigation Measures Applicable to the Modified Project

Sensitive Vegetation Communities

4.C-1 Mitigation for grading and fuel modification impacts (calculated 200 feet beyond the limits of grading) to 467.9 acres of combined coastal sage scrub and disturbed coastal sage scrub (452.3 acres within on- and off-site, and 15.6 acres within on- and off-site fuel modification zones), 77.0 acres of coastal sage-chaparral scrub (69.9 acres within on- and off-site grading and 7.1 acres within on- and off-site fuel modification zones), and 2.8 acres of holly-leafed cherry scrub (2.1 acres within on-site grading and 0.7 acre within on- and off-site fuel modification zones) shall be provided by establishing a 1,355 acre conservation area [Skyline Ranch Conservation Area (SRCA)] within the northern portion of the study area as shown in Figure 2-3, Aerial View-Development and Conservation Area, of the Skyline Ranch EIR. The applicant shall cause the preservation of this 1,355-acre area through either a Declaration of Restrictions or a Conservation Easement, or dedication or transfer of the land to a conservation organization committed to the preservation of the land in perpetuity. A Declaration of Restrictions, Conservation Easement, or similar recorded instrument shall be placed and recorded in this area to ensure its long-term preservation. The applicant shall arrange for the long-term management of the property to ensure the long-term persistence of the property's biological resources through a nonprofit organization, conservationoriented entity, or entity with experience in biological resource conservation approved by the County. The applicant shall provide long-term funding to assure the management of the property to protect its biological resources in perpetuity. The SRCA includes approximately 623.9 acres of coastal sage scrub, 115.8 acres of disturbed coastal sage scrub, 248.6 acres of coastal sage-chaparral scrub, and 10.6 acres of holly-leafed cherry scrub. This area shall be preserved as natural open space. These 1,355 acres provide substantial ecological value based on the quantity, quality, and regional value of the habitats preserved.

Establishment of the 1,355-acre SRCA shall achieve the following performance standards:

1. Provision of sufficient quantity of habitat to offset vegetation impacts associated with the proposed project. When considering coastal sage scrub, disturbed coastal sage scrub, coastal sage-chaparral scrub, and holly-leafed cherry scrub collectively, this 1,355-acre area will provide close to 2:1 preservation of like and contiguous habitats [1,354.6 acres preserved vs. 642.1 acres impacted (621.7 acres impacted by grading and 20.4 acres impacted by fuel modification)]. Preserved habitats are similar to those impacted by the project and most vegetation communities (with the exception of sycamore woodland), regionally common species, and special status plant and wildlife species impacted by the project are represented within the SRCA.

5. Environmental Analysis

2. An on-going maintenance and management program shall be adequately funded and implemented to ensure the long-term integrity of biological resources within the 1,355acre SRCA. Direct and indirect degradation of habitat shall be prevented in part through steep topography that separates the SRCA from the proposed development area and through the prohibition or restriction of uses within the SRCA.
3. The SRCA shall include signage, where appropriate, and other management practices to discourage off-road vehicles, domestic pets, and other activities harmful to natural lands.
4. Any continued use of lands within the SRCA (such as film-making) shall be subject to approval by the SRCA habitat manager and restricted to uses that are not incompatible with the resource conservation objectives of the SRCA.
5. A 21.6 -acre Mitigation Exchange Area shall be provided to replace the 21.6 acres of preserve area that would be disturbed within Tract 46018 due to the construction of Skyline Ranch Road. This shall be established separately from the SRCA through an agreement between the applicant, Shapell-Monteverde Partnership (owner of the recorded Tract 46018), the Army Corps of Engineers, and the County of Los Angeles.
6. Following grading operations any areas that have been disturbed within the 50 -foot grading buffer zone; which includes coastal sage scrub (10.7 acres), disturbed coastal sage scrub (6.1 acres), coastal sage-chaparral scrub (3.3 acres), non-native grassland (1.8 acres), disturbed (0.8 acres), holly-leaved cherry scrub (0.7 acres) and sycamore riparian woodland (0.2 acres), shall be restored to pre-graded conditions by a qualified biologist. Restoration shall be designed to provide the same vegetation resources and habitat value as those removed within the buffer zone. At the end of all project grading, proposed restoration actions within the buffer zone (if necessary) shall be presented in a restoration plan provided to the County. Following approval by the County, restoration shall be initiated and completed according to the approved restoration plan.

Mitigation for impacts to sycamore riparian woodland (including 96 sycamore trees and nine Fremont cottonwood trees) is discussed in Mitigation Measure 4.C-2.

Jurisdictional Areas

4.C-2 As detailed in the Habitat Mitigation and Monitoring Plan (HMMP) prepared by Glenn Lukos Associates (GLA), mitigation for impacts to 5.22 acres of Army Corps of Engineers (Corps) and Regional Water Quality Control Board (RWQCB) jurisdiction, none of which consists of jurisdictional wetlands, and 9.30 acres of California Department of Fish and G Wildlife $(C D F G \underline{\mathbf{W}})$ jurisdiction (of which 2.91 acres is vegetated riparian habitat) shall be accomplished by the applicant through the following:

1. The preservation of 1,355 acres of natural open space within the SRCA through the use of a conservation easement or the dedication of such land to a qualified conservation organization. This 1,355-acre area includes approximately 5.35 acres of Corps and

5. Environmental Analysis

RWQCB jurisdiction, none of which consists of jurisdictional wetlands and approximately 5.71 acres of CDFG $\underline{\mathbf{W}}$ jurisdiction (of which 0.31 acre is vegetated riparian habitat).
2. The preservation of 1.53 acres of southern vernal pool and artificial pool habitats within the SRCA subject to RWQCB jurisdiction.
3. On-site establishment of 7.27 acres of sycamore/cottonwood riparian woodland within Plum Canyon.

As described further in the HMMP, the proposed 7.27-acre sycamore riparian woodland (mitigation site) will be established within portions of Plum Canyon on-site within the SRCA as shown in Figure 4.C-7, Proposed Conservation and Mitigation Areas, on page 4.C.74. Hydrology is currently present at the mitigation site and the mitigation site supports Cortina sandy loam and Saugus loam which are conducive to the establishment of sycamore riparian woodland. A Corps-approved reference site will be used prior to implementation of the mitigation program to provide the necessary data to measure the performance of the mitigation site.

The plant palette for the proposed mitigation site includes the planting of two riparian species: 727 one-gallon containers of Fremont cottonwood and 1,818 one-gallon containers of western sycamore. One-gallon upland buffer species will also be planted including chamise, hoaryleaf ceanothus, California buckwheat, deerweed, coast prickly pear, snake cholla, scrub oak, white sage, black sage, and our Lord's candle. A seed mix of 12 native shrub and herbaceous species will also be used.

The planting of a sycamore riparian woodland in the vicinity of the hollyleafed cherry woodland is not intended to, nor is it expected to, result in an inadvertent conversion of the riparian area from holly-leafed cherry to sycamore woodland. The creation of 7.27 acres of sycamore riparian woodland within Plum Canyon within the SRCA is expected to provide an overstory on the edges of the holly-leafed cherry woodland that replicates the conditions currently found in Drainage 5 (where impacts are proposed). Onsite occurrences of both species indicate that they can exist concomitantly without the risk of conversion from one type to another altogether. With appropriate spacing and the use of drip irrigation on the planted sycamores, the existing swath of holly-leafed cherry will not be adversely affected by the addition of the sycamore riparian woodland.

The HMMP includes a number of features to ensure the success of the mitigation site including supervision by a qualified habitat restoration specialist, a 5 -year qualitative and quantitative monitoring program, contractor education, the use of mycorrhizal fungi, supplemental irrigation, regular maintenance (e.g., exotic vegetation control, pest control, trash removal), and adaptive management assurances.

5. Environmental Analysis

The Hybrid Functional Assessment (HFA) conducted by GLA (2009) concluded that the proposed project, considering off-setting mitigation measures, would result in a 25 percent increase in the total functionality of the aquatic features remaining within the SRCA after project implementation.

In addition to the measures proposed above, the project will require permits from the ACOE under section 404 of the Clean Water Act (CWA), from the Regional Water Quality Control Board (RWQCB) under section 401 of the CWA, and from the CDFG $\underline{\mathbf{W}}$ under section 1602 of the State Fish and Game Code. Should the Corps, RWQCB, and/or CDFG $\underline{\mathbf{W}}$ impose additional or greater mitigation measures on the project for these impacts, those measures - to the extent that they exceed what is required by the measures contained herein - may be substituted for the measures set forth herein, as the County does not intend to require the project to mitigate twice for the same impact once the project has already mitigated the impact below a level of significance.

Nesting Birds

4.C-3 In order to avoid impacts to nesting birds protected by the Migratory Bird Treaty Act and raptors protected by State Fish and Game Code, project grading and vegetation removal should take place outside of the nesting season, roughly defined as mid-February to midAugust. If grading or vegetation removal is to take place during the nesting season, a biologist acceptable to Los Angeles County shall be present during vegetation clearing operations to search for and flag active nests so that they can be avoided. A raptor survey will also be required in the unnamed canyon prior to the fill of that drainage. An avoidance buffer of 100 to 500 feet (exact radius to be determined by the monitoring biologist) will be fenced around any active raptor nests and impacts to nests will be avoided until after the nesting season is over. After mitigation the anticipated impact on nesting birds is less than significant. The results of the nesting bird construction monitoring will be provided in writing to the CDFG $\underline{\mathbf{W}}$ and County Department of Regional Planning (DRP).

Trees

4.C-4 To mitigate the loss of the coast live oak on-site (32 inches diameter at breast height [dbh]) in the southeastern section of the study area, an oak tree permit will be obtained from the County. The impacted oak tree will be replaced at a minimum ratio of $10: 1$ in the appropriate location at the interface between development and undeveloped areas. This ratio is in excess of the mitigation ratio set forth in the County ordinance, which is $2: 1$.

No mitigation is necessary for oak woodlands regulated under SB 1334 because no oak woodlands occur within the study area.

The loss of two California junipers within mixed coastal sage chaparral scrub shall be replaced in the landscaping scheme along roadways and in parks and other recreational areas at a minimum ratio of $3: 1$. Trees grown from local area stock shall be used, along with salvaged trees from the development area where possible.

5. Environmental Analysis

Abstract

To mitigate the potential loss of the coast live oak off-site, the Applicant shall obtain an oak tree removal permit from the City of Santa Clarita for the coast live oak tree that may be adversely impacted by trenching for the proposed 78 -inch pipeline installation, prior to initiation of pipeline trenching and construction. To the extent feasible, impacts to areas within the drip line (or root system) should be avoided during construction.

Indirect Impacts - Invasives

4.C-5 To mitigate potentially significant indirect impacts to open space areas adjacent to fuel modification zones due to the possible spread of invasive plant species, the proposed project shall incorporate the use of native plant species to the maximum extent practicable and avoid the use of plant species known to be highly invasive adjacent to open space areas. The plant palette for the fuel modification areas adjacent to open space areas shall be consistent with the County of Los Angeles Fire Department Fuel Modification Plan Guidelines and shall focus on native species provided in the table of desirable plant species.

5.4.4 Level of Significance After Mitigation

The Modified Project would only result in minor technical changes or additions to the previously certified EIR, and would not result in significant impacts upon implementation of applicable regulatory requirements and mitigation measures.

5.5 CULTURAL RESOURCES

5.5.1 Summary of Impacts Identified in the Certified EIR

This section summarizes the analysis contained in Section 4.D, Cultural and Paleontological Resources, of the 2010 Certified EIR.

According to the Certified EIR, a records search conducted at the California State University, Fullerton, Archaeological Information Center showed that three prehistoric archaeological sites, one historic period archaeological site, and five isolated finds were reported as a result of previous work and recent surveying. The prehistoric sites were subjected to Phase II testing (i.e., subsurface testing and laboratory analysis), and the historic complex was subjected to a site-specific historical records search to develop a context for determining potential significance. The results of these Phase II archaeological studies indicated a low probability for the sites to provide additional information in that the sites are not considered unique archaeological resources as defined in Section 21083.2 of the PRC. However, because archaeological resources were found within the project site, there is potential for construction and grading to uncover unknown subsurface cultural materials.

A records search was also performed by the Los Angeles Museum of Natural History to determine the paleontological sensitivity of the site. The record search determined that there is high fossil sensitivity onsite due to the terrestrial Pliocene Saugus Formation near and within the project area. Also, a fossil horse was located within the project boundary on the east side of the Cruzan Mesa SEA. Overall, the project site has

5. Environmental Analysis

high paleontological sensitivity. Mitigation is provided to ensure impacts to archaeological and paleontological resources are minimized to less than significant.

5.5.2 Impacts Associated with the Modified Project

Regulatory Background

Assembly Bill 52

Under the California Public Resources Code Sections 21073 et seq., the Native American Historic Resource Protection Act (Assembly Bill 52 [AB 52]) took effect July 1, 2015, and incorporates tribal consultation and analysis of impacts to tribal cultural resources (TCR) into the CEQA process. It requires TCRs to be analyzed like any other CEQA topic and establishes a consultation process for lead agencies and California tribes. Projects that require a Notice of Preparation of an EIR or Notice of Intent to adopt a ND or MND on or after July 1, 2015, are subject to AB 52. A significant impact on a TCR is considered a significant environmental impact, requiring feasible mitigation measures.

TCRs must have certain characteristics:

1. Sites, features, places, cultural landscapes (must be geographically defined), sacred places, and objects with cultural value to a California Native American Tribe that are either included or determined to be eligible for inclusion in the California Register of Historic Resources or included in a local register of historical resources.
2. The lead agency, supported by substantial evidence, chooses to treat the resource as a TCR.

The first category requires that the TCR qualify as a historical resource according to PRC Section 5024.1. The second category gives the lead agency discretion to qualify that resource-under the conditions that it supports its determination with substantial evidence and considers the resource's significance to a California Tribe. The following is a brief outline of the process.

1. A California Native American tribe asks agencies in the geographic area with which it is traditionally and culturally affiliated to be notified about projects. Tribes must ask in writing.
2. Within 14 days of deciding to undertake a project or determining that a project application is complete, the lead agency must provide formal written notification to all tribes who have requested it.
3. A tribe must respond within 30 days of receiving the notification if it wishes to engage in consultation.
4. The lead agency must initiate consultation within 30 days of receiving the request from the tribe.

5. Environmental Analysis

5. Consultation concludes when both parties have agreed on measures to mitigate or avoid a significant effect to a TCR, OR a party, after a reasonable effort in good faith, decides that mutual agreement cannot be reached.
6. Regardless of the outcome of consultation, the CEQA document must disclose significant impacts on TCRs and discuss feasible alternatives or mitigation that avoid or lessen the impact

Given that AB 52 only recently took effect, the previously certified 2010 EIR did not analyze impacts related to tribal cultural resources. The County of Los Angeles also does not include tribal cultural resources as part of its adopted CEQA checklist. However, impacts of the Modified Project on tribal cultural resources are analyzed below using the Office of Planning and Research's proposed update to the CEQA Guidelines Appendix G checklist (see Section 5.5.2(e), below).

Would the Modified Project:

Issues	Substantial Change in Project or Circumstances Resulting in New Significant Effects	New Information Showing Greater Significant Effects than Previous ElR	New Mitigation or Alternative to Reduce Significant Effect is Declined	Minor Technical Changes or Additions	No Impact
a) Cause a substantial adverse change in the significance of a historical resource as defined in CEQA Guidelines § 15064.5?				X	
b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to CEQA Guidelines § 15064.5?				X	
c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature, or contain rock formations indicating potential paleontological resources?				X	
d) Disturb any human remains, including those interred outside of formal cemeteries?					X
e) Would the project cause a substantial adverse change in the significance of a tribal cultural resource as defined in Public Resources Code 21074?					X

Comments:

a) Cause a substantial adverse change in the significance of a historical resource as defined in CEQA Guidelines $\mathbb{\$ 1 5 0 6 4 . 5 ?}$

Minor Technical Changes or Additions. The development footprint of the Modified Project is reduced and within the footprint of the Approved Project. The entire site is vacant and undeveloped. Grading of the Modified Project would not involve any demolition of existing structures or buildings that may have historic significance. Thus, no impact would occur to any historic resources, and the Modified Project would not result in any new or substantially altered conditions in comparison to the Approved Project.

5. Environmental Analysis

b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to CEQA Guidelines $\mathbb{\$ 1 5 0 6 4 . 5}$?

Minor Technical Changes or Additions. As discussed above, archaeological resources were discovered onsite; however, Phase II testing determined that the resources were not significant. Similar to the Approved Project, implementation of the Modified Project would involve grading activities that may unearth previously undiscovered archaeological resources. Therefore, mitigation from the 2010 Certified EIR is provided to ensure impacts remain less than significant. The Modified Project would not result in any new or substantially altered conditions in comparison to the Approved Project.
c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature, or contain rock formations indicating potential paleontological resources?

Minor Technical Changes or Additions. The record search performed for the Approved Project by the Los Angeles Museum of Natural History determined the project site to have high paleontological sensitivity. Grading activities associated with the Modified Project would be reduced compared to the Approved Project; however, it would still involve grading of the majority of the developable area. Any excavations in the Saugus Formation or Mint Canyon Formation have a high chance of discovering significant fossil vertebrate remains. Thus, mitigation is provided to ensure impacts to archaeological and paleontological resources are minimized to less than significant. However, the Modified Project would not result in any new or substantially altered conditions in comparison to the Approved Project.

d) Disturb any human remains, including those interred outside of formal cemeteries?

No Impact. California Health and Safety Code, Section 7050.5; CEQA Section 15064.5; and Public Resources Code, Section 5097.98 mandate the process to be followed in the event of an accidental discovery of any human remains in a location other than a dedicated cemetery. Specifically, California Health and Safety Code, Section 7050.5 , requires that if human remains are discovered on a project site, disturbance of the site shall remain halted until the coroner has conducted an investigation into the circumstances, manner, and cause of any death, and the recommendations concerning the treatment and disposition of the human remains have been made to the person responsible for the excavation, or to his or her authorized representative, in the manner provided in Section 5097.98 of the Public Resources Code. If the coroner determines that the remains are not subject to his or her authority and if the coroner recognizes or has reason to believe the human remains to be those of a Native American, he or she shall contact, by telephone within 24 hours, the Native American Heritage Commission (NAHC). Although soil-disturbing activities associated with development of the Modified Project could result in the discovery of human remains, compliance with existing law and applicable mitigation measure from the Certified EIR would ensure that significant impacts to human remains would not occur.
e) Would the project cause a substantial adverse change in the significance of a tribal cultural resource as defined in Public Resources Code 21074?

No Impact. As part of the Certified 2010 EIR, the NAHC performed a records search of its Sacred Land Files for a one-mile radius around the project site to determine the presence of Native American resources.

5. Environmental Analysis

The record search did not indicate the presence of Native American cultural resources in the area that may be impacted by the Skyline Ranch project development. The NAHC also forwarded a list of Native American groups or individuals that may have additional information on the project area. These groups or individuals were notified of the Skyline Ranch project and asked for input. However, there were no responses to the inquiry. Given the results of the Native American consultation, it is unlikely that there are significant tribal cultural resources onsite. The modifications to the Approved Project would be developed within a reduced development footprint. Therefore, there would be no additional potential to affect other tribal cultural resources on the project site. No impact would occur.

5.5.3 Adopted Mitigation Measures Applicable to the Modified Project

Archaeological Resources

4.D-1 (a) Archaeological Monitoring. At the commencement of project grading or construction, all workers associated with earth disturbing activities (particularly remedial grading and excavation) shall be given an orientation regarding the possibility of exposing unexpected archaeological material and/or cultural remains by a qualified archaeologist who satisfies the Secretary of the Interior's Professional Qualification Standards for Archaeology (prehistoric/historic archaeology) pursuant to 36 CFR 61. The archaeologist shall also instruct the workers as to what steps are to be taken if such a find is encountered. Due to the moderate sensitivity and possibility of buried cultural materials within the project area, it is recommended that initial grading and ground disturbing activities in areas determined to be sensitive (primarily those areas proximal to recorded sites) be monitored by an archaeologist who meets the Secretary of the Interior's Professional Qualifications Standards for Archaeology (prehistoric/historic archaeology) pursuant to 36 CFR 61. The archaeologist shall have the authority to stop work if sensitive or potentially significant cultural remains are discovered during excavation or ground disturbing activities. Test excavations may be necessary to reveal whether such cultural materials are significant. In the event the archaeologist indicates that a significant or unique archaeological/cultural find has been unearthed, grading operations shall cease in the affected area until the geographic extent and scientific value of the resources can be reasonably verified. Upon such discoveries, the archaeologist shall notify the applicant and Los Angeles County. Any excavation and recovery of resources shall be performed by a qualified archaeologist using standard archaeological techniques. If necessary, a mitigation plan shall be formulated. Work in the area shall only resume with the approval of the project archaeologist. Artifacts, notes, photographs, and other project materials recovered during the monitoring program shall be curated at a facility meeting federal and state standards.
4.D-1(b) Human Remains. If human remains are unearthed, State Health and Safety Code Section 7050.5 requires that no further disturbance shall occur until the County Coroner has made the necessary findings as to origin and disposition pursuant to Public Resources Code Section 5097.98. If the remains are determined to be of Native American descent, the coroner will notify the Native American Heritage Commission (NAHC). The NAHC will

5. Environmental Analysis

then identify the person(s) thought to be the Most Likely Descendent (MLD) of the deceased Native American, who will have 24 hours to make a formal recommendation as to disposition of the remains. All work associated with the remains will be done respectfully, and with recognition that the remains are considered sacred. All work in the area of the remains will be monitored by an authorized representative of the MLD.

Paleontological Resources

4.D-2(a) Paleontological Survey and Treatment Program. Prior to the implementation of grading or construction related activities, a qualified paleontologist shall be retained by the applicant to survey the project area to relocate known fossil localities, and determine the most sensitive areas. Following the survey, a paleontological resources monitoring and mitigation program will be developed that will include salvage of known fossil resources, areas that will be monitored during project-related earth-moving activities. The paleontological resources monitoring and mitigation program shall be submitted to the County for review and approval prior to construction grading activities. The program shall define specific procedures for construction monitoring; emergency discovery; sampling and data recovery, if needed; museum storage of any specimen and data recovered; preconstruction coordination; and reporting.
4.D-2(b) Paleontological Monitoring. The paleontologist shall monitor earth-moving construction activities at depths determined to be sensitive as specified in the County approved monitoring plan. Monitoring will not be conducted in areas where the ground has been previously disturbed or in areas where exposed sediment will be buried, but not otherwise disturbed.
4.D-2(c) Paleontological Data Recovery. Prior to the start of grading or construction related activities, construction personnel involved with earth-moving activities shall be informed of procedures to follow if fossil remains are encountered. In the event that paleontological resources are encountered during construction-related earth-moving activities, all work shall cease within the immediate area and be redirected elsewhere until the paleontological monitor has evaluated the situation and provided recommendations for the protection of, or mitigation of adverse effects to, significant paleontological resources assessed. Upon such discoveries, the contractor shall notify the applicant and Los Angeles County. Procedures for mitigating potential impacts to significant paleontological resources shall follow the monitoring and mitigation program previously developed under this mitigation measure. Construction work within this area shall resume upon approval from the principal project paleontologist.

5.5.4 Level of Significance After Mitigation

The Modified Project would only result in minor technical changes or additions to the previously certified EIR, and would not result in significant impacts upon implementation of applicable regulatory requirements and mitigation measures.

5. Environmental Analysis

5.6 ENERGY

5.6.1 Summary of Impacts Identified in the Certified EIR

The topic of energy was not discussed in the 2010 Certified EIR. The 2014 version of the County's checklist includes an energy section, and Appendix F of the CEQA Guidelines discusses energy.

5.6.2 Impacts Associated with the Modified Project

Regulatory Background

Los Angeles County Green Building Standards

The green building standards of Los Angeles County (County Code Title 22, Chapter 22.52, Part 20) are required for all new development to reduce water, energy, natural resources, and solid waste; reduce impacts to infrastructure; and promote a healthier environment.

The green building standards apply to new residential and commercial projects that file for building permits after January 1, 2009. Exemptions include agricultural accessory structures, registered historic sites, and firsttime tenant improvements with a gross floor area of less than 10,000 square feet.

Projects that file for building permits with five dwelling units or more (the category under which the proposed project would fall) must meet the County's green building standards:

- Energy Conservation: Buildings must reduce energy demand by at least 15 percent below Title 24 (2005 Update).
- Outdoor Water Conservation: A smart irrigation controller must be installed for any landscaped area of the project.
- Indoor Water Conservation: All tank-type toilets installed must be high efficiency with a maximum 1.28 gallons per flush.
- Resource Conservation: At least 65 percent of construction waste (by weight) must be recycled.
- Tree Planting: A minimum of two 15-gallon trees must be planted and maintained for each singlefamily residence lot. At least one of the trees must be listed on the drought-tolerant approved plant list.

In addition to the green building standards, projects of five residential units or more must demonstrate compliance with another certification program. Applicants may choose from the following certification programs: Green Point Rated (GPR), California Green Builder (CGB), or Leadership in Energy and Environmental Design (LEED).

5. Environmental Analysis

Title 21, Subdivisions, Section 21.24.440, Green Building, of the Los Angeles County Building Code requires all subdivision projects to follow the County's green building standards outlined in Title 22, Chapter 22.52, Part 20 of the County code.

Environmental Setting

Similar to the Approved Project, the Modified Project site is within the service area of Southern California Edison, which supplies both electricity and natural gas in the area. Table 5 summarizes the energy used by the residential and nonresidential sectors in Los Angeles County between 2006 and 2013 (most recent data available).The average electricity consumption between 2006 and 2013 was $69,589.52$ million kilowatt hours (kWh) per year, with a high of 73,783 million kWh in 2008 and a low of 66,597 million kWh in 2011. The average natural gas consumption between 2006 and 2013 was $3,055.22$ million therms, with a high of 3,130.53 million therms in 2013 and a low of 2,950.07 million therms in 2009.

Table 5 Historic Energy Use in Los Angeles County, 2006-2013

	2006	2007	2008	2009	2010	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 3}$
Electricity (millions of kWh)	$70,662.03$	$70,812.65$	$73,783.84$	$70,149.49$	$67,323.12$	$66,597.58$	$69,277.09$	$68,110.33$
Natural Gas (millions of therms)	$3,001.95$	$3,028.12$	$3,033.47$	$2,950.07$	$3,125.79$	$3,121.43$	$3,050.37$	$3,130.53$
Source: CEC 2013a 2013b								

CEQA Guidelines Appendix F

In the 2010 update of the state's CEQA Guidelines, Appendix F was added to assure that energy implications are considered as part of the project approval process. All potentially significant energy impacts shall be considered in an EIR to the extent relevant and applicable to the project.

Would the Modified Project:

Issues	Substantial Change in Project or Circumstances Resulting in New Significant Effects	New Information Showing Greater Significant Effects than Previous EIR	New Mitigation or Alternative to Reduce Significant Effect is Declined	Minor Technical Changes or Additions	$\begin{gathered} \text { No } \\ \text { Impact } \end{gathered}$
a) Conflict with Los Angeles County Green Building Standards Code (L.A. County Code Title 31)				X	
b) Involve the inefficient use of energy resources (see Appendix F of the CEQA Guidelines)?				X	

a) Conflict with Los Angeles County Green Building Standards Code (L.A. County Code Title 31)?

Minor Technical Changes or Additions. Similar to the Approved Project, the Modified Project falls under the County's Green Building category of "residential projects with 5 or more dwelling units," which means housing must be constructed in compliance with the County's green building standards as well as the

5. Environmental Analysis

requirements of GPR, CGB, or LEED. This requirement applies to all projects requiring building permits after January 1, 2010.

Additionally, the Director of Public Works must approve all project applications for building permits and verify that the project has complied with the County's green building standards as well as one of the additional sets of standards, or their equivalent, as described in the County Code (Title 22, Chapter 22.52, Part 20). The Modified Project would be required to demonstrate this compliance; without compliance, the project would not be issued building permits.

Both the Approved and Modified Projects would fall under the category of residential projects of five units or more and would be required to comply with the County's green building standards. The Modified Project would not result in any new or substantially altered conditions in comparison with Approved TTM 60922.

b) Involve the inefficient use of energy resources (see Appendix F of the CEQA Guidelines)?

Minor Technical Changes or Additions. Electricity demand was not calculated for the Approved Project. Based on a projected total of 1,260 units, the Approved Project would have used $10,372,440 \mathrm{kWh}$ of electricity per year and 597,320 British thermal units (BTUs) (or 6.0 therms) of natural gas per year. The Modified Project proposes 1,220 residential units (a decrease of 40 units), which would slightly decrease the projected use of electricity and natural gas per year by $330,681 \mathrm{kWh} / \mathrm{yr}$ and $19,043 \mathrm{BTUs} / \mathrm{yr}$ (0.2 therms), respectively (see Table 6).

Table 6 Approved Project vs. Modified Project, Projected Energy Use

Units	Population ${ }^{1}$	CEC Electricity Demand Rate (kWh/capita/yr)	CEC Natural Gas Demand Rate (BTUs/capita/yr)	Projected Electricity Use (kWh/yr)	Projected Natural Gas Use (BTUs/yr)
Approved Project					
Residential					
1,260 units	4,360	2,379	137	10,372,440	597,320
Modified Project					
Residential					
1,220 units	4,221	2,379	137	10,041,759	578,277
			Difference	(330,681 kWh/yr)	(19,043 BTUs/yr)
Source: USDOE 2008. Notes: $\mathrm{kWh}=$ Kilowatt hours; BTU = British thermal units; yr = year; CEC = California Energy Commission ${ }^{1}$ Based on an average of 3.46 persons per household in Los Angeles County from the 2010 US Census Bureau census tract data for tracts $9200.32,9200.33$, and 9200.34.					

As described in the analysis for Section 5.6.2 (a), the Modified Project would also be required to incorporate the County's green building standards as well as demonstrate compliance with another green building certification program, such as GPR, CGB, LEED, or an equivalent, as approved by the Director of Public Works. Additionally, the proposed project would be required to meet the California 2008 Building and Energy Efficiency Standards and the Title 24 Net-Zero Building Standards. By meeting these requirements, total energy use would be further reduced.

5. Environmental Analysis

The development of the Modified Project would result in a lower usage of electricity and natural gas than the Approved Project, which would be a beneficial impact.

5.6.3 Adopted Mitigation Measures Applicable to the Modified Project

The 2010 Certified EIR did not include mitigation measures related to energy resources.

5.6.4 Level of Significance After Mitigation

The Modified Project would only result in minor technical changes or additions to the previously certified EIR and would not result in significant impacts related to energy.

5.7 GEOLOGY AND SOILS

5.7.1 Summary of Impacts Identified in the Certified EIR

This section summarizes the analysis contained in Section 4.A, Geotechnical Resources, of the 2010 Certified EIR.

According to the Certified EIR, the Approved Project would be exposed to strong seismic ground shaking if an earthquake occurs along major faults in the vicinity; however, the project would conform to International Building Code (IBC) standards which include design requirements to reduce potential for significant damage to structures from seismic activities. The IBC and County of Los Angeles building standards, including those associated with hillside management, would ensure impacts related to ground shaking would be less than significant.

Canyons within the project site contain very coarse-grained alluvial deposits, landslide debris, and terrace deposits, which are subject to liquefaction. Additionally, much of the sloping terrain onsite have potential for earthquake-induced landslides. Mitigation is provided to ensure potentially significant impacts due to settlement and landsliding are reduced to less than significant levels.

Approximately $20,800,000$ cubic yards of soil would be graded within the southern 622 acres of the site and on 33.7 acres of adjacent property to the east, west, south, and southwest. Most of the offsite grading is associated with the extension of roadways. A few areas onsite would be exposed to surficial instability and debris flow hazard. Therefore, mitigation in the form of drainage ditches, impact walls, slop design, berms, and drainage swales is provided to reduce impacts to less than significant.

The extensive excavation and grading associated with the Approved Project could also result in substantial soil erosion regardless of compliance with applicable best management practices and required erosion control plans. Mitigation is provided to reduce soil erosion impacts to less than significant levels.

5. Environmental Analysis

5.7.2 Impacts Associated with the Modified Project

The analysis in this section is based in part on the following technical report:

- Geotechnical Report Amended Tentative Tract Map 060922, Canyon Country, County of Los Angeles, California, LGC Valley, Inc., March 28, 2016.

A complete copy of the study is included in Appendix A.
Would the Modified Project:

Issues	Substantial Change in Project or Circumstances Resulting in New Significant Effects	New Information Showing Greater Significant Effects than Previous EIR	New Mitigation or Alternative to Reduce Significant Effect is Declined	Minor Technical Changes or Additions	$\begin{gathered} \text { No } \\ \text { Impact } \end{gathered}$
a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:					
i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zone Map issues by the State Geologist for the area or based on other substantial evidence of a known active fault trace? Refer to Division of Mines and Geology Special Publication 42.					X
ii) Strong seismic ground shaking?					X
iii) Seismic-related ground failure, including liquefaction and lateral spreading?					X
iv) Landslides?				X	
b) Result in substantial soil erosion or the loss of topsoil?				X	
c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?					X
d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property?					X
e) Have soils incapable of adequately supporting the use of onsite wastewater treatment systems where sewers are not available for the disposal of wastewater?					X
f) Conflict with the Hillside Management Area Ordinance (L.A. County Code, Title 22, § 22.56.215) or hillside design standards in the County General Plan Conservation and Open Space Element?				X	

5. Environmental Analysis

Comments:

a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:
i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known active fault trace? Refer to Division of Mines and Geology Special Publication 42.

No Impact. The Modified Project site is the same as the Approved Project site and is not within an Alquist-Priolo Earthquake Fault Zone. There are also no known or potentially active faults that pass through the site. The nearest active faults to the site are the San Gabriel Fault, approximately 4.3 miles to the southwest of the site, and the Holser Fault, approximately 5 miles to the west of the site. Given the distance and lack of active faults across the site, potential damage due to ground rupture from nearby faults is considered nil (LGC 2016). Thus, the modifications to the Approved Project would have no impact on the project's susceptibility to ground rupture.

ii) Strong seismic ground shaking?

No Impact. As discussed above, the Skyline Ranch project site is not within an Alquist-Priolo Earthquake Fault Zone and no active faults pass through the site. However, the project site is situated in southern California, which is a seismically active area. Therefore, seismic ground shaking is anticipated to occur from time to time. Similar to the Approved Project, development in accordance with the Modified Project would be required to comply with the IBC, California Building Code, and County regulations to reduce seismic hazards to persons and structures. Therefore, the proposed modifications to Approved TTM 60922 would not result in new or substantially more severe impacts related to seismic strong ground shaking compared to those already analyzed in the Certified EIR.
iii) Seismic-related ground failure, including liquefaction and lateral spreading?

No Impact. Seismic-related ground failure can include lateral spreading (shallow ground rupture), liquefaction, and seismically induced settlements.

Lateral Spreading

Lateral spreading due to active faulting is not likely to occur on site due to the lack of active or potentially active fault traces across the site. Therefore, this is not considered a significant hazard.

Liquefaction

Liquefaction is a seismic phenomenon in which loose, saturated, granular soils behave similarly to a fluid when subject to high-intensity ground shaking. Liquefaction occurs when three general conditions exist: 1) shallow groundwater; 2) low density noncohesive (granular) soils; and 3) high-intensity ground motion. Liquefaction is typified by a buildup of pore-water pressure in the affected soil layer to a point where a total loss of shear strength occurs, causing the soil to behave as a liquid. Studies indicate that saturated,

5. Environmental Analysis

loose to medium dense, near-surface cohesionless soils exhibit the highest liquefaction potential, while dry, dense, cohesionless soils and cohesive soils exhibit low to negligible liquefaction potential.

Due to the presence of shallow bedrock at the site, complete removal of loose alluvial materials beneath compacted fills, and the general lack of shallow groundwater, the site is considered to have a low liquefaction hazard.

Seismically Induced Settlements

During a strong seismic event, seismically induced settlement can occur within loose to moderately dense, dry or saturated granular soil. Settlement caused by ground shaking is often not uniformly distributed, which can result in differential settlement. Mitigation Measure 4.A-1 from the Certified EIR would ensure that all unsuitable materials would be removed and recompacted in the grading of the site to mitigate potential for seismic settlement.

Overall, modifications to the Approved Project would not result in new or substantially more severe seismic-related ground failure impacts.

iv) Landslides?

Minor Technical Changes or Additions. As identified in the Certified EIR, much of the sloping terrain on the project site has been delineated a Seismic Hazard Zone with potential for earthquakeinduced landslides. The Modified Project would reduce cut and fill quantities based on the modifications to Approved TTM 60922, including the realignment of Skyline Ranch Road, relocation of the park sites, and revisions to the product types. As stated above, the Modified Project would reduce cut and fill quantities to 17.1 million cy of cut and 16.9 million cy of fill, decreasing grading quantities under the Approved Project by approximately 18 and 19 percent, respectively.

The design and construction of the Modified Project would still be required to comply with provisions of the IBC, CBC, Los Angeles County Municipal Code, and grading ordinances, which are intended to reduce hazards to persons and damage to structures. Additionally, implementation of Mitigation Measure 4.A-2 would require that landslide soils be removed and recompacted or designated Restricted Use Areas. Therefore, while the proposed modifications to the Approved Project would result in changes to the project's grading footprint and volumes, these changes would not result in new or substantially more severe impacts related to landslides.

b) Result in substantial soil erosion or the loss of topsoil?

Minor Technical Changes or Additions. Erosion is the movement of soil and rock from place to place. Erosion occurs naturally by agents such as wind and flowing water; however, grading and construction activities can cause substantial erosion if effective erosion-control measures are not used. Common means of soil erosion from construction sites include water, wind, and being tracked offsite by vehicles.

The Modified Project would eliminate 40 residential lots, relocate park sites, and realign Skyline Ranch Road. These modifications would significantly decrease the project's required grading areas and volumes.

5. Environmental Analysis

Additionally, the realignment of Skyline Ranch Road to the east would preserve much of the site's western portion as is and would not cause substantial soil erosion or loss of topsoil in the area.

Regardless, both the Approved and Modified Projects would result in exposed slopes that require proper planting and landscaping for the most effective erosion control. Similar to the Approved Project, implementation of the Modified Project would also be required to comply with best management practices, required erosion control plans, and other regulatory requirements (e.g., IBC and CBC standards). Mitigation Measure 4.A-5 from the Certified EIR requires that finer soils be placed and compacted in the upper five feet of fill slopes to reduce the amount of infiltration and erosion. Cut slopes exposing erodible soils would require stabilization with engineered fill. Overall, impacts associated with soil erosion and loss of topsoil would be less than significant.
c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction, or collapse.

No Impact. As discussed above in Sections 5.7(a) and (b), implementation of the Modified Project in conjunction with applicable mitigation measures from the Certified EIR would ensure that impacts from landslides, lateral spreading, subsidence, liquefaction, and collapse are less than significant. The Modified Project would be on the same geologic unit and soil as the Approved Project and would have a reduced development footprint. Thus, the changes proposed by the Modified Project would not result in any new impacts or increase the severity of impacts, with respect to unstable geologic units and soils.
d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property?

No Impact. The vast majority of the soils on the project site are within very low and low expansion index ranges. However, expansive rock units within the Saugus Formation are located in the westerly portion of the project site. Similar to the Approved Project, the Modified Project would be required to implement Mitigation Measure 4.A-4 from the Certified EIR, which ensures that expansive soils are overexcavated between 7 and 10 feet to mitigate potential for differential expansion. The changes proposed by the Modified Project would not result in any new impacts or increase the severity of impacts, with respect to expansive soil.
e) Have soils incapable of adequately supporting the use of onsite wastewater treatment systems where sewers are not available for the disposal of wastewater?

No Impact. Neither the Approved nor Modified Projects would include septic tanks or other alternative wastewater disposal systems. The Modified Project would include sewers connecting to nearby sewer mains. No impact would occur and the proposed modifications would not result in new or substantially more severe impacts related to alternative wastewater disposal systems than those already analyzed in the 2010 Certified EIR.

5. Environmental Analysis

f) Conflict with the Hillside Management Area Ordinance (L.A. County Code, Title 22, § 22.56.215) or hillside design standards in the County General Plan Conservation and Open Space Element?

Minor Technical Changes or Additions. The 2010 Certified EIR did not discuss impacts related to the Hillside Management Area (HMA) Ordinance. The County Board of Supervisors adopted an update to the HMA ordinance as part of the 2035 General Plan Update in March 2015. The HMA ordinance protects resources in significant ecological areas, as specified in the County General Plan, from incompatible development that may result in or have the potential for environmental degradation. Additionally, Section 22.56.217 (Hillside Management Areas - Additional Regulations) was added to the updated HMA ordinance. This section was established to ensure that development preserves and enhances the physical integrity and scenic value of HMAs, provides open space, and is compatible with and enhances community character.

The Conservation and Natural Resources Element of the 2035 General Plan includes Figure 9.8, Hillside Management Areas and Ridgeline Management Map, which indicates that the developable footprint of the Modified Project is in an area that has HMAs (slopes greater than 25 percent). A conditional use permit (CUP) is required for any development located wholly or partially in an HMA, including the proposed project. A CUP is granted when several findings are made. The following table provides a consistency analysis of the Modified Project with the HMA Ordinance. As shown, the Modified Project would meet the criteria of HMA compliance and impacts would be less than significant.

Table 7 HMA Ordinance Consistency Analysis

1. The proposed development preserves the physical integrity of HMAs to the greatest extent feasible, resulting in lesser amount of impacts to hillside resources, by: locating development outside of HMAs to the extent feasible, locating development in the portions of HMAs with fewer hillside constraints, and using sensitive hillside design techniques tailored to the site requirements;
2. That the proposed development preserves the scenic value of HMAs to the extent feasible, resulting in lesser amount of impacts to on-site and off-site scenic views of slopes and ridgelines as well as to views of other unique, site-specific aesthetic or significant natural features of the hillside by: locating development outside of HMAs to the extent feasible, locating development in the portions of HMAs with the fewest hillside constraints; and using sensitive hillside design techniques tailored to the site requirements;
3. That the proposed development is compatible with or enhances community character, and provides open space as requires in this Section;

Consistent: The Modified Project would have a smaller development footprint than the Approved Project-492 acres compared to 622 acres in the southern third of the project site. The northern 1,355 acres would be preserved as natural open space in the Skyline Ranch Conservation Area. Additionally, as shown on Figure 4, Approved TTM vs. Proposed Concept Plan, the Modified Project would not impact a large portion of slopes and hills in the southwestern portion of the site (west of Skyline Ranch Road) compared to development of the Approved Project. Overall, the Modified Project would reduce grading quantities by approximately 18 and 19 percent for cut and fill, respectively. This preserves the physical integrity of the HMAs to the greatest extent feasible.
Consistent: As indicated in Sections 5.1.2(a) through (e), implementation of the Modified Project and applicable mitigation measures would ensure impacts to scenic views of slopes, ridgelines, and significant natural features of the hillsides are minimized. The Modified Project would shift the residential lots further north within the project site, away from existing views toward the Skyline Ranch community and northern hillsides; thereby reducing impacts on scenic vistas (see Figures 8 through 10, Visual Simulation Comparison).

[^1]Table 7 HMA Ordinance Consistency Analysis

	design of the project would complement the surrounding natural area and match similar adjacent developments.
4. That the proposed development is in compliance with the	
Hillside Design Guidelines.	The remaining northern 1,355 acres of the project boundary would be preserved as natural open space in the Skyline Ranch Conservation Area.
Consistent: The Approved Project complied with the Los Angeles County Subdivision Section Code 22.56.215 Hillside Management and Significant Ecological Areas guidelines and the density controlled Development Code 22.56.205. The Modified Project would have a smaller development footprint than the Approved Project as shown on	
Figure 4, Approved TTM vs. Proposed Concept Plan, and would not	
impact a large portion of slopes and hills in the southwestern portion	
of the site (west of Skyline Ranch Road) compared to development of	
the Approved Project.	

5.7.3 Adopted Mitigation Measures Applicable to the Modified Project

The following mitigation measures have been carried through from the 2010 Certified EIR.

Liquefaction/Dry Seismic Settlement

4.A-1 The following materials are considered unsuitable and shall be removed and recompacted in the grading of the site: existing fill soils, colluvial deposits and slopewash, alluvial deposits, landslide debris, and terrace deposits. Their removal and recompaction mitigate the potential for seismic settlement.

Landslides

4.A-2 Landslide deposits within the limits of the planned grading shall be completely removed and replaced with competent material during site grading. The locations of landslide deposits to be removed are identified in the Geotechnical Investigation prepared by LGC Valley (dated March 28, 2016). The actual depth of stripping or overexacavation shall be determined during grading based on field observations by a qualified geotechnical consultant.

Landslides (or portions thereof) that remain in place and are not removed and recompacted following the grading of the project site shall be designated as Restricted Use Areas, in accordance with Los Angeles County Department of Public Works (LACDPW) requirements. Landslides designated as Restricted Use Areas and landslides that are removed and recompacted are identified in the Geotechnical Investigations prepared by GeolabsWestlake Village (dated March, 6, 2004, August 23, 2004, January 3, 2005, November 16, 2006, April 13, 2007, and August 28, 2008).

5. Environmental Analysis

Slope Stability

4.A-3(a) Interior slopes with daylighted bedding conditions shall be analyzed for appropriate buttress design. Tall cut slopes in the southerly portion of the site are anticipated to expose friable, uncemented bedrock zones and large cobbles and boulders. Several of these slopes require stabilization in order to mitigate the potential for raveling and dislocation of cobbles and boulders. All stability fills and buttresses shall be provided with backdrains and shall incorporate the generalized stability fill key dimensions for the "refacing" of planned cuts slopes.
4.A-3(b) Fill caps for cut/fill lots shall be constructed to provide uniform foundational support for future structures. Shallow cut lots and cut/fill lots shall be provided with a minimum 5 -foot cap of compacted fill. Cut/fill lots underlain by 10 feet or less of compacted fill on the fill portion of the lot shall have the cut portion overexcavated a minimum of 5 feet below finish grade and replaced with compacted fill, thus providing a fill cap with a minimum 5 -foot fill thickness. For those transition lots with 10 to 20 feet of fill on the fill side, the cut side shall be provided with a minimum 7 -foot-thick fill cap. For those transition lots with in excess of 20 feet of fill on the fill side, the cut side shall be provided with a minimum 10 -foot-thick fill cap. Fill caps shall extend a minimum of 5 feet beyond the perimeter footings.

Where the backslope is $3: 1$ or steeper, the last bench prior to reaching the undercut shall be at least 15 feet in width. The 15 -foot-wide bench is intended to reduce the steep dip of the fill-bedrock contact commonly created during undercutting.
4.A-3(c) All vegetation, trash debris, or other deleterious material shall be stripped from the area to be graded. These materials shall be removed from the site and deposited at a local landfill or recycled on site. Soils bearing sparse grasses may be thoroughly mixed with at least ten parts clean soil and incorporated into the engineered fill. Other materials shall be removed from the site.
4.A-3(d) Fill slopes, which toe onto sloping ground, shall be founded in bedrock, below the compressible surface soils. The key shall be at least 20 feet wide and 3 feet deep (measured on the downslope side). The bottom of the key shall be graded so that there is at least 1 foot of fall across its width (toward the upslope side). The key shall be located in front of the toe of slope (as shown on the plan) so that the outside limit of the key lies at or beyond a $1: 1$ projection from the planned toe of the slope.
4.A-3(e) Fill-over-cut slopes shall have the fill founded on a 20 -foot-wide bench cut into the bedrock or, where bedrock is not present in the cut portion of the slope, on a key cut below the toe of the slope. The 20 -foot bench shall be graded to provide at least 1 foot of fall toward its upslope side. If keyed below the toe of slope, then the key shall be at least 20 feet wide, 3 feet deep (below the toe), and tilted (at least 1 foot) into the slope. The cut portion of the slope shall be exposed (and observed by a representative of a qualified geotechnical firm) prior to constructing the fill portion of the slope.

5. Environmental Analysis

4.A-3(f) Exposed surfaces shall be scarified, moistened, or air-dried, as appropriate, and compacted to 90 percent of the material's maximum dry density prior to placement of fill.
4.A-3 (g) Where the ground slopes steeper than $5: 1$ (horizontal:vertical), the fill shall be properly benched into bedrock.
4.A-3(h) All fill slopes shall utilize mixed soils [sand with some proportion of fines; i.e., clayey sand] in the outer 20 feet of the fill slope in order to minimize the potential for surficial slope deterioration.
4.A-3(i) Fill materials shall be placed in thin lifts, watered to near the material's optimum moisture content (or to near two percent over optimum moisture content and compacted to the applicable level of relative compaction prior to placing the next lift).
4.A-3(j) The 90 percent relative compaction standard applies to the face of fill slopes. This may be achieved by overfilling the constructed slope and trimming to a compacted finished surface, rolling the slope face with a sheepsfoot, or any method that achieves the desired product.
4.A-3(k) All retaining walls constructed within the project site shall be constructed in accordance with the Los Angeles County Building Code requirements and a design-level geotechnical investigation.
4.A-3(l) Backfill for retaining walls shall be properly compacted. An impervious cap shall be provided at the top of the backfill to retard infiltration of water.
4.A-(m) Slope setbacks set forth in the Los Angeles County Building Code shall be applied to residences and appurtenant structures. Structures situated within the setback area shall require special foundation design, which might include deepening footings, pile/caisson construction, and/or consideration of creep loads.
4.A-3(n) Backfill for utility trench excavations shall be compacted to at least 90 percent relative compaction. Where installed in sloping areas, the backfill shall be properly keyed and benched.
4.A-3(o) Those lots exposed to ascending natural slope conditions shall be provided with drainage ditches or swales, berms or impact walls, and/or small slopes descending from the pads to the natural slopes, to provide protection from potential debris flow hazard.

Expansive Soils

4.A-4 Expansive lithologies shall be overexcavated where encountered within lots and streets in order to mitigate the potential for differential expansion. The depth of such overexcavation shall range between 7 and 10 feet.

5. Environmental Analysis

Soil Erosion

4.A-5 During grading, soils containing significant fines content (cohesive soils) shall be preferentially placed in the outer five feet of fill slopes. In addition, the required 90 percent relative compaction standard shall be applied to the outer face of fill slopes in order to reduce the amount if infiltration and erosion. Cut slopes exposing erodible bedrock formations shall require stabilization with engineered fill.

5.7.4 Level of Significance After Mitigation

The Modified Project would only result in minor technical changes or additions in comparison to the to the previously certified EIR, and would not result in significant impacts upon implementation of applicable regulatory requirements and mitigation measures.

5.8 GREENHOUSE GAS EMISSIONS

5.8.1 Summary of Impacts Identified in the Certified EIR

This section summarizes the analysis contained in Section 4.S, Global Climate Change, of the 2010 Certified EIR., which evaluated the greenhouse gas (GHG) emissions impacts of the Approved Project.

GHG Emissions

GHG emissions were calculated for construction and operation of the Approved Project and are shown in Table 8. Construction of the Approved Project was estimated to take approximately seven years to complete and included two separate grading phases. In total, the project would generate 45,406 metric tons of carbon dioxide-equivalent $\left(\mathrm{MTCO}_{2} \mathrm{e}\right)$ from on-road mobile sources and onsite construction equipment. GHG emissions were calculated for existing and projected future uses with implementation of the Approved Project. Total operational emissions generated from on-road mobile sources, electricity, natural gas, and water conveyance associated with the Approved Project was $35,078 \mathrm{MTCO}_{2}$ e per year ($36,592 \mathrm{MTCO}_{2} \mathrm{e}$ per year if 30 -year amortized construction emissions are included).

5. Environmental Analysis

Table 8 Skyline Ranch Approved Project GHG Emissions

Sector	GHG Emissions (MTCO2e/Year)
Total Construction Emissions (2008-2016)	45,406
$30-$ Year Amortized Construction Emissions	1,514
Transportation	27,211
Electricity	3,817
Natural Gas	1,945
Water Conveyance	2,105
Total	36,592
Service Population (SP) ${ }^{1}$	4,360 residents
MTCO2e/SP	8.4 MTCO $2 \mathrm{e} / \mathrm{SP}$
2010 Working Group SCAQMD Efficiency Metric	4.8 MTCO2e/SP
Exceeds Efficiency Metric	Yes
Source: Los Angeles County 2009.	
1 Based on a service population of Approved Project: 4.360 residents. The Modified Project would result in 190 fewer residents (4,170 people).	

The 2010 Certified EIR concluded that, at the time of the analysis, there was no generally accepted methodology to determine the extent to which GHG emissions associated with a specific project represent new emissions or existing emissions and therefore concluded that it was too speculative to determine the significance of impacts on global climate change. The 2010 Certified EIR conservatively concluded that the Approved Project's contribution to global warming was cumulatively considerable. The Approved Project included several mitigation measures to ensure consistency with the goals of Assembly Bill 32 (AB 32) and the California Climate Action Team strategies. Although these features and measures would reduce the Approved Project's GHG emissions impacts, the 2010 Certified EIR identified that the Approved Project would result in cumulatively significant and unavoidable impacts to global climate change.

5.8.2 Impacts Associated with the Modified Project

The Draft EIR for the Approved Project was circulated in July of 2009, which was prior to the amendments to the CEQA Guidelines, which were adopted on December 30, 2009, and became effective March 18, 2010. The information provided in this section includes the most current scientific data on GHG emissions and global climate change, but does not change the conclusions of the 2010 Certified EIR. Updated information on GHG emissions and global climate change does not trigger the need for preparation of a subsequent or supplemental EIR pursuant to Public Resources Section 21166 and CEQA Guidelines Section 15162. The current scientific information does not demonstrate that the Modified Project would result in new or more severe significant impacts than those determined in the 2010 Certified EIR.

Regulatory Background

The environmental and regulatory settings for the Modified Project have changed since certification of the 2010 Certified EIR. The following discussion is provided to update conditions relative to development of the Modified Project.

5. Environmental Analysis

State

Recent State of California guidance and goals for reductions in GHG emissions are generally embodied in Executive Order B-30-15, Assembly Bill 32 (AB 32), and Senate Bill 375 (SB 375).

- Executive Order B-30-15 (2015). Executive Order B-30-15, signed April 29, 2015, sets a goal of reducing GHG emissions within the state to 40 percent of 1990 levels by year 2030. It also directs CARB to update the Scoping Plan to quantify the 2030 GHG reduction goal for the state and requires state agencies to implement measures to meet the interim 2030 goal of Executive Order B-30-15 as well as the long-term goal for 2050 in Executive Order S-03-5.
- Assembly Bill 32, the Global Warming Solutions Act (2006). AB 32 was passed on August 31, 2006 and follows the 2020 tier of emissions reduction targets established in Executive Order S-3-05.
- Senate Bill 375 (2008). The intent of Senate Bill 375 (SB 375), the Sustainable Communities and Climate Protection Act, is to reduce GHG emissions from light-duty trucks and automobiles (excludes emissions associated with goods movement) by aligning regional long-range transportation plans, investments, and housing allocations to local land use planning to reduce VMT and vehicle trips.

Regional

SCAG's 2016-2040 RTP/SCS

SB 375 requires metropolitan planning organizations to prepare a sustainable communities strategy in their regional transportation plan. For the SCAG region, the 2016-2040 Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS) was adopted in April 2016 (SCAG 2016). The SCS outlines a development pattern for the region, which, when integrated with the transportation network and other transportation measures and policies, would reduce GHG emissions from transportation (excluding goods movement). The SCS is meant to provide growth strategies that will achieve the regional GHG emissions reduction targets. However, the SCS does not require that local general plans, specific plans, or zoning be consistent with the SCS; instead, provides incentives to governments and developers for consistency.

The 2016-2040 RTP/SCS projects that the SCAG region will meet or exceed the passenger vehicle per capita targets set in 2010 by CARB. Pursuant to the 2016-2040 RTP/SCS, SCAG anticipates lowering GHG emissions below 2005 levels by 8 percent by 2020, 18 percent by 2035, and 21 percent by 2040. Land use strategies to achieve the region's targets include planning for new growth around High Quality Transit Areas (HQTA), Livable Corridors, and creating Neighborhood Mobility Areas to integrate land use and transportation and plan for more active lifestyles (SCAG 2016).

Would the Modified Project:

5. Environmental Analysis

Issues	Substantial Change in Project or Circumstances Resulting in New Significant Effects	New Information Showing Greater Significant Effects than Previous EIR	New Mitigation or Alternative to Reduce Significant Effect is Declined	Minor Technical Changes or Additions	$\begin{gathered} \text { No } \\ \text { Impact } \end{gathered}$
a) Generate greenhouse gas (GHGs) emissions, either directly or indirectly, that may have a significant impact on the environment?				X	
b) Conflict with any applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of greenhouse gases?				X	

Comments:

a) Generate greenhouse gas (GHGs) emissions, either directly or indirectly, that may have a significant impact on the environment?

Minor Technical Changes or Additions. Global climate change is not confined to a particular project area and is generally accepted as the consequence of global industrialization over the last 200 years. A typical project, even a very large one, does not generate enough greenhouse gas emissions on its own to influence global climate change significantly, so the issue of global climate change is, by definition, a cumulative environmental impact. The State of California, through its governor and its legislature, has established a comprehensive framework for the substantial reduction of GHG emissions over the next 40-plus years. This will occur primarily through the implementation of AB 32 and SB 375 , which will address $G H G$ emissions on a statewide cumulative basis.

Based on the 2010 Certified EIR, the Approved Project would generate 36,592 MTCO_{2} e per year (see Table 8). Modifications to the Approved Project would reduce the grading quantities, development footprint, and residential lots by 40 units, thereby also reducing trip generation. Therefore, development of the Modified Project would result in less GHG emissions than identified in the 2010 Certified EIR. Although GHG emissions generated by the Modified Project could cumulatively contribute to statewide GHG emissions, the Modified Project would result in a beneficial impact compared to the Approved Project.
b) Conflict with any applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of greenhouse gases?

Minor Technical Changes or Additions. CARB's 2008 Scoping Plan is California's GHG reduction strategy to achieve the state's GHG emissions reduction target established by AB 32, which is 1990 levels by year 2020. Statewide strategies to reduce GHG emissions include the Low Carbon Fuel Standard, California Appliance Energy Efficiency regulations, California Renewable Energy Portfolio standard, changes in the corporate average fuel economy standards (Pavley and the California Advanced Clean Cars program), and other early action measures would ensure the state is on target to achieve the GHG emissions reduction goals of AB 32 . In addition, new buildings constructed are required to comply with or exceed the most recent Building and Energy Efficiency Standards and California Green Building Code. The Modified Project's GHG emissions would be reduced through compliance with statewide measures that have been adopted since AB

5. Environmental Analysis

32 was adopted. Compared to the Approved Project, the Modified Project would generate less GHG emissions due to the reduction of residential homes (40 units) and reduced grading quantities. Additionally, compliance with the aforementioned state regulations would ensure that the Modified Project does not interfere with regional plans and policies or the State of California's ability to achieve GHG reduction goals and strategies.

5.8.3 Adopted Mitigation Measures Applicable to the Modified Project

GCC-1 The builder shall strive to construct at least 10 percent of dwelling units in the proposed project with LIVINGSMART® features so as to achieve a minimum of 25 percent reduction in projected GHG emissions. The builder commits to offer enhanced advertising, education, and, if needed, other incentives to encourage market acceptance of these various energy- and water-conserving options.

GCC-2 The builder shall plant approximately 40 trees per landscaped acre as a means to capture (sequester) carbon dioxide emissions and to provide shade to the buildings, which can decrease the need for air conditioning.

GCC-3 To facilitate the extension of existing bus service to include Skyline Ranch Road, the builder shall work with the Santa Clarita Transit District to design and provide bus turnouts and shelters along Skyline Ranch Road.

GCC-4 In order to increase awareness of green building practices and to promote water and energy conservation, the builder will develop and implement a green educational program. The program will include but not necessarily be limited to a pamphlet that educates and promotes conservation practices that homeowners can implement, with specific guidance on landscaping with drought tolerant plants, use of efficient irrigation systems, compact florescent lighting, and other measures that help lower GHG emissions.

Please also see Mitigation Measures 4.H-2(a) and 4.H-2(b) in Section 5.3.3, and Mitigation Measures 4.I-1 through 4.I-5 in Section 5.18.3.

5.8.4 Level of Significance After Mitigation

The Modified Project would only result in minor technical changes or additions in comparison to the previously certified EIR and would not result in significant impacts upon implementation of applicable regulatory requirements and mitigation measures.

5.9 HAZARDS AND HAZARDOUS MATERIALS

5.9.1 Summary of Impacts Identified in the Certified EIR

Impacts associated with hazards and hazardous materials (previously called "Environmental Safety") were determined to be less than significant and were closed out in the Initial Study for the 2010 Certified EIR. The

5. Environmental Analysis

Initial Study concluded that no hazardous materials would be used, transported, produced, handled, or stored onsite; no pressurized tanks would be used onsite; no significant hazards due to accidental release of materials would occur; and no hazardous emissions would be emitted. The project is not on a site listed as a hazardous materials site or within an airport land use plan and would not impair or physically interfere with an adopted emergency response plan.

5.9.2 Impacts Associated with the Modified Project

Would the Modified Project:

Issues	Substantial Change in Project or Circumstances Resulting in New Significant Effects	New Information Showing Greater Significant Effects than Previous EIR	New Mitigation or Alternative to Reduce Significant Effect is Declined	Minor Technical Changes or Additions	$\begin{gathered} \text { No } \\ \text { Impact } \end{gathered}$
a) Create a significant hazard to the public or the environment through the routine transport, storage, production, use, or disposal of hazardous materials?					X
b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials or waste into the environment?					X
c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of sensitive land uses?					X
d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code § 65962.5 and, as a result, would it create a significant hazard to the public or the environment?					X
e) For a project located within an airport land use plan, or where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?					X
f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?					X
g) Impair implementation of, or physically interfere with, an adopted emergency response plan or emergency evacuation plan?					X
h) Expose people or structures to a significant risk of loss, injury or death involving fires, because the project is located:					
i) within a Very High Fire Hazard Severity Zones (Zone 4)?				X	
ii) within a high fire hazard area with inadequate access?				X	
iii) within an area with inadequate water and pressure to meet fire flow hazards?					X

5. Environmental Analysis

Issues	Substantial Change in Project or Circumstances Resulting in New Significant Effects	New Information Showing Greater Significant Effects than Previous EIR	New Mitigation or Alternative to Reduce Significant Effect is Declined	Minor Technical Changes or Additions	$\begin{gathered} \text { No } \\ \text { Impact } \end{gathered}$
iv) within proximity to land uses that have the potential for dangerous fire hazard?					X
i) Does the proposed use constitute a potentially dangerous fire hazard?				X	

Comments:

a) Create a significant hazard to the public or the environment through the routine transport, storage, production, use, or disposal of hazardous materials?

No Impact. No new land uses are proposed that may involve additional hazardous materials that would not already be used during construction and operations of the Approved Project. Construction would involve small quantities of hazardous materials, such as fuels, greases, paints, and cleaning materials. Similar to the Approved Project, the use, storage, transport, and disposal of hazardous materials by the Modified Project would be required to comply with existing regulations of several agencies, including the Department of Toxic Substances Control, the California Environmental Protection Agency, the Occupational Safety \& Health Administration, and Los Angeles County Fire Department (LACoFD). Compliance with applicable laws and regulations governing the use, storage, transportation, and disposal of hazardous materials would ensure that all potentially hazardous materials are used and handled in an appropriate manner, and would minimize potential hazards. Long-term operations of the Modified Project (a residential community) would not involve routine transport, storage, use, or disposal of substantial amounts of hazardous materials. Project operation would require use of small amounts of materials such as cleansers, paints, and pesticides for cleaning and maintenance purposes. The use of these materials would be in accordance with the manufacturer's instructions for use, storage, transport, and disposal. Therefore, there would be no significant new impacts arising from the routine handling of hazardous materials as a result of the proposed modifications to the approved TTM.
b) Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials or waste into the environment?

No Impact. As stated above, the proposed modifications to the recorded track would not result in new sources of hazardous materials during construction or operations. No hazardous materials would be used other than household and vehicle maintenance materials (i.e., cleaning supplies, paints, fertilizers, oil, and grease) and landscaping and maintenance. Similar to the Approved Project, the use of hazardous materials by the Modified Project would not result in substantial hazards to people or to the environment arising from accidental release of hazardous materials. Therefore, impacts would be less than significant and no new substantial impacts would occur from the proposed modifications.

5. Environmental Analysis

c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of sensitive land uses?

No Impact. Similar to the Approved Project, the Modified Project would include an 11.9-acre school site, which is considered a sensitive land use. Nearby uses to the school would include a park and residential homes (see Figure 4, Approved TTM vs. Proposed Concept Plan). However, no hazardous materials would be used other than typical household and landscaping maintenance materials (i.e., cleaning supplies, paints, fertilizers, oil, and grease). Therefore, the proposed modifications to the approved TTM would not result in significant impacts.
d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code $\$ 65962.5$ and, as a result, would it create a significant hazard to the public or the environment?

No Impact. The proposed modifications to the Approved Project would all be within the development footprint previously analyzed in the 2010 Certified EIR, which concluded that the project site is not located on a hazardous materials site pursuant to Government Code Section 65962.5. Thus, the modifications to the project would not create new significant hazards to the public or environment.
e) For a project located within an airport land use plan, or where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?

No Impact. There are no public airports within two miles of the project site (AirNav 2014), and the site is not in an airport land use plan. The nearest public airport to the site is Agua Dulce Airpark, approximately 9.2 miles northeast of the developable area of the project site. The nearest major airport is the Bob Hope Airport in Burbank, over 17 miles south of the project site. No impacts would occur.
f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?

No Impact. There are no private airstrips near the project site (AirNav 2014).
g) Impair implementation of, or physically interfere with, an adopted emergency response plan or emergency evacuation plan?

No Impact. Modifications to the Approved Project would constitute minor technical changes and would not impair or physically interfere with an adopted emergency response plan or emergency evacuation plan. Modifications include realigning Skyline Ranch Road, reducing residential lots by 40 units (but including agequalified homes and a community center), modifying housing product types, relocating and expanding park and recreation center sites, and extending multipurpose trails and bike lanes. Similar to the Approved Project, the Modified Project would be required to comply with fire apparatus access road requirements as detailed in the California Fire Code (Title 24, California Code of Regulations, Part 9, Section 503). The design of Skyline Ranch Road and private roads onsite would comply with LACoFD requirements for access roads and turning radii. All onsite roadways and emergency access provisions would also be subject to review and approval by

5. Environmental Analysis

the Los Angeles County Department of Public Works, the LACoFD, and the Sheriff's Department. Therefore, no impacts to emergency access and/or emergency evacuation plans would occur.

h) Expose people or structures to a significant risk of loss, injury or death involving fires, because

 the project is located:
i) Within a Very High Fire Hazard Severity Zones (Zone 4)?

Minor Technical Changes or Additions. The project site is currently undeveloped and within a large area of natural open space. According to the California Department of Forestry and Fire Protection, the entire project site is in a Very High Fire Hazard Severity Zone (VHFHSZ) (CAL FIRE 2007). In October 2007, the vast majority of the project site was burned as a result of the 38,000 -acre Buckweed (Agua Dulce) Fire.

The Los Angeles County Fire Code (Title 32) and County Building Code (Title 26) establish requirements and regulations for the design, construction, and provision of fire protection facilities and equipment related to new development within the LACoFD jurisdiction, including the project site. Basic requirements for new development projects include the provision of multiple ingress/egress access points, fire suppression systems, fire flow standards, and minimum street widths. Additional specific requirements are also applicable to projects in LACoFD-designated VHFHSZ (formerly Fire Zone 4), such as the proposed project.

The modifications to the Approved Project would consist of realigning Skyline Ranch Road, reducing residential lots by 40 units (but including 284 units of age-qualified homes and a community center), modifying housing product types, relocating and expanding park and recreation center sites, and extending multipurpose trails and bike lanes. None of these minor technical changes would alter the project's requirement to comply with the County's fire or building codes. Similar to the Approved Project, the Modified Project would be required to submit for review and approval a fuel modification plan, a landscape plan, and an irrigation plan to the Department of Regional Planning and the Forestry Division of the LACoFD (Fuel Modification Unit). A fuel modification plan requires that a project establish a fuel modification zone where existing vegetation is managed and/or replaced to reduce the risk of fire, and it must be consistent with LACoFD's Fuel Modification Plan Guidelines. Additional site-specific requirements for a fuel modification plan, including the minimum width of a fuel modification zone, are determined by the LACoFD at the time of project plan review and prior to issuance of grading permits. Therefore, impacts would be less than significant.

Additionally, implementation of the Modified Project would comply with other applicable requirements, including the County Fire and Building Codes, the California Fire Code, and conditions of approval from the LACoFD regarding site access, fire hydrant spacing, water storage, building materials, and fire flow. Pursuant to conditions of approval, the proposed water system would be designed to deliver fire flow in compliance with LACoFD requirements for the proposed land uses. Therefore, the Modified Project would provide sufficient fire flows. The Modified Project is also required to equip proposed structures with design features and fire suppression equipment, including an automatic fire suppression system, a fire alarm system, and an evacuation life safety system. Project plans would be reviewed by LACoFD

5. Environmental Analysis

prior to the issuance of building permits to ensure that the project would be compliant with applicable fire codes, regulations, and conditions.

Upon compliance with the above-specified codes, project-related hazards arising from fire hazards would be less than significant. Modifications to the approved TTM would not result in any uses that would expose residents to an unusually high level of fire hazards. Therefore, the Modified Project would not result in new significant impacts as a result of project modifications or a substantial change in circumstances.

ii) Within a high fire hazard area with inadequate access?

Minor Technical Changes or Additions. As required by the Los Angeles County Building and Fire Codes, any project in a VHFHSZ must have adequate access points to allow fire department equipment to enter the site and for residents to evacuate (Los Angeles County Code Title 32 Part 1, Access, and Section 326, Activities in Hazardous Fire Areas). The Modified Project would not alter the accessibility of the approved TTM. Although Skyline Ranch Road would be realigned within the project site, the two main access points would be in the same location as proposed under the Approved Project—Skyline Ranch Road/Whites Canyon Road and Skyline Ranch Road/Sierra Highway. All onsite roadways would be designed to accommodate fire engines, as required by Title 32, Part 1, of the Los Angeles County Code. The Modified Project would not alter the number of access roads or their widths. Therefore, it would not result in new significant impacts as a result of project modifications.

iii) Within an area with inadequate water and pressure to meet fire flow hazards?

No Impact. As discussed in Section 5.9.2(h)(i), the project's water system would be designed to deliver fire flow in compliance with LACoFD requirements for the proposed land uses. Therefore, the project would provide sufficient fire flows. Modifications to the Approved Project would not alter the site design in a way that would prevent inadequate fire flow. No new significant impacts are identified.
iv) Within proximity to land uses that have the potential for dangerous fire hazard?

No Impact. The project site is surrounded by natural open space to the north and northeast and residential uses to the west, south, and east. There is no potential for dangerous fire situations involving flammables, refineries, or explosives manufacturing. No impacts related to these types of fire hazards would occur.

i) Does the proposed use constitute a potentially dangerous fire hazard?

Minor Technical Changes or Additions. The proposed project would modify Approved TTM 60922 within the approved development footprint of the Skyline Ranch property. Modifications include a realignment of Skyline Ranch Road, reduction of 40 residential lots (but inclusion of 284 units of agequalified homes and a community center), modifications to housing product types, relocation and expansion of park and recreation center sites, and extension of multipurpose trails and bike lanes. These modifications would not constitute a potentially dangerous fire hazard. Therefore, the Modified Project would not result in new significant impacts as a result of project modifications or a substantial change in circumstances.

5. Environmental Analysis

5.9.3 Adopted Mitigation Measures Applicable to the Modified Project

The 2010 Certified EIR did not include mitigation measures related to hazards and hazardous materials.

5.9.4 Level of Significance After Mitigation

The Modified Project would only result in minor technical changes or additions to the previously certified EIR, and would not result in significant impacts related to hazards and hazardous materials.

5.10 HYDROLOGY AND WATER QUALITY

5.10.1 Summary of Impacts Identified in the Certified EIR

This section summarizes the analysis contained in Section 4.B, Hydrology and Water Quality, of the 2010 Certified EIR.

Hydrology

Based on the 2010 Certified EIR, implementation of the Approved Project would decrease flow rates for onsite watersheds by 231 cubic feet per seconds (cfs) and would discharge into existing or proposed storm drain systems designed to accommodate this runoff volume. Installation of debris basins, both upstream and downstream, in conjunction with the urbanization of the site would remove approximately 13,009 cubic yards of debris from the site's entire watershed. On-site drainage facilities would be designed and constructed in accordance with City and County standards and would be subject to review and approval by the Los Angeles County Flood Control District, Los Angeles County Department of Public Works, and City of Santa Clarita Public Works Department. As a result, construction of the Approve Project would not have a significant impact on flow rates or debris production.

Flood Plains

Development of the entrance of the project site from Sierra Highway would include a bridge over a series of culverts and catch basins, which would allow water from Sierra Highway to flow under Skyline Ranch Road in order to minimize the potential for flooding at the project entrance and reduce the flow rate along Sierra Highway during a 50-year storm event. With the proposed improvements, total flow rate in this area of the site would decrease by 40 cfs . Water surface levels would not rise above existing conditions during 50-year storm events. In addition, the County Flood Plain Boundary would change upon implementation of these improvements. Although, as proposed, impacts on flooding would be less than significant, because these drainage facilities are preliminarily designed and not yet approved, mitigation was provided.

Water Quality

Construction

Grading and construction activities associated with the Approved Project would remove existing vegetation and expose topsoil. Additionally, construction activities would involve several large construction vehicles, wash areas, temporary facilities, and construction materials and supplies. These sources may come in contact

5. Environmental Analysis

with precipitation or irrigation water and result in polluted runoff from the project site. Mitigation was provided to ensure construction activities do not have a significant impact on water quality.

Operations

Approximately 18 percent of previously permeable surfaces would become impervious due to the development of the Approved Project. This would result in an increase of urban-related pollutants that can be carried offsite by nuisance and stormwater runoff into downstream receiving waters (i.e., Santa Clara River). Therefore, mitigation was provided to reduce impacts on stormwater runoff quality to less than significant levels.

5.10.2 Impacts Associated with the Modified Project

Would the Modified Project:

Issues	Substantial Change in Project or Circumstances Resulting in New Significant Effects	New Information Showing Greater Significant Effects than Previous EIR	New Mitigation or Alternative to Reduce Significant Effect is Declined	Minor Technical Changes or Additions	$\begin{gathered} \text { No } \\ \text { Impact } \end{gathered}$
a) Violate any water quality standards or waste discharge requirements?				X	
b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?				X	
c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?				X	
d) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site?				X	
e) Add water features or create conditions in which standing water can accumulate that could increase habitat for mosquitoes and other vectors that transmit diseases such as West Nile virus and result in increased pesticide use?					X
f) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?				X	

5. Environmental Analysis

Issues	Substantial Change in Project or Circumstances Resulting in New Significant Effects	New Information Showing Greater Significant Effects than Previous EIR	New Mitigation or Alternative to Reduce Significant Effect is Declined	Minor Technical Changes or Additions	No Impact
g) Generate construction or post-construction runoff that would violate applicable stormwater NPDES permits or otherwise significantly affect surface water or groundwater quality?				X	
h) Conflict with the Los Angeles County Low Impact Development Ordinance (L.A. County Code, Title 12, Ch. 12.84 and Title 22, Ch. 22.52)?				X	
i) Result in point or nonpoint source pollutant discharges into State Water Resources Control Board-designated Areas of Special Biological Significance?					X
j) Use onsite wastewater treatment systems in areas with known geological limitations (e.g., high groundwater) or in close proximity to surface water (including, but not limited to, streams, lakes, and drainage course)?					X
k) Otherwise substantially degrade water quality?				X	
l) Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map, or other flood hazard delineation map, or within a floodway or floodplain?				X	
m) Place structures, which would impede or redirect flood flows, within a 100-year flood hazard area, floodway, or floodplain?				X	
n) Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?					X
o) Place structures in areas subject to inundation by seiche, tsunami, or mudflow?					X

Comments:

a) Violate any water quality standards or waste discharge requirements?

Minor Technical Changes or Additions. Compared to the approved TTM, the Modified Project would reduce overall net site imperviousness and stormwater runoff as a result of removing 40 residential units, relocating Skyline Ranch Road, and reducing the project's overall development footprint from 622 acres to 492 acres and associated reduction in impervious surfaces.

Construction

The Modified Project would generally have similar grading and construction activities as compared to the Approved Project. Grading would require the removal of existing vegetation, which would expose much of the topsoil in the developable areas and can lead to erosion from construction irrigation (i.e., dust-control

5. Environmental Analysis

measures) and precipitation. Additionally, due to the extent of soils that would be graded, reengineered, and reused, stockpiling of soils would occur within the overall project site and would be subject to erosion from construction irrigation and/or precipitation.

Similar to the Approved Project, construction activities would involve large construction vehicles, wash areas, temporary facilities, and construction materials and supplies. Maintenance and refueling of construction vehicles have the potential to result in spills of petroleum-related engine fluids and coolants. Washing of vehicles and equipment can discharge waters polluted with sediment, oils and grease, trace metals, and detergent-based organics (e.g., adhesives, cleaners, sealants, and solvents). Equipment and facilities that may be required during construction include concrete mixers, portable sanitary and septic systems, and temporary trailers. All of these sources could come in contact with precipitation or irrigation waters and result in polluted runoff from the project site.

However, water quality effects would be controlled and maintained at less than significant levels by preparing and implementing a Storm Water Pollution Prevention Plan (SWPPP) in accordance with State Water Resources Control Board (SWRCB) Order No. 2009-0009 DWQ, which is required prior to receiving site demolition and/or grading permits. The SWPPP would be prepared by the construction contractor and submitted to the Los Angeles County Department of Public Works and RWQCB for approval. The SWPPP would meet all applicable regulations by requiring controls of pollutant discharges that use best available technology economically achievable and best conventional pollutant control technology to reduce pollutants. In compliance with the SWPPP, non-stormwater level best management practices (BMPs) would also be implemented that include controls and objectives for vehicle and equipment maintenance, cleaning, and fueling, and potable water/irrigation practices.

Compliance with BMP would reduce or eliminate soil erosion impacts from construction activities. Common means of soil erosion from construction sites include water, wind, and being tracked offsite by vehicles. Compliance with these BMPs is required by the federal Clean Water Act and the Los Angeles County Department of Public Works Flood Control and Watershed Management Divisions. Title 26 (County of Los Angeles Building Code), Appendix J, also requires compliance with International Building Code provisions for preventing sedimentation. Additional mitigation is provided to ensure erosion, sedimentation, and construction-related pollutants are minimized during construction activities.

As a result, adherence to SWRCB/RWQCB standards and applicable mitigation measures would ensure that the Modified Project would result in less than significant impacts to water quality during construction.

Operations

Development in accordance with the Modified Project or the Approved Project would increase urban pollutants that can be carried offsite by stormwater runoff into downstream receiving waters (i.e., Santa Clara River). Urban pollutants may include roofing materials, atmospheric deposition, grease, oil, suspended solids, metals, solvents, and phosphates. Lawn maintenance and use of fertilizers and pesticides are also potential sources of pollutants that, if untreated, would result in impacts to natural drainage channels and the Santa Clara River.

5. Environmental Analysis

In terms of post-construction stormwater management, the Modified Project would have less of an impact than the Approved Project because the overall net imperviousness of the site and pollutants of concern would be reduced. Regardless, pursuant to existing regulations, the developer would complete and have approved a Stormwater Quality Management Plan (SQMP) and Standard Urban Stormwater Mitigation Plan (SUSMP) outlining BMPs for nonpoint-source pollution control measures to address urban pollutants. Implementation of the SQMP and SUSMP would reduce impacts to a less than significant level and would ensure that the Modified Project would not violate discharge requirements or water quality standards.

Compliance with regulatory standards, applicable mitigation measures, and BMPs would reduce water quality impacts to less than significant levels and ensure that the project would not violate discharge requirements or water quality standards. Adherence to these standards would ensure that operation of the Modified Project, like the Approved Project, would result in less than significant impacts related to water quality during operations.
b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?

Minor Technical Changes or Additions. The project site would receive water supply from the Santa Clarita Water Division, which receives water from both groundwater and imported water sources from the Castaic Lake Water Agency, which receives water from the State Water Project. The Santa Clarita Valley has historically depended for its water supply on an underground water basin (the East Subbasin of the Santa Clara River Valley Groundwater Basin), or aquifer, divided into upper and lower levels. Overall, the groundwater basin covers about 84 square miles and includes a shallow upper basin, the Alluvial Aquifer, and a deeper layer called the Saugus Formation. The Modified Project would develop approximately 492 acres compared to the 622 acres that would be developed under the Approved Project. Since less land would be developed with impermeable surfaces, the Modified Project would have a beneficial impact on preserving pervious areas onsite and allowing more groundwater recharge. Therefore, the proposed modifications to Tract 46018-11 would not result in new substantial impacts.
c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?

Minor Technical Changes or Additions. The existing drainage pattern onsite is by surface flow from northeast to southwest. Similar to the Approved Project, development of the Modified Project would include installation of onsite catch basins to catch surface water flow, which in turn would discharge into the existing storm drains and flood control channels in the City of Santa Clarita and ultimately discharge into the Santa Clara River. Erosion and siltation impacts potentially resulting from the Modified Project would, for the most part, occur during the project's sites preparation and grading phase. However, there is a potential for erosion and siltation to occur during project operation.

5. Environmental Analysis

Project Construction

As discussed in Section $5.10 .2(\mathrm{a})$, the project applicant would be required to prepare and implement a SWPPP. The SWPPP would specify BMPs the project applicant would implement prior to and during grading and construction to minimize erosion and siltation impacts on- and offsite. Erosion controls include installation of mulch, geotextiles, mats, hydroseedings, earth dikes, and swales, and siltation controls include installation of barriers such as straw bales, sandbags, fiber rolls, and gravel bag berms, desilting basins, and cleaning measures (i.e., street cleaning).

Project Operation

As shown in Figure 6, Modified Conceptual Lot Plan, the project site would consist of impervious surfaces (residential homes, driveways, and other paved areas), but would mostly consist of significant amounts of open space and landscaped areas. The open space area west of the proposed realigned Skyline Ranch Road would not be disturbed, and the landscaped areas adjacent to the planned community would not be left exposed. Thus, there would be no substantial areas of bare or disturbed soil onsite that would be vulnerable to erosion. Additionally, details of the project's storm drain system and desilting basins would be provided in the final storm drain plans and grading plans to the satisfaction of the Los Angeles County Department of Public Works. As discussed in Section 5.10.2(a), compliance with required regulatory standards, mitigation measures, and BMPs would reduce water quality impacts to less than significant levels. Therefore, the proposed modifications to the approved TTM would not result in significant impacts.
d) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner which would result in flooding on- or off-site?

Minor Technical Changes or Additions. See discussion in Section 5.10.2(c). The Modified Project would relocate proposed storm drains and desilting basins in the proposed roadways to connect with the existing storm drain system. Similar to the Approved Project, all storm drains and desilting basins would be designed to accommodate drainage from a 50 -year storm event. The rate and volume of runoff from the proposed storm drains would not exceed the capacity of existing or the proposed future storm drains, and would not result in flooding on- or offsite. Additionally, all onsite and offsite drainage facilities would be designed and constructed in accordance with City of Santa Clarita and Los Angeles County standards and would be subject to review and approval by the County Flood Control District, County Department of Public Works, and City of Santa Clarita Public Works Department.
e) Add water features or create conditions in which standing water can accumulate that could increase habitat for mosquitoes and other vectors that transmit diseases such as West Nile virus and result in increased pesticide use?

No Impact. Similar to the Approved Project, existing and proposed storm drains and desilting basins have been designed to accommodate drainage onsite and prevent standing water from accumulating. The proposed project modifications would not include any water features, such as ponds and lakes, that could create standing water environments. Therefore, the Modified Project would not create habitat for mosquitoes or other vectors, and no impact would occur.

5. Environmental Analysis

f) Create or contribute runoff water which would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?

Minor Technical Changes or Additions. See Section 5.10.2(c).
g) Generate construction or post-construction runoff that would violate applicable stormwater NPDES permits or otherwise significantly affect surface water or groundwater quality?

Minor Technical Changes or Additions. As discussed in Section 5.10.2(a), the Modified Project would not create altered conditions that cause new significant impacts. Adherence to SWRCB and RWQCB standards would ensure that the Modified Project would result in less than significant impacts related to downstream water quality during construction.
h) Conflict with the Los Angeles County Low Impact Development Ordinance (L.A. County Code, Title 12, Ch. 12.84 and Title 22, Ch. 22.52)?

Minor Technical Changes or Additions. The Los Angeles County Low Impact Development (LID) Ordinance encourages site sustainability and smart growth in a manner that respects and preserves the characteristics of the County's watersheds, drainage paths, water supplies, and natural resources. The development requirements of the LID ordinance went into effect January 1, 2009, and apply to any development where a complete discretionary or nondiscretionary permit is filed. Similar to the Approved Project, the Modified Project would be required to implement these design standards. Modifications would not alter the design of the project in a way that would introduce new significant impacts.
i) Result in point or nonpoint source pollutant discharges into State Water Resources Control Board-designated Areas of Special Biological Significance?

No Impact. The project site is not in an Area of Special Biological Significance designated by the SWRCB and would not directly drain into one of these areas (SWRCB 2014). Similar to the Approved Project, the Modified Project would not cause any impacts.
j) Use onsite wastewater treatment systems in areas with known geological limitations (e.g., high groundwater) or in close proximity to surface water (including, but not limited to, streams, lakes, and drainage course)?

No Impact. As with the approved TTM, the Modified Project does not include the use of septic tanks or other private sewer disposal systems. Wastewater would be collected via sewer pipes installed throughout the developable area onsite to connect with the existing sewer network. Therefore, no impacts would occur.
k) Otherwise substantially degrade water quality?

Minor Technical Changes or Additions. As discussed in Sections 3.10.2(a) and 3.10.2(c), compliance with required regulatory standards and guidelines would reduce potential hydrology and water quality impacts to a less than significant level.

5. Environmental Analysis

1) Place housing within a 100 -year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map, or other flood hazard delineation map, or within a floodway or floodplain?

Minor Technical Changes or Additions. According to the Federal Emergency Management Agency (FEMA) flood insurance rate map for the project area, two small southeast portions of the project site are located in areas designated as Zone A, which means the areas are subject to 100 -year flood hazards, but no hydraulic analyses have been performed, and therefore no base flood elevations have been determined (FEMA 2008). Additionally, the County Floodway Map shows the same area designated FEMA Zone A along Sierra Highway as a County flood hazard zone for a 50 -year storm event (Los Angeles 2014). Compared to the Approved Project, the Modified Project would not relocate housing or structures in the flood hazard zone. Instead, the modifications would result in a reduced development footprint within the Approved Project's footprint. Additionally, the construction of Skyline Ranch Road at Sierra Highway would be the same as under the Approved Project and consist of a bridge over a series of culverts and catch basins to allow water from Sierra Highway to flow southwesterly under Skyline Ranch Road to minimize the potential for flooding at the project's southwestern entrance and reduce the flow rate along Sierra Highway during a 50 -year storm event. Therefore, the Modified Project would not introduce new substantial impacts to flood hazard zones.
m) Place structures, which would impede or redirect flood flows, within a 100 -year flood hazard area, floodway, or floodplain?

Minor Technical Changes or Additions. See response to Section 5.10.2 (l), above.
n) Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?

No Impact. Lake Castaic is approximately ten miles northwest of the project site and the nearest dam is the Bouquet Canyon Dam ten miles northeast of the site. Given the long distance from the project site, there is no risk of flooding to the site due to levee or dam failure. No new impacts would occur related to flooding and levee or dam failure.
o) Place structures in areas subject to inundation by seiche, tsunami, or mudflow?

No Impact. There are no aboveground water tanks, reservoirs, or artificial bodies of water near the project site that could cause inundation by seiches. Additionally, the project site is over 30 miles from the ocean and is not at risk of flooding due to a tsunami. No impact associated with seiches or tsunamis would occur.

At project completion, the developable area would consist of buildings, paved areas, and landscaped areas, and is not expected to pose a hazard of mudflow onsite or downstream from the site. The project would comply with mitigation measures concerning slope stability, soil erosion and sedimentation, and landslides as detailed in Section 5.7.3 (Geology and Soils) and below in Section 5.10.3; in addition, the construction phase of the project would use BMPs to minimize erosion, which would help reduce the potential for mudflows. No new significant impacts would result from project modifications or changed circumstances.

5. Environmental Analysis

5.10.3 Adopted Mitigation Measures Applicable to the Modified Project

Storm Drains and Flooding

4.B-1 Final drainage plans for the project shall ensure that there is no displacement of flood plain area in the vicinity of Sierra Highway and its intersection with proposed Skyline Ranch Road through construction of a culvert, bridge, or combination thereof, within the flood plain area. Final drainage plans and the culvert or bridge shall be designed during the engineering stage by a licensed engineer to ensure that the water surface shall be equal or lower than existing conditions both downstream and upstream of the proposed project entrance along Sierra Highway and adjacent properties during a 50 -year storm event and that postdevelopment flow rates shall be less than existing conditions downstream along Sierra Highway and adjacent properties. Final drainage plans to achieve these standards shall be designed to the satisfaction of, and approved by, the Los Angeles County Department of Public Works and City of Santa Clarita, Department of Public Works.

Erosion and Sedimentation

4.B-2 Prior to issuance of grading permits, the construction contractor shall prepare an Erosion Control Plan (ECP) that incorporates BMPs to specifically address and reduce the potential for erosion and sedimentation impacts on downstream receiving waters. The project shall include any combination of the following erosion control BMPs: Hydraulic mulch, preservation of existing vegetation, hydroseeding, streambank stabilization, diversion of runoff (such as earth dikes, temporary drains, slope drains), velocity dissipation devices (outlet protection, check dams, and slope roughening/terracing), and dust control measures (such as sand fences and watering). Sedimentation control BMPs may include filtration devices and barriers (such as silt fencing, check berms, debris basins, sediment traps, fiber rolls, sandbags, gravel inlet filters, and straw bale barriers) and/or settling devices (such as sediment traps or basins). Stabilization control BMPs may include blankets, reinforced channel liners, soil cement, fiber matrices, geotextiles, or other erosion resistant soil coverings or treatments. The construction entrance(s)/exit(s) should also be stabilized (e.g. aggregate underdrain with filter cloth). Specific application of these BMPs shall occur before site runoff is discharged to proposed and existing off-site storm drain/flood control channel systems that ultimately discharge water to the Santa Clara River.

The ECP shall be reviewed by the Los Angeles County Department of Public Works and by the Los Angeles Regional Water Quality Control Board for inclusion of appropriate and effective erosion and sedimentation controls.

Construction-Related Pollutants

4.B-3 Prior to issuance of any grading permits, a Notice of Intent (NOI) and a Storm Water Pollution Prevention Plan (SWPPP) shall be prepared by the construction contractor and submitted to the Los Angeles County Department of Public Works and the Los Angeles

5. Environmental Analysis

Regional Water Quality Control Board for approval. The SWPPP shall meet all applicable regulations by requiring controls of pollutant discharges that utilize best available technology economically achievable (BAT) and best conventional pollutant control technology (BCT) to reduce pollutants. The SWPPP shall be certified in accordance with the signatory requirements of the General Construction Permit.

The SWPPP shall be developed and amended or revised, when necessary to meet the following objectives:

- Identify all pollutant sources including sources of sediment that may affect the quality of storm water discharges associated with construction activity (storm water discharges) from the construction site;
- Identify non-storm water discharges;
- Identify, construct, implement in accordance with a time schedule, and maintain Best Management Practices (BMPs) to reduce or eliminate pollutants in storm water discharges and authorized non-storm water discharges from the construction site during construction; and,
- Develop a maintenance schedule for BMPs installed during construction designed to reduce or eliminate pollutants after construction is completed (post-construction BMPs). Paving operations shall be performed using measures to prevent runoff pollution.

In compliance with the SWPPP, non-stormwater level BMPs shall be implemented that include controls and objectives for vehicle and equipment maintenance, cleaning, and fueling, and potable water/irrigation practices. Material/waste management BMPs shall include: liquid waste management, spill prevention and control, hazardous waste management, and sanitary/septic waste management. Specific BMPs to be implemented by the construction contractor may include but are not necessarily limited to the following:

- Paving operations shall be performed using measures to prevent runoff pollution;
- Wash out areas for concrete trucks, construction vehicles and equipment, paint and stucco equipment, and other construction materials shall be designated, and containment measures employed, to prevent discharges of wash water;
- Vehicle and equipment maintenance and fueling activities shall occur offsite to the degree feasible;
- Construction area, street and pavement washing shall be controlled to preclude discharges of wash water;

5. Environmental Analysis

- Discharging super-chlorinated water pipe and sprinkler system flushing and test water to the storm drain system shall be prohibited;
- All waste shall be properly stored and disposed of off-site;
- Employees and subcontractors shall be trained in the prevention of storm water contamination;
- Hazardous material (specifically chlorine- and ammonia-containing products) shall be stored in elevated (e.g., on palates or a deck) and covered structures to prevent any contact between the chemicals and irrigation or precipitation;
- All hazardous and chemical materials generated during construction (i.e., diesel fuel, hydraulic fluid, motor oil, etc.) shall be cleaned up and disposed of in compliance with Federal, State, and local laws, regulations and ordinances; and
- All structure construction and painting areas shall be enclosed, covered, or bermed to prevent run-on/run-off in these areas and associated contamination of storm water.

Discharge of Urban-Related Pollutants

4.B-4 Prior to approval of a NPDES Stormwater Permit No. CAS004001 (Order No. 01-182) and issuance of a grading permit, the applicant or an applicant designee shall complete and have approved a Stormwater Quality Management Plan (SQMP) and a Standard Urban Stormwater Mitigation Plan (SUSMP) outlining usage of BMPs for non-point source pollution control measures to address pollutants from such sources as roofing materials, atmospheric deposition, grease, oil, suspended solids, metals, solvents, phosphates, fertilizers and pesticides. Post-construction structural or treatment BMPs shall be designed to meet performance standards that mitigate (treat) storm water runoff from either: (1) the 85th percentile 24-hour runoff event determined as the maximized capture storm water volume for the area, from the formula recommended in Urban Runoff Quality Management, WEF Manual of Practice No. 23/ASCE Manual of Practice No. 87, (1998), or; (2) the volume of annual runoff based on unit basin storage water quality volume, to achieve 80 percent or more treatment by the method recommended in California Stormwater Best Management Practices Handbook-Industrial Commercial, (1993), or: (3) the volume of runoff produced from a 0.75 inch storm event, prior to its discharge to a storm water conveyance system; and, (4) the volume of runoff produced from a historical record based reference 24 -hour rainfall criterion for "treatment" (0.75 inch average for the Los Angeles County area) that achieves approximately the same reduction in pollutant loads achieved by the 85 th percentile 24-hour runoff even. Furthermore, project BMPs and design features shall control peak flow discharge to provide stream channel and over bank flood protection, based on design criteria selected by the local agency.

The range of BMPs, which shall meet the performance standards identified above, shall include but not be limited to the following to the extent feasible:

5. Environmental Analysis

Site Planning and Design BMPs

Minimize Impervious Area and Directly Connected Impervious Areas

- Minimize impervious areas by incorporating landscaped areas over substantial portions of the project area. For the Skyline Ranch Project, the area designated solely for uses with impervious surfaces are about 401 acres or 18 percent of the entire project site. This means the remaining 1,772 acres or 82 pereent will be either vacant or in uses with impervious ground surface such as landseaped and park areas.]
- If possible, minimize directly connected impervious areas by draining parking lots to landscaped areas, desilting (secondary infiltration) basins or other previous surfaces to promote filtration and infiltration of storm water, if landscaping slopes are less than 2 percent and the area is not directly adjacent to steep slopes (which promotes further erosion); or the area is being treated with catch basin inserts. Furthermore, lot runoff (from the pervious surfaces) shall be infiltrated from the graded pad areas through onsite pervious soils.
- To the extent practicable, utilize vegetated areas (e.g., parks, setbacks, end islands, and median strips) for biofiltration and/or bioretention of nuisance and storm runoff flows from parking lots.

Selection of Construction Materials and Design Practices

- Select building materials for roofs, roof gutters and downspouts that do not include exposed copper or zinc.
- Construct streets, sidewalks, and parking lot aisles to the minimum widths as specified in the Los Angeles County Department of Public Work's requirements (also in compliance with regulations for the Americans with Disabilities Act) for safety requirements for fire and emergency vehicle access and incorporate landscaped buffer areas between sidewalks and streets.

Conserve Natural Areas

- Concentrate or cluster the development on the least environmentally sensitive portions of the project site while leaving the remaining land in a natural, undeveloped condition. [For the Skyline Ranch Project, about 1,551 acres of the site (71 percent of the project site) is proposed to remain undeveloped, including 1,355 acres to be designated as natural open space through the establishment of the Skyline Ranch Conservation Area (SRCA).]
- Maximize canopy interception and water conservation by preserving existing native trees and shrubs and planting additional native or drought tolerant trees and large shrubs. [For the Skyline Ranch Project, approximately 71 percent of the project site is proposed to

5. Environmental Analysis

remain undeveloped, and along the perimeter of the site, landscaping would consist of a mix of native, drought-tolerant and non-invasive plant species.]

Protect Slopes and Channels

- Protect slopes and minimize erosion potential by covering highly erodible soils with vegetative cover (preferably native or drought tolerant plants), route flows safely from or away from steep and or sensitive slopes, stabilize disturbed slopes. All slopes within the project should be designed and constructed to minimize erosion.
- Protect channels and minimize erosion by controlling and treating flows in landscaping and/or other controls prior to reaching existing natural drainage systems; stabilize channel crossings; ensure that increases in runoff velocity and frequency caused by the project do not erode the channel; install energy dissipaters (riprap), at the outlets of storm drains, culverts and conduits.

Source (non-structural) Control BMPs

- Drain Inlet Stenciling or Signage. Stenciling (or signage) is intended to raise public awareness and limit illegal dumping of trash, debris, oil, and other pollutants into storm drains. "Stenciling" may be accomplished via a traditional stencil or via the use of grates with text such as "Warning! Drains to Ocean" notes or other equivalent symbols. All catch basins and inlets shall be stenciled.
- Irrigation Controls and Management. Irrigation controls shall be implemented to ensure that irrigation is conducted efficiently. Where feasible, plants with similar watering requirements shall be grouped in order to reduce excess irrigation runoff and promote surface filtration. Efficient irrigation systems may include computerized and/or radio telemetry that controls the amount of irrigation based on soil moisture or other indicators.
- Proper Application of Fertilizers and Pesticides. Best management practices shall be implemented to minimize the application of fertilizers, pesticides, and other landscape management products on slopes and landscaped areas maintained by the homeowners' association (HOA) and/or landscape maintenance districts (if any). Examples of these management practices include, but are not to limited to: the use of slow release fertilizers, applying fungicides only to greens to limit the use of pesticides, and closely monitoring weather forecast to ensure appropriate timing (during dry periods) for the application of landscape management products.
- Community Education Program. Public education shall be used to reduce the potential for hazardous materials entering the storm drain system. This shall be accomplished through distribution of brochures or other materials to property managers, owners and occupants, and employees at the time of initial sale or lease of property or hiring of employees and periodically thereafter. Brochures shall discuss, among other topics and

5. Environmental Analysis

as appropriate for the audience: 1) the importance of downstream water bodies, the storm water system, management of fertilizers, pesticides, and other harmful chemicals, 2) the impacts of dumping oil, antifreeze, pesticides, paints, and other pollutants into storm drains and proper handling and disposal of these materials, 3) effective cleaning practices such as the cleaning of vehicles only in maintenance areas where the water will be recycled or routed to the sanitary sewer system to prevent nuisance flows, 4) the benefits of the prevention of excessive erosion and sedimentation, 5) the benefits of proper landscaping practices, 6) pavement clean-up practices, 7) the impacts of overirrigation, 8) swimming pool draining practices, and 9) other relevant issues.

- Prevention of Nuisance Flows. Grease traps shall be included for school cafeterias (if any). Draining swimming pools into storm drains shall be prohibited. These flows shall be properly connected to sewer lines.
- Pavement Sweeping Program. The majority of roads in the project area are proposed to be dedicated to the public, and would thus be maintained by the Los Angeles County Department of Public Works. The County has street sweeping programs that will help control trash, vegetation debris and sediment that may accumulate on roadways. Other non-public roadways shall also be periodically swept.
- Litter Control Program \& Design of Trash Storage Areas. A program for litter control shall be implemented to control litter in common areas. The program may include standards for proper placement and emptying of trash receptacles, practices to ensure that trash bins are maintained in the closed position, and regular removal of trash from parking and landscaped areas. In conjunction with the litter control program, trash storage areas shall be designed to prevent introduction of pollutants into runoff. The design principles to prevent this pollution from occurring are using impervious surfaces for storage areas which prevent run-on from adjacent areas, ensuring that there is no connection of trash drains to the storm drain system, and keeping lids on all trash receptacles in addition to the use of roofs or awnings to minimize direct precipitation.
- Proper Connection and Maintenance of Sewer Lines. Sewer lines shall be properly connected and adequately maintained.
- Activity Restrictions (Conditions, Covenants, and Restrictions). For source control BMPs, County maintenance and implementation of BMPs or Conditions, Covenants, and Restrictions (CC\&Rs) shall be prepared requiring maintenance and implementation of BMPs by the HOA for the purpose of surface water quality protection, or use restrictions shall be developed through lease terms.
- BMP Maintenance. Los Angeles County shall assume responsibility for the inspection and maintenance of structural BMPs within their boundaries. For the public school site, the school district with jurisdiction shall be responsible for the inspection and

5. Environmental Analysis

maintenance of structural BMPs. For private roads and private parks the HOA shall be responsible for BMP maintenance.

- Common Area Drainage Facility Inspection. Privately-owned common area drainage facilities shall be inspected each year and, if necessary, cleaned and maintained prior to the storm season.

Structural and Treatment Control BMPs

Implementation of NPDES General Permit requirements entails the use of postconstruction structural controls that will remain in service to protect water quality throughout the life of the project. Therefore, these BMPs will need to be regularly maintained for proper function. As Los Angeles County will assume maintenance of BMPs in public rights-of-way, the main structural BMPs recommended below are systems that the County currently approves of for use within their jurisdiction. Final selection, design and siting of structural BMPs will ultimately depend on the project-wide drainage plan approved by the County. The following BMP options were selected due to their relative effectiveness for treating potential pollutants from the project site; as well as consideration for County of Los Angeles requirements and acceptance of these systems (as they would be maintained by the County), site feasibility, relative costs and benefits; and other constraints. The recommended BMP design flow rates, volumes, types and other specifications will be provided during final design stage of the project (with hydrology map approval).

- Hydrodynamic Separator Systems and Gross Solids Removal Devices. Hydrodynamic Separation Systems (HSS) and Gross Solids Removal Devices (GSRDs) are flow-based, flow-through BMPs that are installed within a storm drain line in order to remove large sediment particles and associated storm water pollutants, as well as trash, oils, and grease. HSS and/or GSRDs, such as a Continuous Deflective Separator (CDS), manufactured by CDS Technologies, Inc., supplemented with oil absorbent materials (such as pellets), are recommended for use at various locations in the proposed storm drain systems. Depending on the particular model and manufacturer, maintenance shall occur quarterly to yearly for clean-outs. Cleaning after a storm event may also be required. Inspection is required to make certain that the unit is operating correctly and to make any repairs.
- Stormscreen. The StormScreen is a manufactured patented BMP by CONTECH Stormwater Solutions, Inc., designed to remove mostly trash and debris and larger suspended solids at high flow rates. The StormScreen is comprised of a grouping of StormScreen cartridges placed in a precast or cast-in-place concrete vault. Although maintenance may be required within six (6) months of project completion due to erosion occurring on newly constructed sites, it is intended that the StormScreen be maintained annually by the Los Angeles County Department of Public Works, Flood Control Division. For the StormScreen maintenance, during the first year, an inspection is recommended every other month for the first six months of operation in order to

5. Environmental Analysis

develop an ongoing maintenance schedule. A visual inspection can be conducted without entering the vault. Sediments and water must be disposed of in accordance with all applicable waste disposal regulations.

- Catch Basin Inserts. Catch basin inserts are flow-based BMP options for consideration at various locations to treat runoff before it enters the storm drain system by filtering or screening out sediments and associated storm water pollutants during dry weather and low flow events. During large flow events, they are typically designed to allow storm water runoff to bypass the inlet device and continue directly into the storm drain system. Although treatment levels are generally low for the pollutants of concern for this project, the inserts would provide pre-treatment of storm water runoff prior to further treatment at downstream BMPs. Drainage inserts could be replaced with HSS or GSRDs that perform similar functions and are interchangeable. At the time of final design, if the implementation of a CDS is deemed infeasible, a catch basin insert may be used in its place. Although maintenance requirements vary greatly depending on the particular model and manufacturer, they are typically maintained quarterly to yearly for clean-outs. Cleaning after a storm event and in anticipation of storm events after extended dry periods or periods of typical debris removal is recommended. Inspection will be required to make certain that the unit is operating correctly and to make any repairs.
- Detention/Retention Basins. Detention and retention basins require a fairly large amount of space to build them. Basins can be used on sites with slopes up to about 15 percent. The design should incorporate enough elevation drop from the basins inlet to the outlet to ensure that flow can move through the system. These systems require regular maintenance (semi-annual and annual), as well as sediment removal from the forebay every 5 to 7 years and monitoring the sediment accumulation and removal when the volume has been significantly reduced (about every 25 to 50 years). Basins shall be properly maintained to avoid safety hazards.

5.10.4 Level of Significance After Mitigation

The Modified Project would only result in minor technical changes or additions to the previously certified EIR, and would not result in significant impacts upon implementation of applicable regulatory requirements and mitigation measures.

5.11 LAND USE AND PLANNING

5.11.1 Summary of Impacts Identified in the Certified EIR

This section summarizes the analysis contained in Section 4.Q, Land Use, of the 2010 Certified EIR.
The 2010 Certified EIR concluded that land use impacts associated with the Approved Project would be less than significant. The Approved Project consists of a residential development that supports and encourages

5. Environmental Analysis

the efficient use of infrastructure facilities by placing housing adjacent to existing development; concentrating development in an area via a density transfer to preserve environmentally sensitive lands; developing land uses (such as paseos, bike lanes and hiking trails) that create opportunities for residents to walk and bike; and preserving open space. Project implementation would increase the supply of housing to accommodate the region's growth. The proposed infrastructure improvements and the provision of an on-site school and parks would serve the residents' demand for public services. Therefore, the Approved Project would be consistent with the Southern California Association of Governments' Regional Transportation Plan. Additionally, the project would be supportive of and consistent with the Los Angeles County General Plan policies.

5.11.2 Impacts Associated with the Modified Project

Would the Modified Project:

Issues	Substantial Change in Project or Circumstances Resulting in New Significant Effects	New Information Showing Greater Significant Effects than Previous EIR	New Mitigation or Alternative to Reduce Significant Effect is Declined	Minor Technical Changes or Additions	$\begin{gathered} \text { No } \\ \text { Impact } \end{gathered}$
a) Physically divide an established community?				X	
b) Be inconsistent with the applicable County plans for the subject property including, but not limited to the General Plan, specific plans, local coastal plans, area plans, and community/neighborhood plans?				X	
c) Be inconsistent with the County zoning ordinance as applicable to the subject property?					X
d) Conflict with Hillside Management criteria, Significant Ecological Areas conformance criteria, or other applicable land use criteria?					X

Comments:

a) Physically divide an established community?

Minor Technical Changes or Additions. The realignment of Skyline Ranch Road within the project site would enhance the Skyline Ranch community in comparison to its planned alignment under the Approved Project (see Figure 4, Approved TTM vs. Proposed Concept Plan). By realigning the roadway, the entire residential community would be developed on the east side of Skyline Ranch Road, rather than divided by the approved alignment. This modification would enhance and centralize the planned Skyline Ranch community, which would be a beneficial impact. Additionally, the inclusion of age-qualified homes and a community center in the northern portion of the developable area would further benefit the community. The other modifications to the Approved Project (i.e., reduced residential lots, modified housing product type, and relocation of park sites) would have no impact on dividing communities. Overall, the Modified Project would be a beneficial change from the Approved Project.

5. Environmental Analysis

b) Be inconsistent with the applicable County plans for the subject property including, but not limited to the General Plan, specific plans, local coastal plans, area plans, and community/neighborhood plans?

Minor Technical Changes or Additions. The proposed project would modify Approved TTM 60922 within the development footprint analyzed in the 2010 Certified EIR. Modifications include a realignment of Skyline Ranch Road, reduction of 40 residential lots (but inclusion of 284 units of age-qualified homes and a community center), modifications to housing product types, relocation and expansion of park and recreation center sites, and extension of multipurpose trails and bike lanes. These minor technical changes would be consistent with all applicable County plans, including the Los Angeles County General Plan and Santa Clarita Area Plan.
c) Be inconsistent with the County zoning ordinance as applicable to the subject property?

No Impact. Based on the Santa Clarita Valley Area Plan Zoning Map, the project site is zoned as R-1 (Singlefamily residence), A-1-2 (Light agriculture), and A-2-2 (Heavy agriculture) (Los Angeles 2012b). The Modified Project would only develop 492 acres (zoned R-1) in the southern portion of the 2,173-acre project site. The remaining 1,681 acres zoned Agriculture would not be developed. Thus, no impact would occur.
d) Conflict with Hillside Management criteria, Significant Ecological Areas conformance criteria, or other applicable land use criteria?

No Impact. See response to Sections 3.4.2(f) and 3.7.2(f), above.
A portion of the Cruzan Mesa Vernal Pools SEA falls within the northern portion of the project site. However, this northern portion is outside of the 492 acres of developable land onsite. Therefore, no impact would occur.

5.11.3 Adopted Mitigation Measures Applicable to the Modified Project

The 2010 Certified EIR did not include mitigation measures related to land use and planning.

5.11.4 Level of Significance After Mitigation

The Modified Project would only result in minor technical changes or additions to the previously certified EIR, and would not result in significant impacts related to land use and planning.

5.12 MINERAL RESOURCES

5.12.1 Summary of Impacts Identified in the Certified EIR

Impacts to mineral resources were closed out in the Initial Study prepared for the 2010 Certified EIR. The Approved Project would not result in the loss of known mineral resources or locally-important mineral resource recovery site. No impact would occur.

5. Environmental Analysis

5.12.2 Impacts Associated with the Modified Project

Would the Modified Project:

		Substantial Change in Project or Circumstances Resulting in New Significant Effects	New Information Showing Greater Significant Effects than Previous EIR	New Mitigation or Alternative to Reduce Significant Effect is Declined	Minor Technical Changes or Additions	No Impact
a)Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?						
b)Result in the loss of availability of a locally-important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?						

Comments:

a) Result in the loss of availability of a known mineral resource that would be a value to the region and the residents of the state?

No Impact. Modifications to the Approved Project would be implemented within the development footprint already analyzed in the 2010 Certified EIR. Therefore, similar to the Approved Project, no impact would occur to any known mineral resources or locally important mineral resource recovery sites.
b) Result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?

No Impact. See Section 5.12 .2 (a), above.

5.12.3 Adopted Mitigation Measures Applicable to the Modified Project

No mitigation measures related to mineral resources were outlined in the 2010 Certified EIR.

5.12.4 Level of Significance After Mitigation

The Modified Project would have no impact on mineral resources.

5.13 NOISE

5.13.1 Summary of Impacts Identified in the Certified EIR

This section summarizes the analysis contained in Section 4.G, Noise, of the 2010 Certified EIR.

5. Environmental Analysis

Construction Noise and Vibration

Occupied noise-sensitive uses with an uninterrupted line of sight to the construction noise sources could periodically be exposed to temporary noise levels that exceed the County's construction noise standards (depending on the location of the uses), which would be a significant impact. For example, onsite grading and building construction activities could occur as close as 25 feet from existing residential subdivisions to the west of the project site, and construction of offsite infrastructure improvements at Sierra Highway would also occur within 25 feet of existing residential homes. Grading activities involving heavy-duty construction equipment would exceed the County's 60 dBA construction noise thresholds of significance. Although temporary, these impacts were found to be significant and unavoidable even with implementation of feasible mitigation measures.

Ground-borne vibration would be generated primarily during the site clearing, grading, and soils compaction processes. Vibration values from bulldozer and heavy truck operations are below the architectural damage threshold of 0.2 inch per second as well as the annoyance PPV threshold of 0.1 inch per second for all vibration-sensitive receptors. Therefore, vibration impacts associated with construction would be less than significant.

Operational Noise and Vibration

As detailed in Section 5.17, Transportation and Traffic, the Approved Project would generate approximately 13,121 vehicle trips. The proposed residences onsite that are within 50 feet from Skyline Ranch Road right-of-way central to the project site would experience a noise level in excess of 60 dBA CNEL without mitigation. Point-source impacts (e.g., people talking, air conditioning units, lawn care equipment, domestic animals) would not exceed ambient noise level standards and would be consistent with adjacent uses in the project vicinity. However, the proposed school and park sites could generate noise levels in excess of the standards in the County code for single-family residences. Impacts would be significant; therefore, mitigation is provided.

Additionally, offsite roadway noise levels were also calculated at various sensitive receptors along arterial and highway segments. Noise levels at these sensitive uses are already considered unacceptable; therefore, offsite mobile noise levels associated with the Approved Project would result in significant and unavoidable impacts. Cumulative noise impacts at sensitive receptors along segments of Sierra Highway and Whites Canyon Road would also be significant and unavoidable.

5. Environmental Analysis

5.13.2 Impacts Associated with the Modified Project

Would the Modified Project result in:

Issues	Substantial Change in Project or Circumstances Resulting in New Significant Effects	New Information Showing Greater Significant Effects than Previous EIR	New Mitigation or Alternative to Reduce Significant Effect is Declined	Minor Technical Changes or Additions	No Impact
a) Exposure of persons to, or generation of, noise levels in excess of standards established in the County General Plan or noise ordinance (Los Angeles County Code, Title 12, Chapter 12.08), or applicable standards of other agencies?				X	
b) Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?				X	
c) A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project, including noise from parking areas?				X	
d) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project, including noise from amplified sound systems?				X	
e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?					X
f) For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?					X

Comments:

a) Exposure of persons to, or generation of, noise levels in excess of standards established in the County General Plan or noise ordinance (Los Angeles County Code, Title 12, Chapter 12.08), or applicable standards of other agencies?

Minor Technical Changes or Additions.

Mobile Source Impacts

Noise impacts from operation of the Modified Project would occur primarily from project-generated traffic. The Modified Project would eliminate 40 single-family dwelling units, which would reduce vehicle trips compared to the Approved Project. Traffic noise generated by the Modified Project would be slightly below that estimated for the Approved Project, and no new significant impacts would occur as a result of the Modified Project or as a result of changed circumstances.

5. Environmental Analysis

Stationary Source Impacts

Project implementation would result in the generation of noise from stationary sources related to the planned single-family homes (e.g., heating, ventilation, and air conditions units). By eliminating 40 single-family homes, stationary-source noise impacts associated with the Modified Project would be reduced compared to the Approved Project. No new significant impacts would occur as a result of the project modifications.
b) Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?

Minor Technical Changes or Additions. The Modified Project would result in the construction of 40 fewer single-family residential dwelling units on a reduced development footprint compared to the Approved Project. In general, construction equipment associated with the Modified Project would be the same as for the Approved Project; however, the construction schedule may be shorter for less development. Therefore, groundborne vibration and noise impacts would likely be lessened under the Modified Project.
c) A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project, including noise from parking areas?

Minor Technical Changes or Additions. As described in Section 5.13.2(a), operational noise levels related to the Modified Project would be similar or slightly reduced in comparison to the Approved Project. Therefore, the Modified Project would not introduce new substantial ambient noise impacts.
d) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project, including noise from amplified sound systems?

Minor Technical Changes or Additions. The operation of the Modified Project would not involve the use of amplified sound systems. Temporary noise levels associated with construction activities would be higher than the project area's existing ambient noise levels, but would subside once construction of the proposed project were completed. Generally, two types of short-term noise impacts could occur during construction: 1) mobile-source noise from transport of workers and material deliveries and 2) stationary construction noise from use of onsite equipment. Construction noise from on-road vehicles associated with the Modified Project would be similar to the Approved Project because it would likely generate a similar number of construction worker and vendor trips.

In general, construction activities associated with the Modified Project would require the same type of construction equipment as the Approved Project and therefore would generate similar magnitudes of noise. Since the Modified Project would involve constructing 40 fewer residential units within a reduced development footprint, construction activities would be slightly reduced. Therefore, the Modified Project would not introduce new substantial temporary noise impacts.

5. Environmental Analysis

e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?

No Impact. The Skyline Ranch project site is not within an airport land-use plan or within two miles of a public use airport. The nearest major airport, Bob Hope Airport in Burbank, is over 17 miles to the south of the project site. The nearest public airport, Agua Dulce Airpark, is over 9 miles northeast of the project site. The residents and workers of the Modified Project would not be exposed to excessive noise levels from a public airport. No impact would occur.
f) For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?

No Impact. There are no private airstrips near the project site. The residences and workers onsite would not be exposed to excessive noise levels from a private airstrip. No impact would occur.

5.13.3 Adopted Mitigation Measures Applicable to the Modified Project

Construction Noise

(1) Movement of Construction Equipment Noise
4.G-1 (a) Construction truck routes and equipment shall, to the extent feasible, avoid residential areas and roadways adjacent to noise sensitive receptors.
4.G-1(b) Wherever heavy duty truck traffic associated with project construction utilizes roadways with adjacent noise sensitive receptors, the trucks shall avoid peak hour traffic in order to minimize potential truck idling in proximity to these receptors.
(2) Grading/Building Construction Noise
4.G-2(a) All construction activities within 300 feet of an occupied single- or multifamily residential lot shall be restricted to between the hours of 7:00 A.M. and 7:00 P.M. Monday through Friday, and between 8:00 A.M. and 6:00 P.M. on Saturday. Construction work shall be prohibited on Sundays, New Year's Day, Independence Day, Thanksgiving Day, Christmas Day, Memorial Day, and Labor Day.
4.G-2(b) The construction contractor shall provide at least 72-hour advance notice of the start of construction activities to all noise sensitive uses within 300 feet of on-site and off-site occupied residences. Notification shall be by mail. The announcement shall state specifically where and when construction activities will occur, and provide contact information for filing noise complaints. Notices shall provide tips on reducing noise intrusion, for example, by closing windows facing the planned construction.
4.G-2(c) When construction operations occur within 300 feet of on- or off-site occupied residences, all feasible measures to reduce construction equipment noise levels at the residences shall be

5. Environmental Analysis

employed. These measures shall include among other things changing the location of stationary construction equipment to increase the distance between the equipment and the receptors, shutting off idling equipment, notifying residents in advance of construction work, and installing temporary acoustic barriers around stationary construction noise sources.
4.G-2(d) Prior to construction of structures on the residential lots east of existing residences east of Falcon Crest Drive and Bakerton Avenue, temporary acoustic barriers, shall be erected along the rear lot lines within 300 feet of the western site boundary. The extent of this requirement, including the height, length, number of properties, etc., shall be determined by an acoustical consultant retained by the applicant with access to project-related design and construction information. These barriers may be constructed of any solid material, shall be continuous with no gaps, and shall remain in place until building construction on these lots is completed.

Operational Noise

(1) On-Site Roadway Noise
4.G-3(a) Prior to construction of any residential development along Skyline Ranch Road a detailed acoustical analysis report prepared by a qualified acoustical consultant shall be submitted to the County for review and approval. For all on-site single family residences that have rear and/or side yard lines within 100 feet from the centerline of the proposed Skyline Ranch Road, the acoustical analysis report shall describe and quantify the noise sources impacting the area and the measures required to meet the 60 dBA CNEL residential noise standard. Based on a preliminary acoustical analysis included in Appendix G of theis Skyline Ranch Draft EIR, the placement of a 6 -foot high solid masonry wall is recommended at the locations shown in Appendix G, Figures 1 through 8, in order to achieve this noise standard.
4.G-3(b) Balconies, greater than six (6) feet in depth, are considered exterior living areas and must also meet the exterior noise standard. Therefore, balconies shall either be discouraged from exposure to exterior noise levels greater than the 65 dBA CNEL (residences that are within 50 feet from the edge of the proposed Skyline Ranch Road) standard for single-family residences through architectural or site design, or balconies shall be enclosed by solid noise barriers, such as $3 / 8$-inch glass or 5/8-inch Plexiglas or other equally effective construction materials to a height specified by a qualified noise consultant.
4.G-3(c) All on-site single-family residences within 50 feet of the Skyline Ranch Road right-of-way shall include whole-house air conditioning so that windows facing the roadway may be closed without compromising a comfortable interior living environment.

(2) Point Source Noise

5. Environmental Analysis

4.G-4(a) Prior to issuance of building permits, a detailed acoustical analysis study shall be prepared by a qualified acoustical consultant for all on-site single family residences that have rear and/or side yard lines within line-of-site of the proposed school and/or park and shall be submitted to the County. This acoustical analysis report shall describe and quantify the noise sources impacting the area. In the event the report shows that noise levels for the residences would exceed applicable standards, measures shall be required to reduce noise to levels that are within applicable standards. Such measures may include:

- Locate student pick-up/drop-off and parking areas as far away from residences as feasible;
- Arrange school buildings such that they will provide shielding between the play field and the residences; or
- Provide acoustical walls with sufficient mass, length and height to break the line-of-sight between the residences and the play field.

The acoustical analysis report shall be subject to review and approval by the County and shall ensure compliance with applicable noise standards in the County Code.
4.G-4(b) Prior to completion of plans for the proposed elementary school and public park, a detailed acoustical analysis report shall be prepared by a qualified acoustical consultant in consultation with the Sulfur Springs School District and the County of Los Angeles Department of Parks and Recreation. The requirements set forth in the report shall ensure that on-site single family residences that have rear and/or side yard lines within line-of-site of the proposed school and/or park are not subject to unacceptably high levels of noise (i.e., noise levels in excess of the standards provided in the County Code) from school yard or park activities. The acoustical analysis report, subject to review and approval by the County, shall include requirements relating to the locations of courts and playfields and the materials and heights of property walls as necessary to support compliance with applicable noise standards in the County Code.

5.13.4 Level of Significance After Mitigation

The Modified Project would only result in minor technical changes or additions to the previously certified EIR, and would not result in significant impacts upon implementation of applicable regulatory requirements and mitigation measures.

5.14 POPULATION AND HOUSING

5.14.1 Summary of Impacts Identified in the Certified EIR

This section summarizes the analysis contained in Section 4.R, Population, Housing and Employment, of the 2010 Certified EIR.

5. Environmental Analysis

The 2010 Certified EIR concluded that impacts to population and housing would be less than significant. The Approved Project would allow for up to 1,260 residential units and 4,158 residents (based on an average household size of 3.3 persons per household). Based on SCAG's adopted growth forecasts for the regional, subregional, and local areas, the project-generated population represented only $0.6,1.6$, and 6.0 percent of the total forecast population, respectively.

The 1,260 units proposed under the Approved Project represents a total of 0.4 percent, 1.6 percent, and 5.5 percent of the total housing unit growth projected by SCAG for the regional, subregional, and local areas during that period, respectively.

Additionally, the proposed school and park would generate 62 new jobs. The employment opportunities generated by the project represent 0.32 percent of the SCAG employment growth forecast for the local area, which is negligible. The relative employment for the regional and subregional areas is less.

Overall, population and housing impacts were concluded to be less than significant.

5.14.2 Impacts Associated with the Modified Project

Would the Modified Project:

Issues	Substantial Change in Project or Circumstances Resulting in New Significant Effects	New Information Showing Greater Significant Effects than Previous EIR	New Mitigation or Alternative to Reduce Significant Effect is Declined	Minor Technical Changes or Additions	$\begin{gathered} \text { No } \\ \text { Impact } \end{gathered}$
a) Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?				X	
b) Displace substantial numbers of existing housing, especially affordable housing, necessitating the construction of replacement housing elsewhere?					X
c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?					X
d) Cumulatively exceed official regional or local population projections?				X	

Comments:

a) Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?

Minor Technical Changes or Additions. In comparison to Approved TTM 60922, the Modified Project would allow for 1,220 single-family homes rather than 1,260 homes. This would reduce the expected population onsite by 139 persons (see Table 9).

5. Environmental Analysis

Table 9 Approved Project vs. Modified Project - Population

Tract 60922	Number of Residential Units	Generation Rate (persons per household)	Total Population
Approved	1,260	3.46	4,360
Modified	1,220	3.46	4,221
Difference	-40 Units	-	-139 Persons

Thus, while population growth would occur upon development of the Modified Project, the 40 -unit reduction from the Approved Project would reduce the project's total population. Impacts would be less than significant.
b) Displace substantial numbers of existing housing, especially affordable housing, necessitating the construction of replacement housing elsewhere?

No Impact. Neither the Approved TTM 60922 nor the Modified Project would displace substantial numbers of existing housing, because the site is vacant and undeveloped. The Modified Project would allow for up to 1,220 residential units compared to 1,260 units under the Approved Project. Existing housing would not be displaced, and no impact would occur.
c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?

No Impact. As stated in Section 5.14.2(b), Approved TTM 60922 and the Modified Project would not displace residents from the project site because the site is currently vacant and undeveloped. The Modified Project would allow for up to 1,2020 single-family homes, which would generate a population of approximately 4,221 persons. This is a rate of 3.46 persons per household taken from the 2010 US Census Bureau for Los Angeles County Tracts 9200.32, 9200.33, and 9200.34. No impact would occur.
d) Cumulatively exceed official regional or local population projections?

Minor Technical Changes or Additions. According to the 2010 US Census Bureau for Los Angeles County Tracts $9200.32,9200.33$, and 9200.34 , the average household size is 3.46 persons. Applying this average household size, development of the Modified Project would add approximately 4,221 additional residents to the existing population, 139 fewer residents than Approved TTM 60922 (see Table 9). The Approved Project would not cumulatively exceed official regional or local population projections. Thus, given that the Modified Project would result in fewer residents, impacts would not result in significant cumulative growth.

Furthermore, as discussed in Section 5.18, Utilities and Service Systems, adequate infrastructure and utilities are available in the immediate vicinity of the project site, and no substantial new infrastructure or extension of existing infrastructure would be required that could directly induce additional population growth in the project area. Impacts would be less than significant.

5.14.3 Adopted Mitigation Measures Applicable to the Modified Project

The 2010 Certified EIR did not include mitigation measures related to population and housing.

5.14.4 Level of Significance After Mitigation

The Modified Project would only result in minor technical changes or additions to the previously certified EIR, and would not result in significant impacts.

5.15 PUBLIC SERVICES

5.15.1 Summary of Impacts Identified in the Certified EIR

This section summarizes the analysis contained in Sections 4.L, Law Enforcement Services, 4.M, Fire Services and Hazards, 4.N, Education, and 4.O, Libraries, of the 2010 Certified EIR.

Law Enforcement Services

Primary law enforcement protection services to the project site are provided by the Los Angeles County Sheriff's Department, and traffic regulation enforcement and traffic incident response are provided by the California Highway Patrol (CHP). The nearest sheriff's station is the Santa Clarita Valley Station, approximately five miles from the site. The nearest CHP station is the Newhall Ranch Station, approximately eight miles from the site. Based on the Certified EIR, implementation of the Approved Project would increase calls for service and demand on the Santa Clarita Valley Sheriff's station. Under Chapter 22.74 of the Los Angeles County Code, the project is subject to developer impact fees that would fully fund the project's share of capital improvements and reduce the project's impacts on police services. Additionally, development in accordance with the Approved Project would increase annual revenues in the form of taxes (e.g., income, property, sales tax). The project-generated revenue would be deposited in the County's General Funds, which would allocate a portion for the Sheriff's Department's services.

The Approved Project would also increase demand on CHP services and further extend existing resources for traffic control and incident responses if additional staffing and upgrades are not adequately funded in the future. The Certified EIR concluded that if sufficient County and state funds were not allocated to support increases in law enforcement services in the area, project-related impacts to the Los Angeles County Sheriff's Department and CHP would be significant and unavoidable.

Fire Services and Hazards

The Los Angeles County Fire Department (LACoFD) provides fire protection services to the project site. The closest fire stations are Fire Station 107 in Canyon Country and Fire Station 128 in Santa Clarita, approximately 1.0 mile south and 3.7 miles west of the site, respectively. Buildout of the Approved Project would require additional staff, equipment, and facilities. The project would be required to pay developer impact fees pursuant to the Los Angeles County Fire Department's Developer fee program, which would help fund land acquisition, facility improvements, and new equipment. Additionally, the County's General

5. Environmental Analysis

Funds would proportionally increase with project-generated tax revenue from development of the Approved Project.

The project site is in an area highly susceptible to wildfires and is designated a Very High Fire Hazard Severity Zone (VHFHSZ) due to the Santa Clarita Valley weather conditions and the topography and vegetation onsite. Because the site is in a VHFHSZ, the Approved Project would be required to prepare a fuel modification plan, a landscape plan, and an irrigation plan. The Approved Project would also be required to adhere to applicable standards in the County Fire Code, Building Code, and California Fire Code. Mitigation measures are proposed to ensure fire hazards are reduced to less than significant levels.

Education

The project site is within the attendance boundaries of the Sulphur Springs School District (SSSD), Saugus Union School District (SUSD), and William S. Hart Union High School District (HUHSD). The Approved Project included an 11-acre school site that would be developed, operated, and maintained by SSSD. Approximately 305 elementary school students would be generated in SSSD by the Approved Project. These students would be accommodated by the proposed SSSD elementary school on-site, which has a proposed capacity of 750 students. In addition, the Approved Project would generate approximately 178 elementary school students within SUSD, and approximately 160 junior high students and 301 senior high students in HUHSD. Under the provisions of SB 50, the payment of developer fees is "deemed to provide full and complete school facilities mitigation" for purposes of CEQA.

Libraries

The Canyon Country Jo Anne Darcy Library would service the project residents and is approximately 1.15 miles from the site. Project residents would increase the demand for library services and resources (i.e., items, facility space, and staffing). Since the Darcy Library currently has a deficit of 88,070 items and 21,345 square feet of library space, the project would contribute to this deficit and further hinder the library's efforts to meet its service guidelines. However, the project would be subject to the payment of library impact fees pursuant to Section 22.72 of the Los Angeles County Code. Fees would be used to compensate for the project's increased demand for library resources. The County Public Library has indicated that payment of fees would mitigate the project's impacts on libraries to less than significant.

5.15.2 Impacts Associated with the Modified Project

Would the Modified Project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:

5. Environmental Analysis

	Substantial Change in Project or Circumstances Resulting in New Significant Effects	New Information Showing Greater Significant Effects than Previous ElR	New Mitigation or Alternative to Reduce Significant Effect is Declined	 Minor Technical Changes or Additions	No Impact
Would the project create capacity or service level problems, or result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:					
a) Fire protection?					
b) Sheriff protection?					
c) Schools?				\mathbf{X}	
d) Parks?				\mathbf{X}	
e) Libraries?				\mathbf{X}	
f) Other public facilities?				\mathbf{X}	

Comments:

a) Fire protection?

Minor Technical Changes or Additions. The minor technical changes to the approved TTM would not result in substantial impacts to fire protection services. Payment of LACoFD developer fees would ensure that the Modified Project funds its fair share of fees to offset its demand for services. Additionally, development in accordance with the Modified Project would proportionally increase taxes (e.g., income, property, and sales tax), which would increase the County's General Funds and allocate more funding to LACoFD for staffing and equipment.

Emergency access to the project site would be provided primarily via Skyline Ranch Road and the Sierra Highway. The proposed realignment of Skyline Ranch Road through the Modified Project site would not alter the alignments of the access points at the borders of the project site. Internal access within the project site would be provided via the project's internal residential streets. All project roadways would be constructed to meet the requirements (minimum street width, turning radii, slope, etc.) of the LACoFD conditions of approval, which are required to be implemented as part of project approval.

Similar to the Approved Project, the Modified Project would still be required to prepare a fuel modification plan, landscape plan, and irrigation plan to minimize fire hazards onsite. Project buildings would also adhere to all applicable state and County fire and building codes. Project plans would be reviewed by LACoFD prior to the issuance of building permits to ensure that the Modified Project would be compliant with applicable fire codes, regulations, and conditions. Additionally, the proposed mitigation measures would ensure that such fire codes, regulations, and conditions are adhered to.

The elimination of 40 single-family homes would reduce the project-generated population by 139 people. The population reduction would also reduce calls for fire service compared to the Approved Project.

5. Environmental Analysis

Additionally, the proposed modifications to the approved TTM would not result in any uses that would expose residents to an unusually high level of public safety risks associated with fire protection services (i.e., earthquakes, fires, etc.).These modifications also would not impact LACoFD's ability to provide fire protection service to the project site. Therefore, no impact would occur as a result of modification to Tract 60922. Project modifications would not result in new or substantially more severe impacts related to fire protection services, either as a result of the project or changed circumstances.

b) Police protection?

Minor Technical Changes or Additions. The elimination of 40 single-family homes would reduce the project's population by 139 people and reduce calls for service. Modifications to the Approved Project would not result in any uses that would expose residents to an unusually high level of public safety risks associated with law enforcement services. Residents would be exposed to the same level of public safety risks, such as break-ins, car thefts, and domestic disturbances. The Modified Project would not result in significant new impacts compared to the Approved Project.

As with other public services, funding for the Sheriff's Department is derived from various types of tax revenue deposited in the County General Fund. The Law Enforcement Facilities Fee provides additional revenue for law enforcement facilities in the unincorporated Santa Clarita, Newhall, and Gorman areas of north Los Angeles County. Under Chapter 22.74 of the Los Angeles County Code, developers of new residential, commercial, office, and industrial development projects in these areas are required to pay a Law Enforcement Facilities Fee to mitigate impacts to law enforcement facilities, including new or expanded sheriff's stations and new patrol vehicles. Fees collected are deposited in a special law enforcement capital facilities fund for the fee zone corresponding with the area in which a project is located. The project site is in Zone 1, Santa Clarita. Fees would be used exclusively for the purpose of land acquisition, engineering, construction, installation, purchasing, or any other direct cost of providing law enforcement facilities to the development. Payment of the fee would ensure that the Modified Project funds its fair share of fees to offset its demand for police services.

Additionally, all onsite roadways and emergency access provisions would be subject to review and approval by the Los Angeles County Department of Public Works, the Los Angeles County Fire Department, and the Sheriff's Department. In addition, development projects are required to incorporate Crime Prevention Through Environmental Design features into the project, in coordination with and to the satisfaction of the Sheriff's Department. Such features may include lighting in parking lots and low-level security lighting; doors and windows visible from the street and between buildings; lighting of building address numbers to ensure visibility from the street for emergency response agencies; and landscaping that would minimize opportunities for hiding. The applicant must also provide the Sheriff's Department with plans indicating the project's street circulation system and building addresses to facilitate emergency response. Therefore, no impacts to emergency access and/or emergency evacuation plans would occur. Pursuant to existing regulations, impacts relating to the exposure of public safety risks would remain less than significant. Project modifications would not result in new or substantially more severe impacts related to police protection services, either as a result of the project or changed circumstances.

5. Environmental Analysis

c) Schools?

Minor Technical Changes or Additions. The student population generated by the Modified Project would be served by SSSD, SUSD, and HUHSD. Similar to the Approved Project, the Modified Project would include an 11.9-acre school site (750 -student capacity) to be maintained and operated by SSSD. It is assumed that all student residents on the project site would attend the proposed SSSD school onsite from kindergarten through 6th grade before moving onto junior high and high school in HUHSD.

The elimination of 40 single-family homes would reduce the project's population to 4,221 residents. Table 10 compares the estimated student generation between the Approved and Modified Projects. As shown, the Modified Project would result in 60 fewer students than the Approved Project. Therefore, the Modified Project would not result in new or substantially more severe impacts related to school services.

Table 10 Approved Project vs. Modified Project, Student Generation

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{School District} \& \multirow[b]{2}{*}{Student Generation Rate \({ }^{1}\)} \& \multicolumn{2}{|l|}{Approved Project (1,260 total units)} \& \multicolumn{2}{|r|}{Modified Project (1,220 Units)} \& \multirow[b]{2}{*}{Difference} \\
\hline \& \& Units \& No. of Students \& Units \& No. of Students \& \\
\hline Sulphur Springs \& 0.359 \& 849 \& 305 \& 1,220 \& 438 \& 133 \\
\hline Saugus Union \& 0.4329 \& 411 \& 178 \& 0 \& 0 \& -178 \\
\hline \begin{tabular}{l}
Hart USD \\
(Jr. High School, Grades 7-8) \\
Hart USD \\
(High School, Grades 9-12)
\end{tabular} \& \[
\begin{aligned}
\& 0.1270 \\
\& 0.2386
\end{aligned}
\] \& \[
\begin{aligned}
\& 1,260 \\
\& 1,260
\end{aligned}
\] \& 160
301 \& 1,220
1,220 \& 155

291 \& -5
-10

\hline \multicolumn{2}{|r|}{Total} \& - \& 944 \& - \& 884 \& -60

\hline \multicolumn{7}{|l|}{Source: County of Los Angeles, Skyline Ranch Project Draft EIR, July 2009.}

\hline
\end{tabular}

Additionally, under state law, development projects are required to pay established school impact fees in accordance with Senate Bill 50 (SB 50) at the time of building permit issuance. The funding program established by SB 50 has been found by the legislature to constitute "full and complete mitigation of the impacts of any legislative or adjudicative act... on the provision of adequate school facilities" (Government Code $\S 65995[\mathrm{~h}]$). The fees authorized for collection under SB 50 are conclusively deemed full and adequate mitigation of impacts to SSSD, SUSD, and HUHSD. Therefore, the increases in school facilities and services demand due to development are adequately mitigated by the payment of SB 50 fees. Overall, project modifications would not result in new or substantially more severe impacts related to schools, either as a result of the project or changed circumstances.

d) Parks?

Minor Technical Changes or Additions. See response in Section 5.16, Recreation, below.

e) Libraries

Minor Technical Changes or Additions. The project is served by the Canyon Country Jo Anne Darcy Library at 18601 Soledad Canyon Road. Project demand for library services is based on guideline factors of

5. Environmental Analysis

2.75 items per capita and 0.5 square foot of facility space per capita, as provided by the County of Los Angeles Public Library. Compared to the Approved Project, the Modified Project would reduce demand for library services by 139 persons, 382 items, and 69.5 square feet.

Chapter 22.72 of the Los Angeles County Code describes the Library Facilities Mitigation Fee program, which requires developers of any new residential projects to pay fees to mitigate impacts to library services. Fees are deposited in a special library capital facilities fund for the library planning area in which a project is located. Fees are to be used solely for the financing of public library facilities, the need for which is generated directly or indirectly by residential development projects. The Modified Project would be subject to the payment of library impact fees pursuant to Section 22.72 of the Los Angeles County Code. Fees paid would be used to offset the project's demand for library resources. Therefore, impacts on libraries would be less than significant. Overall, the Modified Project would not adversely impact library facilities compared to the Approved Project.

f) Other public facilities?

Minor Technical Changes or Additions. Other public facilities, such as community recreation facilities, would not be substantially affected by the Modified Project. Although this issue was not discussed in the certified 2010 EIR, the Modified Project would include 19.6 acres of parkland and seven recreation centers throughout the site. This would reduce the demand for and use of existing community recreational facilities in the project area. Thus, the development of Modified Tract 60922 would result in beneficial impacts.

5.15.3 Adopted Mitigation Measures Applicable to the Modified Project

Sheriff's Department

4.L-1(a) Prior to issuance of building permits, the project shall incorporate Crime Prevention Through Environmental Design (CPTED) features into the project, in coordination with and to the satisfaction of the Sheriff's Department. Such features should include, but are not limited to the following:

- Lighting in parking lots and low-level security lighting;
- Provision that doors and windows are visible from the street and between buildings;
- Lighting of building address numbers to ensure visibility from the street for emergency response agencies; and
- Landscaping that would minimize opportunities for hiding.
4.L-1(b) Prior to issuance of building permits, the applicant shall provide the Sheriff's Department with plans indicating the project's street circulation system and building addresses to facilitate emergency response.

Fire Protection Services

5. Environmental Analysis

4.M-1(a) Prior to issuance of building permits, the applicant shall pay fees to support the Los Angeles County Fire Department (LACoFD) pursuant to the LACoFD Developer Fee Program.
4.M-1(b) Development of the project shall occur in accordance with all applicable code and ordinance requirements for construction, access, water mains, fire flows, and hydrants.
4.M-1(c) Project buildings shall adhere to all applicable State and County Fire and Building Codes.
4.M-1(d) The project shall provide adequate emergency access. Access roads shall:

- Provide a minimum width of 20 feet;
- extend to within 150 feet of any exterior portion of all structures;
- meet the minimum width requirements prescribed by the LACoFD;
- be constructed with an all-weather surface;
- have a minimum of 10 feet of brush clearance on each side;
- have an unobstructed vertical clearance clear-to-sky with the exception of protected tree species;
- have a vertical clearance of 13.5 feet when protected tree species are overhanging; and
- have a turning radii of no less than 32 feet.
4.M-1(e) A turning area satisfactory to the LACoFD shall be provided for all driveways exceeding 150 feet in length and at the end of all cul-de-sacs.
4.M-1(f) All fire lanes must be a minimum of 26 feet in width (clear-to-sky) and marked "NO PARKING——FIRE LANE."
4.M-1 (g) All access devices and gates for the proposed school shall comply with California Code of Regulations, Title 19, Article 3.05, including providing a minimum paved access width of 26 feet for circulation purposes.
4.M-1(h) Proposed traffic calming measures shall be submitted to the LACoFD for review and approval.
4.M-1(i) All fire hydrants shall:
- Measure 6 " $\times 4$ " x 2-1/2" brass or bronze, conforming to current AWWWA standard C503 or approved equal;
- On-site hydrants shall be installed a minimum 25 feet from a structure or protected by a two- hour rated firewall;

5. Environmental Analysis

- Fire hydrants shall be installed, tested, and accepted prior to construction;
- Vehicular access to fire hydrants shall be provided and maintained serviceable throughout construction.

Wildfire Hazard

4.M-2 Prior to the issuance of any grading permit, a Fuel Modification Plan, consistent with the Fuel Modification Plan Guidelines, shall be submitted for review and approval by the Department of Regional Planning and the Forestry Division of the LACoFD to reduce the threat of wildfire. The Fuel Modification Plan shall require that applicant or homeowners association provide and maintain fuel modification and brush clearance zones around each on-site structure. Said plan shall be approved by the Forestry Division prior to completion of final landscape plans.

Please also see Mitigation Measures 4.M-1(b), 4.M-1(c), and 4.M-1(d).

5.15.4 Level of Significance After Mitigation

The Modified Project would only result in minor technical changes or additions to the previously certified EIR and would not result in significant impacts upon implementation of applicable regulatory requirements and mitigation measures.

5.16 RECREATION

5.16.1 Summary of Impacts Identified in the Certified EIR

This section summarizes the analysis contained in Section 4.P, Parks, of the 2010 Certified EIR.

The Los Angeles County Department of Parks and Recreation is responsible for the operations and maintenance of public parks in unincorporated Los Angeles County. The County has a standard of 4 acres per 1,000 residents for unincorporated areas. The Approved Project would provide approximately 18 acres of public and private park space, which includes a 12 -acre public neighborhood park, a 2.5 -acre private park, and eight pocket parks totaling approximately 3.7 acres. The proposed public park would dedicate 10.6 acres to the Parks Department. The remaining parks would be maintained by a homeowners' association. Other proposed recreational amenities onsite include 2 miles of hiking trails, 1 mile of paseos, and 8 miles of bike lanes along Skyline Ranch Road, Main Street North, and Main Street South. The undeveloped northern portion of the site would also include approximately 2.2 miles of trail easement that would connect to the Mint Canyon Trail in the north and the existing Plum Canyon fire road in the south.

Based on the County's 4 acres per 1,000 residents standard, the Approved Project is required to provide 12.23 net acres of onsite park space. The Approved Project would provide 10.6 acres of public park space and inlieu fees to meet the County requirements per Section 21.28 .140 of the Los Angeles County Code.

5. Environmental Analysis

Additionally, the Approved Project would not necessitate the construction of additional off-site facilities, which could result in secondary, adverse impacts on the environment. Project residents are expected to primarily utilize the proposed on-site parks and recreational facilities, which provide for both active and passive recreation. Impacts would be less than significant.

5.16.2 Impacts Associated with the Modified Project

Issues	Substantial Change in Project or Circumstances Resulting in New Significant Effects	New Information Showing Greater Significant Effects than Previous EIR	New Mitigation or Alternative to Reduce Significant Effect is Declined	Minor Technical Changes or Additions	$\begin{gathered} \text { No } \\ \text { Impact } \end{gathered}$
a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?				X	
b) Does the project include neighborhood and regional parks or other recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?				X	
c) Would the project interfere with regional open space connectivity?					X

Comments:

a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?

Minor Technical Changes or Additions. The Modified Project would reduce the number of residential lots by 40 , from 1,260 to 1,220 units. This would reduce the project-generated population by 139 people. Therefore, the Modified Project would generate less demand on existing neighborhood and regional parks. Additionally, the Modified Project would include 19.6 acres of public and private parks; 3.0 miles of hiking trails, 3.3 miles of paseos, 2.3 miles of multipurpose trails, and a 2.2 -mile trail easement; and 9.8 miles of bike lanes that would be accessible to the residents onsite.

Based on the County's parkland standard of 4 acres per 1,000 residents, the reduced population would also reduce the project's park dedication requirement from 17.4 to 16.9 acres. The Modified Project includes 16.9 acres of public parks throughout the site, and 2.7 acres of private parks. Therefore, the Modified Project would meet the County's parkland standard. Although not credited under the parkland requirement, it should be noted that the Modified Project would provide an additional mile of hiking trails, 2.3 miles of paseos, 2.3 miles of multipurpose trails, and 1.8 miles of bike lanes compared to the Approved Project (see Table 2, above). Overall, impacts would be less than significant.

5. Environmental Analysis

b) Does the project include neighborhood and regional parks or other recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?

Minor Technical Changes or Additions. Similar to the Approved Project, the Modified Project would include a number of public parks and recreational amenities. The Modified Project would relocate and expand the parks into 16.9 acres of public parks and 2.7 acres of private parks, as shown on Figure 7, Modified Parks and Trails. As shown on Figure 4, Approved TTM vs. Proposed Concept Plan, one of the parks would be relocated near the proposed school site to provide better accessibility to the student population that would likely use the park more than other residents. Additionally, a community center is proposed near the agequalified residences, and would include a club house, pool deck area, outdoor dining, barbecue area, and seating.

The relocation and expansion of park sites by 1.4 acres, inclusion of a community center, and a reduction in the number of residents generated by the Modified Project would beneficially impact park services and the community. The net incremental impact of the Modified Project on recreational facilities would be less than significant, and no new substantial impacts would occur as a result of the Modified Project or changed circumstances.
c) Would the project interfere with regional open space connectivity?

No Impact. Similar to the Approved Project, the Modified Project would include a 2.2 -mile trail easement to connect with the existing regional Mint Canyon Trail in the undeveloped northern portion of the project site. Therefore, no new significant impacts to regional trails would occur as a result of the Modified Project or as a result of changed circumstances.

5.16.3 Adopted Mitigation Measures Applicable to the Modified Project

The 2010 Certified EIR did not include mitigation measures related to recreation.

5.16.4 Level of Significance After Mitigation

The Modified Project would only result in minor technical changes or additions to the previously certified EIR and would not result in significant impacts to recreation.

5.17 TRANSPORTATION/TRAFFIC

5.17.1 Summary of Impacts Identified in the Certified EIR

This section summarizes the analysis contained in Section 4.F, Traffic/Access, of the 2010 Certified EIR.

Trip Generation and Intersection Analysis

The Approved Project was forecast to generate 13,121 vehicle trips per day, with 1,268 in the AM peak hours and 1,283 in the PM peak hours. Based on intersection analysis, the project would have a significant impact at

5. Environmental Analysis

the County intersections of Plum Canyon Road with Skyline Ranch Road/Heller Circle (South) and Golden Valley Road with Plum Canyon Road, and at City intersections of Sierra Highway with Soledad Canyon Road and Sierra Highway with Skyline Ranch Road.

The Certified EIR found that significant cumulative impacts would occur on Sierra Highway; however, due to the speculative nature of the timing of implementation and availability of funding to implement short- and long-range plans, the reduction of cumulative impacts to less than significant levels cannot be guaranteed, and therefore cumulative impacts to Sierra Highway between Sand Canyon Road to the south of the Sierra Highway interchange would be significant and unavoidable.

CMP Analysis

The Congestion Management Plan (CMP) intersections nearest to the project site are the intersections of Sierra Highway with Sand Canyon Road and Sierra Highway with Soledad Canyon Road. The Approved Project was not anticipated to add 50 or more peak-hour trips to the intersection of Sierra Highway / Sand Canyon Road (15 PM trips), but was expected to add more than 50 trips to the intersection of Sierra Highway / Soledad Canyon Road (455 PM trips). An impact analysis of this intersection concluded that the intersection was forecast to exceed LOS F prior to the addition of project traffic and that the project would cause a significant impact based on the CMP guidelines if mitigation measures were not implemented.

5.17.2 Impacts Associated with the Modified Project

The analysis in this section is based in part on the following technical study and technical memorandum:

- Skeyline Ranch (Revised VTTM 060922) On-Site Roadway Analysis, Stantec Consulting Services Inc., October 18, 2016.
- Skyline Ranch (Revised VTTM 060922) Land Use and Trip Generation Update, Stantec Consulting Services, Inc., December 5, 2016.

A complete copy of the study and technical memorandum is included in Appendix B.

5. Environmental Analysis

Would the Modified Project:

Issues	Substantial Change in Project or Circumstances Resulting in New Significant Effects	New Information Showing Greater Significant Effects than Previous EIR	New Mitigation or Alternative to Reduce Significant Effect is Declined	Minor Technical Changes or Additions	No Impact
a) Conflict with an applicable plan, ordinance, or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation, including mass transit and non-motorized travel, and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit?				X	
b) Conflict with an applicable congestion management program (CMP), including, but not limited to, level of service standards and travel demand measures, or other standards established by the CMP for designated roads or highways?				X	
c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?					X
d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?				X	
e) Result in inadequate emergency access?				X	
f) Conflict with the adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities?				X	

Comments:

a) Conflict with an applicable plan, ordinance, or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation, including mass transit and non-motorized travel, and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit?

Minor Technical Changes or Additions. The Modified Project would develop 40 fewer residential units than the Approved Project. Stantec Consulting Services prepared a trip generation analysis to calculate the number of trips that would be generated by the Modified Project.

The trip generation estimates were calculated using the Institute of Transportation Engineers' trip generation rates for single-family residential, Los Angeles County rates for townhouse/condominium, and rates derived

5. Environmental Analysis

from case studies for the proposed elementary school (see Table 11). The elementary school case study rates reflect the higher trip generation characteristics of a typical southern California elementary school.

Table 11 Modified Project Trip Generation Rates

Land Use	Units	AM Peak Hour			PM Peak Hour			ADT
		Inbound	Outbound	Total	Inbound	Outbound	Total	
Trip Rates								
Single Family	DU	0.19	0.56	0.75	0.63	0.37	1.00	9.52
Detached Condominium	DU	0.06	0.48	0.54	0.47	0.26	0.73	8.00
Elementary School	STU	0.25	0.20	0.45	0.13	0.15	0.28	1.29

Source: Stantec 2016.
Notes: DU = dwelling units; STU = students; ADT = average daily trips

Using these generation rates, the Modified Project is forecast to generate a total of approximately 12,059 vehicle trips per day, with 1,181 in the AM peak hour (810 outbound) and 1,127 in the PM peak hour (714 inbound). Table 12 compares the trip generation summaries of the Approved and Modified Projects. The Modified Project would generate 1,062 fewer average daily trips (87 fewer AM peak hour trips and 156 fewer PM peak hour trips) compared to the Approved Project; however, significant and unavoidable impacts to Highway 14 from Sand Canyon Road to the south of the Sierra Highway interchange would not be eliminated. Development of the Modified Project would not result in new significant impacts on the traffic and circulation system, and the level of impact remains unchanged from the Certified EIR.

Table 12 Trip Generation Comparison

Land Use	Amount	Units	AM Peak Hour			PM Peak Hour			ADT
			Inbound	Outbound	Total	Inbound	Outbound	Total	
Approved Project									
Single Family	1,270	DU	241	711	953	813	470	1,283	12,154
Elementary School	750	STU	173	143	315	NA	NA	NA	968
Total			414	854	1,268	813	470	1,283	13,121
Modified Project									
Single Family (210)	876	DU	164	493	657	552	324	876	8,340
Detached Condominium	344	DU	21	165	186	162	89	251	2,752
Elementary School	750	STU	186	152	338	--	--	--	968
Total			371	810	1,181	714	413	1,127	12,059
Net Difference			-43	-44	-87	-99	-57	-156	-1,062
Source: Stantec 2016. Notes: DU = dwelling units; STU = students; ADT = average daily trips									

An analysis for the proposed school access was also provided in the 2016 Stantec report. Initially, four access alternatives were analyzed: 1) full access, unsignalized intersection, 2) a roundabout at the school entrance, 3) a right/left-in and right-out only access point at the school with a roundabout at the park, and 4) a right/leftin and right-out only access point at the school with a U-turn at the park. A fifth alternative was subsequently

5. Environmental Analysis

developed through consultation with the Los Angeles County Public Works staff. This preferred alternative consists of a full access unsignalized intersection at the school with a channelized/dedicated right-turn lane into the school. A dedicated acceleration/merge lane would be provided for the exiting school traffic turning left onto southbound Skyline Ranch Road. A U-turn at the park would also be developed as a secondary means for traffic to head south on Skyline Ranch Road. County Public Works anticipates prohibiting left-turn into the school during the peak times, preferring instead to have the inbound traffic proceed to the southerly roundabout to make a U-turn and return to the school in the northbound direction and enter as right-turns.

Based on the peak hour signal warrant analysis, a traffic signal is not warranted at the school intersection. A traffic signal is not recommended for the school entrance due to the close proximity to the south roundabout and because the traffic signal would not meet the minimum volume warrants.

The Modified Project would also realign Skyline Ranch Road along the western boundary of the proposed community, providing access to the development via two roundabouts-one at the northern end near the park site, and one at the southern end near the school site. An evaluation of the roundabout concepts has been prepared with SIDRA software. The analysis indicates that both the north and the south roundabouts would operate at good LOS based on a single-lane roundabout configuration (see Table 13).

Table 13 Proposed Roundabouts LOS and Delay Summary

	AM		PM	
Roundabout Locations	LOS	Average Delay (seconds)	LOS	Average Delay (seconds)
Skyline Ranch Road \& North Roundabout	A	9.7	B	13.0
Skyline Ranch Road \& South Roundabout	B	10.6	B	10.4
Source: Stantec 2016.				

The queue lengths for each leg of the north and south roundabouts on Skyline Ranch Road are shown in Table 14.

Table 14 Queue Lengths for Each Leg of Roundabouts

	North Roundabout Queue Length (ft)		South Roundabout Queue Length (ft)	
	AM	PM	AM	PM
South Leg (Skyline Ranch Rd)	85.9	101.1	79.1	118.3
East Leg (Loop Rd)	97.7	45.5	66.9	39.5
North Leg (Skyline Ranch Rd)	139.7	277.5	204.7	196.0
Source: Stantec 2016.				

To evaluate the operation of the Skyline Ranch Road intersections, a Synchro/SimTraffic simulation model was prepared for Skyline Ranch Road and the north, south, park and school intersections. Simulation results for the school driveway shows that the average vehicle, after dropping off students, would take approximately

5. Environmental Analysis

24.1 seconds and 12.7 seconds to exit left and right, respectively, out of the school driveway during the AM peak.

The park intersection also provides a convenient location for exiting traffic to make a U-turn and proceed south on Skyline Ranch Road. Table 15 summarizes the lane LOS and approach delay at the school and park intersections during both AM and PM peak. The analysis indicates that the school site access would operate at LOS C or better during both AM \& PM peak hour with a maximum queue length of 136 feet during the AM peak.

Table 15 LOS, Delay \& Queue Summary at School and Park

Location		AM			PM		
		LOS	Delay (sec)	Queue	LOS	Delay (sec)	Queue
Skyline Ranch Rd \& School	WBL	C	24.1	136	B	14.2	71
	WBR	B	12.7	52	B	12.6	59
Skyline Ranch Rd \& Park	WBL/R	C	20.8	39	C	21.0	43
	SBL	A	8.6	27	A	8.4	21

Source: Stantec 2016.
In addition, the County and City of Santa Clarita have established multiple Bridge and Thoroughfare (B\&T) Districts. The project site is in two of the B\&T districts: the Bouquet Canyon District, which covers the western portion of the site, and the Eastside District, which covers the eastern portion of the site. Both of these $\mathrm{B} \& \mathrm{~T}$ districts were recently updated and are considered full improvement districts. By being full improvement districts, the $\mathrm{B} \& \mathrm{~T}$ fees collected in the districts are intended to cover all the anticipated improvements necessary to build out the arterial roadway network. The B\&T fees are assessed based on the number of peak hour trips generated by the proposed project collected at the time of recordation of a final tract map.
b) Conflict with an applicable congestion management program (CMP), including, but not limited to, level of service standards and travel demand measures, or other standards established by the CMP for designated roads or highways?

Minor Technical Changes or Additions. According to the CMP for Los Angeles County, the CMP intersections closest to the project site are Sierra Highway at Sand Canyon Road and Sierra Highway at Soledad Canyon Road.

The CMP traffic impact analysis guidelines consider that a project has a significant impact on the regional transportation system when the following thresholds are exceeded:

- The proposed project increases traffic demand on a CMP facility by 2 percent of capacity or more (V/C >0.02), causing LOS F (V/C > 1.00); or
- If the facility is already at LOS F, a significant impact occurs when the proposed project increases traffic demand on a CMP facility by 2 percent of capacity or more ($\mathrm{V} / \mathrm{C}>0.02$).

5. Environmental Analysis

According to the CMP guidelines, the geographical area examined in a CMP traffic impact analysis consists of the CMP monitoring locations where the proposed project would add 50 or more trips during the AM or PM weekday peak hours (of adjacent street traffic) or main-line freeway locations where the project would add 150 or more trips, in either direction, during either the AM or PM weekday peak hours. Compared to the Approved Project, the Modified Project would reduce project-generated vehicle trips (see Table 12); therefore, it would not add trips to the Sierra Highway/Sand Canyon or Sierra Highway/Soledad Canyon Road intersections or to any main-line freeway locations. Thus, project impacts at CMP intersections and main-line freeway locations are not anticipated. Therefore, no new significant impacts result from project modification or changed circumstances.
c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?

No Impact. Similar to the Approved Project, the Modified Project would not alter air traffic patterns. The nearest major airport, Bob Hope Airport in Burbank, is over 17 miles to the south of the project site. The project would not increase use of the airport, causing an increase in air traffic levels, and it would not directly cause a change in flight paths due to the construction of tall buildings. No impacts to air traffic patterns would occur. No new significant impacts would result from project modification or changed circumstances.
d) Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?

Minor Technical Changes or Additions. As part of the Modified Project, Skyline Ranch Road would be realigned through the site. However, this would not significantly increase hazardous conditions due to design features or incompatible uses. The final map is required to be designed in accordance with the County of Los Angeles design standards for subdivisions, reviewed by the Land Development Division and County of Los Angeles Department of Public Works, and approved by the County Board of Supervisors. By following the design standards for subdivisions, as required by the County, hazardous conditions due to design features and incompatible uses would be reduced. Therefore, impacts would be less than significant.

e) Result in inadequate emergency access?

Minor Technical Changes or Additions. As part of the Approved and Modified Projects, Whites Canyon Road would be extended from Plum Canyon Road on the west (through VTTM 46018) to the southeast as Skyline Ranch Road, ultimately connecting to Sierra Highway. Implementation of this road alignment improves area-wide emergency access to areas north of Canyon Country and the City of Santa Clarita. The proposed realignment of Skyline Ranch Road under the Modified Project would not affect emergency access because it would still provide two access points through the site. The onsite roadways, roundabouts, and cul-de-sacs would be designed in accordance with the County's subdivision design standards, and the final tentative map would be subject to review by the County of Los Angeles Public Works Department and approval by the County's Board of Supervisors. By following the design standards in the County Code and through the process of review and approval by the County, emergency access would be maintained. The Modified Project would have less than significant emergency access impacts.

5. Environmental Analysis

f) Conflict with the adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities?

Minor Technical Changes or Additions. The project site is served by Santa Clarita Transit Routes 1, 2, and 5, which provide service between Sierra Highway and the Transit Center located in the Valencia Town Center. Additionally, the Santa Clarita Metrolink station on Via Princessa near Whites Canyon Road is approximately two miles south of the site. Given that the Modified Project would reduce residential units and vehicle trips, the project would also decrease potential transit use by project residents.

Bicycle lanes and multipurpose trails are also proposed throughout the Skyline Ranch project site. The Modified Project would develop 10.75 miles of pedestrian connections, including 3.0 miles of hiking trails, a 2.2-mile trail easement, 3.3 miles of paseo trails, and 2.3 miles of multipurpose trails (see Figure 7, Open Space and Trails Map). An additional 1.8 miles of bike lanes would be developed in the Skyline Ranch community. Overall, the Modified Project provides more pedestrian and bicyclist connections than the Approved Project.

Thus, the Modified Project would not have any impact on adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or safety of such facilities. No new significant impacts would result from project modification or changed circumstances.

5.17.3 Adopted Mitigation Measures Applicable to the Modified Project

County Intersections

4.F-1 (a) Plum Canyon Road at Skyline Ranch Road/Heller Circle (South): Prior to issuance of a certificate of occupancy, the project shall redesign and construct the new east leg (Skyline Ranch Road) to include one left-turn lane, one shared left/through lane, and one right-turn lane; and restripe the existing west leg (Heller Circle South) to consist of one left-turn lane and one shared through/right-turn lane; and restripe the existing north leg (Plum Canyon Road) left-turn pocket to allow the left-turn movement. Implementation of improvements and fair share determination shall be coordinated with adjoining Tract 46018, since many of the stated improvements are conditions of approval for Tract 46018 and are required to be in place prior to occupancy of Tract 46018 or the proposed project.
4.F-1(b) Golden Valley Road at Plum Canyon Road: The project shall pay its fair share (53 percent) to restripe the northbound Golden Valley Road approach to provide a second leftturn lane, for a total of two northbound left-turn lanes, one northbound through lane, and one northbound right-turn lane. Timing of improvement shall be determined by the County based on Bridge and Thoroughfare (B\&T) District priorities.

City Intersections

4.F-2(a) Sierra Highway at Soledad Canyon Road: The project shall pay its fair share (100 percent) to add a second southbound left-turn lane, for a total of five approach lanes and reconfigure the approach lanes as two left-turn lanes, two through lanes, and one right turn

5. Environmental Analysis

lane, so as to mirror the northbound approach. This improvement may require the acquisition of additional right-of-way to widen the southbound approach of the north leg. Timing of improvement shall be determined by the City based on B\&T District priorities.
4.F-2(b) Sierra Highway at Skyline Ranch Road: Prior to the issuance of the first building permit the project shall construct a new intersection for project access; provide one northbound left-turn lane, two northbound through lanes, two southbound through lanes, one eastbound left-turn lane, and two eastbound right-turn lanes; and install a traffic signal. The placement of the new west leg should be of sufficient distance from the Sierra Highway centerline to allow for the eventual addition of a third southbound through lane as identified in the City of Santa Clarita General Plan Circulation Element.

State Highways

4.F-3 In the event the State approves a Caltrans impact fee mitigation program prior to implementation of the proposed project, the applicant shall pay a fair share to fund programmed improvements to Highway 14 that would mitigate the project's contribution to cumulative impacts on the highway. Such improvements may include the addition of HOV lanes, truck lanes, and additional mixed flow lanes to the segments of Highway 14 between Sand Canyon Road to south of the Sierra Highway interchange, that have been identified in the Short Range Plan outlined in the North County Combined Highway Corridors Study.

5.17.4 Level of Significance After Mitigation

The Modified Project would only result in minor technical changes or additions to the previously certified EIR, and would not result in significant impacts upon implementation of applicable regulatory requirements and mitigation measures.

5.18 UTILITIES AND SERVICE SYSTEMS

5.18.1 Summary of Impacts Identified in the Certified EIR

This section summarizes the analysis contained in Sections 4.I, Water Resources, 4.J, Wastewater Disposal, and 4.K, Solid Waste Disposal, of the 2010 Certified EIR.

Water Resources

Water Supply

The Approved Project is in the Santa Clarita Water Division (SCWD), which receives water from both groundwater sources and the Castaic Lake Water Agency (CLWA). According to the Certified EIR, the project would have a water demand of 1,831 acre-feet per year (afy), as shown in Table 16. Sufficient water supplies would be available to meet projected water demands. The Approved Project was identified as a pending project in the County and as part of the analysis in the 2005 Urban Water Management Plan. Existing land use data and new housing construction information were compiled from each of the retail

5. Environmental Analysis

water purveyors, and projections were prepared in the "One Valley One Vision Plan," a joint planning effort by the City of Santa Clarita and Los Angeles County Department of Regional Planning.

Table 16 Approved Project, Estimated Water Demand

Land Use	Units/Acres	Water Use Factor (afy) ${ }^{1}$	Estimated Water Use (afy)				
Single-Family Residential	1,260 units	0.82 per unit	1,033				
Parks	18 acres	3 per acre	54				
Elementary School	11 acres	3 per acre	33				
Manufactured Slopes	211 acres 2	3 per acre	633				
Road Parkways	26 acres	3 per acre	78				
					-	-	$\mathbf{1 , 8 3 1}$

1 Factors provided by CLWA SCWD.
2 Acreage includes off-site landscaped slope areas of 7.92 acres (VTTM 46018) and 1.96 acres (BLM property).

Impacts to water supply were considered less than significant. However, the reduction in State Water Project supply and Countywide drought conditions reinforce the need to conserve water and comply with County water conservation requirements. Therefore, mitigation was provided to ensure the Approved Project would be consistent with all applicable water conservation plans, programs, and ordinances.

Water Supply Infrastructure

The Approved Project would provide water lines to connect to existing pipelines in Sierra Highway to tie into the CLWA/SCWD system. A new 16-inch pipeline would connect the existing CLWA/SCWD water tank to onsite infrastructure, and potable water would be conveyed to onsite uses by installing a proposed network of 6 - to 16 -inch pipes. Onsite booster/pump stations and water tanks were also proposed to ensure sufficient water pressure to deliver water onsite. Thus, impacts would be less than significant.

Groundwater Recharge

The Approved Project would increase impervious surfaces onsite by approximately 189 acres, but would not result in a significant reduction in groundwater recharge. Increased runoff from impervious surfaces was estimated to be approximately 284 afy. Most surface runoff enters the Santa Clara River south of the project site and recharges the alluvial aquifer. In addition, the land uses associated with the Approved Project would increase water usage for irrigation of landscaped areas compared to existing conditions (undeveloped land). Given that the increase in impervious surface area is not substantial, the increase in irrigation, and the fact that runoff would contribute recharge, impacts to groundwater recharge would be less than significant.

Wastewater Disposal

Wastewater Collection

Sewer lines ranging from 8 to 12 inches would be installed as part of the Approved Project's proposed sewer network. These sewer lines would collect wastewater generated within the development, with flows directed southeast into the 21 -inch Sierra Highway sewer. Development of the Approved Project would generate

5. Environmental Analysis

approximately 346,200 gallons of wastewater per day (gpd) (see Table 17). Flow rates from the site would equate to 1.41 cubic feet per second (cfs) into the Sierra Highway sewer. The capacity of this sewer was determined to be 9.58 cfs ; therefore, it would have capacity to collect wastewater generated onsite.

Table 17 Approved Project, Estimated Wastewater Generation

Land Use	Approved Project Buildout	Wastewater Generation Factor (gpd)	Estimated Wastewater Generated (gpd)	
Single-family Residential	1,260 units	260	327,600	
Elementary School	750 students	20	15,000	
Park	18 acres	-	200	
Factors provided by the Sanitation Districts of Los Angeles County.	-	34600		

Wastewater Treatment

Wastewater treatment for the project area is provided by the Sanitation Districts of Los Angeles County (LACSD) through the Santa Clarita Valley Joint Sewerage System (SCVJSS). The SCVJSS provides primary, secondary, and tertiary wastewater treatment. It has a capacity of 7 million gallons per day (mgd) and an approved expansion of 6 mgd , which would be sufficient to meet forecast demand beyond 2017. The projectgenerated 346,200 gpd of wastewater (approximately 5 percent of available capacity) would be adequately treated at the SCVJSS. Additionally, the project applicant would be required to pay an annexation fee and a connection fee (based on the number of dwelling units). The project would not have a significant impact on wastewater treatment facilities.

Solid Waste Disposal

Construction Waste

The California Integrated Waste Management Board conservatively estimated that residential construction projects generate approximately four pounds of construction debris (mostly wood and drywall) per square foot. Based on this factor and an approximate average square footage for the residential units of 3,550 square feet, the project would generate approximately 8,946 tons of debris (see Table 18). However, the project is subject to the County's Green Building Ordinance. Pursuant to the County's Green Building Ordinance, 65 percent of the project's construction debris (i.e., 5,815 tons) would be recycled or reused. Thus, project construction would dispose of 3,131 tons of debris, approximately 0.04 percent of the Peck Road Gravel Pit landfill's 7.8 million tons of remaining capacity. Thus, construction-generated waste impacts on solid waste facilities would be less than significant.

5. Environmental Analysis

Table 18 Approved Project, Estimated Solid Waste Generation

Land Use	Approved Project Buildout	Solid Waste Generation Factor ${ }^{1}$	Estimated Solid Waste Generated
Construction			
Single-family Residential	$\begin{gathered} 1,260 \text { units } \\ (3,550 \text { SF per unit }) \end{gathered}$	4 lbs per SF	8,946 tons
Operations			
Single-family Residential	4,158 residents	0.41 tons per person	1,704.78 tons per year
Note: SF = square feet Factors provided by California Integrated Waste Management Board.			

Operation Waste

The California Integrated Waste Management Board's solid waste generation factor is 0.41 ton per capita per year. Based on this factor, the proposed project would generate approximately $1,704.78$ tons of solid waste per year (see Table 16). Solid waste generated at the project site would likely be disposed at Sunshine Canyon Landfill, Chiquita Canyon Landfill, and the Antelope Valley Landfill. The projected solid waste would comprise approximately 0.002 percent of the 95.37 million tons of remaining capacity at these landfills and would represent an increase of less than 0.5 percent of the approximate 3.667 million tons of solid waste disposed in 2008 at these facilities. Thus, existing landfills would have sufficient capacity and impacts would be less than significant.

5.18.2 Impacts Associated with the Modified Project

Would the Modified Project:

Issues	Substantial Change in Project or Circumstances Resulting in New Significant Effects	New Information Showing Greater Significant Effects than Previous EIR	New Mitigation or Alternative to Reduce Significant Effect is Declined	Minor Technical Changes or Additions	$\begin{gathered} \text { No } \\ \text { Impact } \end{gathered}$
a) Exceed wastewater treatment requirements of the Los Angeles or Lahontan Regional Water Quality Control Boards?					X
b) Create water or wastewater system capacity problems, or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?				X	
c) Create drainage system capacity problems, or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?				X	
d) Have sufficient reliable water supplies available to serve the project demands from existing entitlements and resources, considering existing and projected water demands from other land uses?				X	

5. Environmental Analysis

Issues	Substantial Change in Project or Circumstances Resulting in New Significant Effects	New Information Showing Greater Significant Effects than Previous EIR	New Mitigation or Alternative to Reduce Significant Effect is Declined	Minor Technical Changes or Additions	$\begin{gathered} \text { No } \\ \text { Impact } \end{gathered}$
e) Create energy utility (electricity, natural gas, propane) system capacity problems, or result in the construction of new energy facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?				X	
f) Be served by a landfill with sufficient permitted capacity to accommodate the project's solid waste disposal needs?				X	
g) Comply with federal, state, and local statutes and regulations related to solid waste?					X

Comments:

a) Exceed wastewater treatment requirements of the Los Angeles or Lahontan Regional Water Quality Control Boards?

No Impact. Similar to the Approved Project, the Modified Project would be required to comply with the wastewater treatment requirements in the Construction General Permit, Order No. 2009-0009-DWQ, issued by the SWRCB. The Modified Project is required apply for coverage under the Construction General Permit by submitting a Notice of Intent to the SWRCB and preparing and implementing a SWPPP specifying BMPs to minimize construction water pollution impacts. By adhering to these BMPs, the Modified Project would not exceed the SWRCB's wastewater treatment requirements, and no new or significant increase in effects would occur.

The modifications to the approved TTM would decrease impervious surfaces and preserve existing slopes and hillsides in the south and southwest portions of the developable area. Regardless, the Modified Project would be required to meet wastewater treatment requirements in Order No. 01-182 by the Los Angeles RWQCB, which includes preparing and implementing a Standard Urban Stormwater Management Plan. The SUSMP would specify BMPs to be used in the Modified Project's design and operation to minimize pollution of stormwater. By adhering to these BMPs, the Modification would not exceed the Los Angeles RWQCB's wastewater treatment requirements, and no new or significant increase in effects would occur.

Additionally, as discussed in Section 5.18.2(b) below, the Modified Project would result in a reduction in wastewater generation as compared to the Approved Project. Therefore, no new substantial impacts would occur.

5. Environmental Analysis

b) Create water or wastewater system capacity problems, or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?

Minor Technical Changes or Additions. As discussed in Sections 3.18.2(d), the incremental differences of the proposed modifications to the recorded map would not result in new substantial impacts to water supply. The Modified Project would actually reduce water demand by 324 afy.

Wastewater treatment for the project area is provided by LACSD, specifically the SCVJSS. SCVJSS provides primary, secondary, and tertiary treatment of wastewater. Table 19 compares wastewater generation under the Approved and Modified Projects. As shown, the Modified Project would reduce wastewater generation by 10,080 gallons per day.

Table 19 Approved Project vs. Modified Project, Estimated Wastewater Generation

Land Use	Wastewater Generation Factor (gpd) $)^{1}$	Estimated Wastewater Generated (gpd)						
		Approved Project	Modified Project	Difference				
Single-family Residential	20	327,600	317,200	$-10,400$				
Elementary School	200	15,000	15,000	0				
Park		3,600	3,920	+320				
\quad Total						346,200	336,120	$\mathbf{- 1 0 , 0 8 0}$

1 Factors provided by SCVJSS.

Additionally, new development projects in the Santa Clarita Valley area are required to pay fees for direct and indirect connections to and services provided by the SCVJSS. These connection fees would be assessed pursuant to the LACSD's Master Connection Fee Ordinance and Master Service Charge Ordinance. The fee is charged for connecting (directly or indirectly) to LACSD's sewerage system, increasing the strength and/or quantity of wastewater attributable to a particular parcel or operation already connected, or charges for facilities furnished by or available from LACSD. These connection fees and service charges are required to support the incremental expansion of the system as new projects are developed. The connection fees provide additional conveyance, treatment, and disposal facilities (capital facilities) as well as operational and maintenance costs. Payment of a connection fee and service charge are required before a permit to connect to the LACSD system is issued. For new development in the LACSD, the developer funds onsite sewer mains.

Therefore, existing water and wastewater facilities can accommodate the demands generated by the proposed modifications to the approved TTM, and the Modified Project would have a beneficial impact on wastewater services and would have no new substantial impact.
c) Create drainage system capacity problems, or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?

Minor Technical Changes or Additions. Impacts to stormwater facilities are as discussed in Section 5.10, Hydrology and Water Quality, of this Addendum.

5. Environmental Analysis

d) Have sufficient reliable water supplies available to serve the project demands from existing entitlements and resources, considering existing and projected water demands from other land uses?

Minor Technical Changes or Additions. The proposed modifications to the Approved Project would reduce the single-family homes from 1,260 to 1,220 , resulting in 40 fewer homes. As shown in Table 20, the Modified Project would reduce water demand by 324 afy compared to the Approved Project.

Table 20 Approved Project vs. Modified Project, Estimated Water Demand

Land-Use Categories	Water Use Factor (afy) ${ }^{1}$	Estimated Water Use (afy)		
		Modified Project	Difference	
Single Family Residential	0.82 per unit	1,033	1,000	-33
Parks	3 per acre	54	59	+5
Elementary School	3 per acre	35	36	+1
Manufactured Slopes	3 per acre	831	534	-297
Road Parkways	3 per acre	78	78	0
Total Difference				
1 Factors provided by CLWA/SCWD.				

The project was included in CLWA's 2005 and 2010 Urban Water Management Plans. The analysis provided in the 2010 plan takes into account the available water supplies and water demands for CLWA's service area to assess the region's ability to satisfy demands through the year 2050. It was concluded that sufficient water supplies would continue to be available (including groundwater pumping that would not result in long-term depletion of groundwater resources) to meet projected demand, which includes the Skyline Ranch project. It also concluded that sufficient water supplies would continue to be available for single and multiple dry-year conditions through the year 2050 to meet projected demand. However, given the current drought conditions and uncertainty regarding the availability of imported water supplies from the State Water Project, the Modified Project would be required to comply with County water conservation measures. These include the Water Efficient Landscaping Requirements (Title 26, Chapter 7 of the Los Angeles County Code), Water Conservation Requirements for the Unincorporated Los Angeles County Area (Chapter 11.38, Part 4 of the Los Angeles County Code), and Drought-Tolerant Landscaping and Green Building Standards ordinances. Mitigation is provided to ensure the Modified Project implements these water conservation requirements. Overall, water demand would be reduced under the Modified Project because fewer residential homes would be developed. Therefore, the Modified Project would have a beneficial impact on water supply.

5. Environmental Analysis

e) Create energy utility (electricity, natural gas, propane) system capacity problems, or result in the construction of new energy facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?

Minor Technical Changes or Additions. The topic of energy is discussed also in Section 5.6, Energy, of this Addendum.

Development of the Modified Project would require expansion of local utility lines to provide electricity and natural gas service to the residential units. The modifications to the approved TTM would decrease the electrical demand for the project site (see Table 6, Approved Project vs. Modified Project, Projected Energy Use), creating a beneficial impact. In addition, the residential units must meet the 2010 California Green Building Standards; Los Angeles County's Green Building Standards; and another set of certification standards, such as LEED, CGB, GPR, or an equivalent program, with the approval of the Public Works Department Director. Implementation of these requirements would reduce energy impacts. No new significant impacts related to energy utilities would occur as a result of the project modifications.
f) Be served by a landfill with sufficient permitted capacity to accommodate the project's solid waste disposal needs?

Minor Technical Changes or Additions. Current data indicates that the Sunshine Canyon Landfill, Chiquita Canyon Landfill, and Antelope Valley Landfill have remaining capacities of $96,800,000$ cy, $22,400,000 \mathrm{cy}$, and $20,400,000 \mathrm{cy}$ (CalRecycle 2015a, 2015b, 2015c). Table 21 shows the total remaining capacities, daily capacities, and expected closure dates for the three landfills.

Table 21 Sunshine Canyon and Chiquita Canyon Landfills Information

Landfill	Remaining Capacity (cy)	Daily Capacity (tons per day)	Expected Closure Date
Sunshine Canyon	$96,800,000$	12,100	$12 / 31 / 2037$
Chiquita Canyon	$22,400,000$	6,000	$11 / 24 / 2019$
Antelope Valley	$20,400,000$	3,564	$1 / 1 / 2042$
Remaining Capacity	$139,600,000$	21,664	-
Source: CalRecycle 2015a, 2015b, 2015c.			

Construction Waste

The Modified Project would have less construction debris waste than the Approved Project because 40 fewer residential units would be constructed. Using CalRecycle's estimate for construction waste (four pounds per square foot) and an average of 5,000 square feet per unit, the Modified Project would reduce construction waste by approximately 400 tons. Therefore, the Modified Project would have a beneficial impact on construction waste.

Operation Waste

The Modified Project would have 40 fewer residential units and 139 fewer residents than the recorded project. Based on CalRecycle, the regional estimate for overall residential waste disposal for Los Angeles

5. Environmental Analysis

County is 0.41 ton per capita per year. Using a solid waste disposal rate of 0.41 ton per capita per year, the Modified Project would generate approximately 57 fewer tons per year (see Table 22).

Table 22 Approved Project vs. Modified Project, Solid Waste Generation

Approved Project		Modified Project		Difference
Population Buildout	Solid Waste Generated	Population Buildout	Solid Waste Generated	
4,3601	1,788	4,221	1,731	-57 tons per year
The estimated population of the Approved Project was adjusted from 4,158 persons to 4,360 persons by using more recent data on average household size for Tracts $9200.32,9200.33$ and 9200.34 from the 2010 US Census Bureau (3.46 persons per household instead of 3.3 persons per household).				

Residents of the Modified Project would generate 57 fewer tons of solid waste per year. Therefore, the Modified Project would have a beneficial impact compared to the Approved Project. No new significant impacts would occur as a result of the Modified Project, and the Modified Project would not require any changes to the EIR related to solid waste.

g) Comply with federal, state, and local statutes and regulations related to solid waste?

No Impact. AB 939 (Chapter 1095, Statutes of 1989), the Integrated Waste Management Act, requires every California city and county to divert 50 percent of its waste from landfills by the year 2000. In addition, AB 939 requires each county and each city within the county to prepare a Source Reduction and Recycling Element for its jurisdiction, identifying waste characterization, source reduction, recycling, composting, solid waste facility capacity, education and public information, funding, special waste (asbestos, sewage sludge, etc.), and household hazardous waste.

The Countywide Siting Element (CSE) prepared by Los Angeles County pursuant to AB 939 identifies goals, policies, and strategies that provide for the proper planning and siting of solid waste disposal and transformation facilities for the next 15 years. The CSE was approved by the Los Angeles County Board of Supervisors and CalRecycle in 1998. It provides strategies and establishes siting criteria for evaluating the development of needed disposal and transformation facilities. The County is currently in the process of updating the CSE and has prepared a preliminary draft CSE (2012) to reflect the most recent information regarding remaining landfill disposal capacity and the County's current strategy for maintaining adequate disposal capacity.

The Modified Project would meet the requirements of AB 939 and would generate 57 fewer tons of solid waste per year compared to the Approved Project. The modifications would not hinder compliance with AB 939 , and no new significant impacts would occur.

5.18.3 Adopted Mitigation Measures Applicable to the Modified Project

Water Supply

4.I-1 All appliances such as showerheads, lavatory faucets and sink faucets shall comply with efficiency standards set forth in Title 20, California Administrative Code Section 1604(f). Title 24 of the California Administrative Code Section 1606(b) prohibits the installation of

5. Environmental Analysis

fixtures unless the manufacturer has certified to the California Energy Conservation compliance with the flow rate standards.
4.I-2 Low flush toilets shall be installed as specified in California State Health and Safety Code Section 17921.3 and the County Green Building Ordinance.
4.I-3 All common area irrigation areas shall be capable of being operated by a computerized irrigation system which includes an onsite weather station/ET gage capable of reading current weather data and making automatic adjustments to independent run times for each irrigation valve based on changes in temperature, solar radiation, relative humidity, rain and wind. In addition, the computerized irrigation system shall be equipped with flow sensing capabilities, thus automatically shutting down the irrigation system in the event of a mainline break or broken head. All common area irrigation controllers shall also include a rain sensing automatic shutoff.
4.I-4 Common area landscaping shall emphasize drought-tolerant vegetation. Plants of similar water use shall be grouped to reduce over-irrigation of low-water-using plants. Those areas not designed with drought-tolerant vegetation shall be gauged to receive irrigation using the minimal requirements.
4.I-5 Residential occupants shall be informed as to the benefits of low-water-using landscaping and sources of additional assistance in such.

Please also see Mitigation Measure GCC-4 in Section 5.8, Greenhouse Gas Emissions.

5.18.4 Level of Significance After Mitigation

The Modified Project would only result in minor technical changes or additions to the previously certified EIR and would not result in significant impacts upon implementation of applicable regulatory requirements and mitigation measures.

5.19 MANDATORY FINDINGS OF SIGNIFICANCE

5.19.1 Summary of Impacts Identified in the Certified EIR

The 2010 Certified EIR did not include mandatory findings of significance.

5.19.2 Impacts Associated with the Modified Project

5. Environmental Analysis

Issues	Substantial Change in Project or Circumstances Resulting in New Significant Effects	New Information Showing Greater Significant Effects than Previous EIR	New Mitigation or Alternative to Reduce Significant Effect is Declined	Minor Technical Changes or Additions	$\begin{gathered} \text { No } \\ \text { Impact } \end{gathered}$
a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?				X	
b) Does the project have the potential to achieve shortterm environmental goals to the disadvantage of long-term environmental goals?				X	
c) Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?				X	
d) Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?				X	

Comments:

a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?

Minor Technical Changes or Additions. As discussed in Sections 3.4, Biological Resources, and 3.5, Cultural Resources, and throughout this Addendum, the proposed modifications to the approved TTM would not significantly change the project's environmental impacts and would not significantly degrade the quality of the environment.
b) Does the project have the potential to achieve short-term environmental goals to the disadvantage of long-term environmental goals?

Minor Technical Changes or Additions. The proposed modifications would result in 40 fewer singlefamily homes with approximately 139 fewer persons residing onsite, but would include 284 units of agequalified housing and a community center. The Modified Project would also realign Skyline Ranch Road, modify housing product types, relocate and expand park sites, and extend multipurpose trails and bike lanes.

5. Environmental Analysis

These modifications would not achieve any short-term environmental goals to the disadvantage of long-term environmental goals. Thus, no impacts would occur.
c) Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?

Minor Technical Changes or Additions. As discussed throughout this Addendum, the incremental differences of the proposed modifications to the recorded map would not result in substantial increases in demands or new significant cumulative impacts.
d) Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?

Minor Technical Changes or Additions. As analyzed throughout this Addendum, the net incremental impacts of the Modified Project compared to the Approved Project on the project site and its surroundings, including human beings, would be less than significant. Individual environmental impacts are analyzed in Sections 3.1 through 3.18 of this Addendum. Overall, impacts of the minor technical changes under the Modified Project would result in reduced or similar impacts as the Approved Project.

6. List of Preparers

COUNTY OF LOS ANGELES

Steven D. Jones, AICP, Principal Regional Planning Assistant

PLACEWORKS

JoAnn Hadfield, Principal, Environmental Services
Frances Yau, AICP, Associate

6. List of Preparers

This page intentionally left blank.

7. References

AirNav.com (AirNav). 2014. Airport Information. https://www.airnav.com/airports/.
California Air Resources Board (CARB). 2015, April 24. California Greenhouse Gas Inventory for 20002013: By Category as Defined by the Scoping Plan, April 24.
___ 2014a, June 4. Area Designations Maps: State and National. http://www.arb.ca.gov/desig/adm/adm.htm.
___ 2014b, May 15. First Update to the Climate Change Scoping Plan: Building on the Framework, http://www.arb.ca.gov/cc/scopingplan/scopingplan.htm.
___ 2013, October 23. Proposed 2013 Amendments to Area Designations for State Ambient Air Quality Standards. http://www.arb.ca.gov/regact/2013/area13/area13isor.pdf.

California Department of Forestry and Fire Protection (CAL FIRE). 2007, November 7. Fire Hazard Severity Zones in SRA: Los Angeles County. http://frap.fire.ca.gov/webdata/maps/los_angeles/fhszs_map.19.pdf.

California Department of Resources Recycling and Recovery (CalRecycle). 2015a. Facility/Site Summary Details: Sunshine Canyon City/County Landfill (19-AA-2000). http://www.calrecycle.ca.gov/SWFacilities/Directory/19-AA-2000/Detail/.
__. 2015b. Facility/Site Summary Details: Chiquita Canyon Sanitary Landfill (19-AA-0052). http://www.calrecycle.ca.gov/SWFacilities/Directory/19-AA-0052/Detail/.
——. 2015c. Facility/Site Summary Details: Antelope Valley Public Landfill (19-AA-5624). http://www.calrecycle.ca.gov/SWFacilities/Directory/19-AA-5624/Detail/.

California Department of Transportation (Caltrans). 2011, September 7. California Scenic Highway Mapping System: Los Angeles County. http://www.dot.ca.gov/hq/LandArch/scenic_highways/.

California Energy Commission (CEC). 2013a. Electricity Consumption by County. http://ecdms.energy.ca.gov/elecbycounty.aspx.
—_. 2013b. Gas Consumption by County. http://ecdms.energy.ca.gov/gasbycounty.aspx.
Department of Conservation, Division of Land Resources Protection (DOC). 2013. Los Angeles County Williamson Act FY 2012/2013. ftp://ftp.consrv.ca.gov/pub/dlrp/wa/LA_12_13_WA.pdf.

7. References

Federal Emergency Management Agency (FEMA). 2008, September 26. Flood Insurance Rate Map: Los Angeles County, California and Unincorporated Areas. Panel 840 of 2350. Map Number 06037C0840F.

LGC Valley, Inc. (LGC). 2016, March 28. Geotechnical Report Amended Tentative Tract Map 060922, Canyon Country, County of Los Angeles, California.

Los Angeles, County of. 2010, February. Skyline Ranch Project Final Environmental Impact Report. County Project No. 04-075-(5).
——_ 2012a, September. Los Angeles County General Plan Santa Clarita Valley Area Plan Land Use Policy Map. http://planning.lacounty.gov/assets/upl/project/ovov_2012-land-use-map.pdf.
——_ 2012b, September. Los Angeles County General Plan Santa Clarita Valley Area Plan Zoning Map. http://planning.lacounty.gov/assets/upl/project/ovov_2012-zoning-map.pdf.
—__ 2014. Flood Zone Determination Website. http://dpw.lacounty.gov/wmd/floodzone/.
Southern California Air Quality Management District (SCAQMD). 2015, August 28. 2016 Air Quality Management Plan Fact Sheet. http://www.aqmd.gov/docs/default-source/clean-air-plans/air-quality-management-plans/2016-air-quality-management-plan/factsheet-2016-aqmp.pdf?sfvrsn=2.
——_. 2013, February. 2012 Final Air Quality Management Plan. http://www.aqmd.gov/home/library/clean-air-plans/air-quality-mgt-plan.
—__ 2010, September 28. Agenda for Meeting 15. Greenhouse Gases (GHG) CEQA Significance Thresholds Working Group. http://www.aqmd.gov/docs/default-source/ceqa/handbook/greenhouse-gases-(ghg)-ceqa-significance-thresholds/year-2008-2009/ghg-meeting-15/ghg-meeting-15-main-presentation.pdf?sfyrsn $=2$.
——1993, April. CEQA Air Quality Handbook.
Southern California Association of Governments (SCAG). 2016, April. The 2016-2040 Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS): A Plan for Mobility, Accessibility, Sustainability, and a High Quality of Life. http://scagrtpscs.net/Documents/2016/final/f2016RTPSCS.pdf.

Stantec Consulting Services Inc. (Stantec). 2016, October 18. Skyline Ranch (Revised TTM 060922) On-site Roadway Analysis.
___ 2016, December 5. Skyline Ranch (Revised VTTM 060922) Land Use and Trip Generation Update Technical Memorandum.

State Water Resources Control Board (SWRCB). 2014, May 2. California's Areas of Special Biological Significance Map. http://www.swrcb.ca.gov/water_issues/programs/ocean/asbs_map.shtml.

Appendix A. Geotechnical Study

Appendices

This page intentionally left blank.

LGC Valley, Inc.
Geotechnical Consulting

GEOTECHNICAL REPORT

Dated: March 28, 2016
Project No. 153035-01

Prepared For:
PARDEE HOMES
65 North Raymond Avenue, Suite 220
Pasadena, California 91103

LGC Valley, Inc.

March 28, 2016
Project No. 153035-01
Mr. Dave Little
Pardee Homes
65 North Raymond Ave., Suite 220
Pasadena, California 91103

Subject: Geotechnical Report, Amended Tentative Tract Map 060922, Canyon Country, County of Los Angeles, California

In accordance with your request, LGC Valley, Inc. (LGC) is providing this geotechnical report for the amended Tentative Tract Map 060922 in the Canyon Country area of the County of Los Angeles, California. Review of previous work performed by Geolabs-Westlake Village, Inc. (GWV) and a supplemental field investigation was completed in order to prepare this report. The Amended Tentative Tract Map No. 060922, prepared by SIKAND, dated October 6, 2015, depicts the current proposed geometry of the site at 600 -scale and is presented herein as Plate 3. Geotechnical Maps prepared at 100 -scale are attached herein as Plates 1A through 1E. Geotechnical Cross Sections are presented on Plates 2A through 2F. Remedial Maps depicting estimated removal depths and proposed buttress keyways are attached as Plates 4A through 4E.

LGC will assume the duties of Geotechnical Consultant-of-record; therefore, this report presents the results of our supplemental investigation, incorporates prior geologic and geotechnical data (by GWV), summarizes our geotechnical analysis of the collected data, and provides our conclusions, opinions and recommendations relative to the proposed development of the site.

If you have any questions regarding our report, please contact this office. We appreciate this opportunity to be of service.

Respectfully submitted,
LGC VALLEY, INC.

DRAFT
Susan M. Berger, CEG 2069
Senior Project Geologist
SMB/BIH/MCH
Distribution: (2) Addressee
(1) SIKAND
(1) County of Los Angeles

DRAFT

Basil Hattar, GE 2734
Principal Engineer
1.0 INTRODUCTION 1
1.1 Purpose and Scope of Services 1
1.2 Engineer-of-Record 1
1.3 Site and Project Description 2
1.4 Record Review 2
2.0 GEOTECHNICAL CONDITIONS 4
2.1 Regional Geology 4
2.2 Site-Specific Geology 4
2.2.1 Surficial Soils 4
2.2.2 Alluvium 4
2.2.3 Colluvium (Qcol) 4
2.2.4 Landslide Debris (Qls) 5
2.2.5 Terrace Deposits (Qt) 5
2.2.6 Saugus Formation (TQs) 5
2.2.7 Mint Canyon Formation (Tmc) 6
2.3 Geologic Structure 6
2.4 Groundwater 6
2.5 Surface Water 7
2.6 Seismicity, Faulting and Related Effects 7
2.6.1 Seismicity 7
2.6.2 Seismic Design Criteria 7
2.6.3 Faulting 8
2.6.4 Shallow Ground Rupture 9
2.6.5 Liquefaction 9
2.6.6 Seismically Induced Settlement 9
2.6.7 Seiches and Tsunamis 10
2.7 Laboratory Testing 10
2.7.1 Engineered Fill Shear Strength 10
2.7.2 Saugus and Mint canyon Formation Across Bedding Shear Strength 10
2.7.3 Saugus Formation Along Beadding Shear Strength 11
2.7.4 Mint Canyon Formation Along Bedding Strength 11
2.7.5 Landslide Slide Plan 12
2.8 Slope Stability 12
3.0 CONCLUSIONS 22
4.0 RECOMMENDATIONS 24

TABLE OF CONTENTS (Cont'd)

4.1 Site Earthwork 24
4.1.1 Site Preparation 24
4.1.2 Removal and Recompaction 24
4.1.2.1 Topsoil 25
4.1.2.2 Colluvium/Alluvium. 25
4.1.2.3 Landslide Deposits 25
4.1.2.4 Terrace Deposits 28
4.1.2.5 Saugus Formation 28
4.1.2.6 Mint Canyon Formation 28
4.1.2.7 Water Reservoir Pad Overexcavation 28
4.1.3 Cut/Fill Transition Conditions 29
4.1.4 Cut Slope Stability/Replacements Fills 29
4.1.5 Side-Hill Shear Keys 30
4.1.6 Buttress Keys 30
4.1.7 Fill Slope Keys 30
4.1.8 Shrinkage/Bulking and Subsidence 30
4.1.9 Temporary Stability of Removal Excavations 31
4.1.10 Fill Placement and Compaction 31
4.1.11 Trench Backfill and Compaction 31
4.2 Control of Ground Water and Surface Waters 32
4.2.1 Canyon Subdrains. 32
4.2.2 Stability Fill Subdrains 32
4.3 Settlement Monitoring 33
4.4 Surface Drainage and Lot Maintenance 33
4.5 Foundations 33
4.5.1 General 33
4.5.2 Bearing Capacity 34
4.5.3 Conventional Foundations. 34
4.5.4 Post-Tension Foundations 35
4.5.5 Mat Foundations 37
4.5.6 Foundation Settlement 37
4.5.7 Building Clearance and Foundation Setbacks 38
4.6 Lateral Earth Pressures and Retaining Wall Design 38
4.7 Slope Creep 40
4.8 Freestanding (Top-of-Slope) Walls 41
4.9 Pavement Recommendations 41
4.10 Corrosivity to Concrete and Metal 41
4.11 Nonstructural Concrete Flatwork 42
4.12 Slope Maintenance 43
4.13 Construction Observation and Testing 44
5.0 LIMITATIONS 45

LIST OF TABLES, APPENDICES AND ILLUSTRATIONS

Tables

Table 1 - Seismic Design Parameters (Page 8)
Table 2 - Preliminary Geotechnical Parameters for Post-Tensioned Foundation Design (Page 36)
Table 3 - Lateral Earth Pressures for Retaining Walls (Page 39)
Table 4 - Recommended Minimum Pavement Sections (Page 41)
Table 5 - Nonstructural Concrete Flatwork (Page 43)

Figures

Figure 1 - Site Location Map (Page 3)
Figure 2 - Settlement Monument Detail (rear of text)
Figure 3 - Retaining Wall Drainage Detail (rear of text)
Figure 4 - Geotechnical Parameters for Top of Slope Walls (Rear of Text)
Plates 1A-1E - Geotechnical Maps (Pocket)
Plates 2a-2f- Geotechnical Cross Sections (Pocket)
Plate 3 - Tentative Tract Map (Pocket)

Appendices

Appendix A - References

Appendix B - Boring Logs
Appendix C - Laboratory Test Results
Appendix D - Slope Stability Analysis
Appendix E-General Earthwork and Grading Specifications for Rough Grading

1.0 INTRODUCTION

1.1 Purpose and Scope of Services

The main purpose of this report is to review the amended Tentative Tract Map 060922 in light of prior work performed at the site by Geolabs-Westlake Village, Inc. (GWV) and provide up-dated geotechnical interpretations, conclusions and recommendations where necessary. For this report, a supplemental investigation was undertaken in order to further evaluate the geologic and geotechnical conditions along the southwestern portion of the tract where native slopes will remain in lieu of previous fill slopes.

Our scope of services for preparation of this document included:

- Review of geotechnical reports, geologic maps and other documents relevant to the site (Appendix A, References).
- Perform a site visit to evaluate the existing condition and perform field reconnaissance mapping.
- Perform a subsurface investigation including the excavation, sampling, and logging of four large-diameter borings. The borings are labeled B-LGC-1 through B-LGC-4. Logs of the borings are presented in Appendix B, and their approximate locations are depicted on the Geotechnical Maps (Plates 1A-1E). The excavations were sampled and logged under the supervision of a geologist from our firm.
- Prepare geotechnical cross sections 1-1' through 34-34' to depict interpreted geologic conditions, to evaluate slope stability and to present mitigation measures, Plates 2a through 2f.
- Perform engineering analyses, as necessary, to review slope stability conditions.

Perform a review of the amended Tentative Tract Map prepared by SIKAND Engineering, dated October 6, 2015.

- Preparation of this report presenting our geologic and geotechnical findings, conclusions, opinions and recommendations with respect to the proposed amended Tentative Tract Map 060922.

1.2 Engineer-of-Record

LGC has reviewed the information presented in the geotechnical reports prepared by Geolabs-Westlake Village, Inc., (References) with respect to the subject site and accepts responsibility as geotechnical engineer-of-record, and concurs with the prior information, except where modified herein.

1.3 Site Location and Project Description

The subject site is located northeast of the City of Santa Clarita, northeast of Plum Canyon/Whites Canyon Road and northwest of Sierra Highway in the County of Los Angeles, California. Legal description is "A portion of Sections 3, 9, 10, 16 \& 34, Township 4 North, Range 15 West, S.B.B.M. Unincorporated area of Los Angeles County." See Figure 1, Site Location Map.

The site occupies approximately $2,173.25$ acres that currently consists of vacant open hillside terrain with light to moderate vegetation. Current access to the site is through Tract 4601811 from Whites Canyon Road or from Sierra Highway.

The Amended Tentative Tract Map No. 060922 depicts a reduced development footprint from the previous Tentative Tract Map. Proposed development will include single-family, multi-family, parks, and school and recreation sites. Additionally, development will include support areas such as, two water tank sites, streets, driveways, debris basins, and open space areas. The development of Skyline Ranch Road from Whites Canyon/Plum Canyon Road to Sierra Highway is also integral to the project. The grading of Skyline Ranch Road will be shared between Toll Brothers and Tri Pointe Group within the limits of Tract 46018-11. Toll Brothers will construct the portion of the road within Tract 46018-11. For information regarding the portion of Skyline Ranch Road within Tract 46018-11, please refer to LGC's report dated January 22, 2016.

The plan indicates that 16 million cubic yards of cut and 16 million cubic yards of fill operations will be necessary to bring the site to proposed design grades. Maximum design cuts and fills are approximately 95 and 123 feet, respectively. Slopes are planned at gradients of $2: 1$ (horizontal to vertical; $\mathrm{h}: \mathrm{v}$) and $3: 1$ (h:v). Cut slopes are planned to heights of 184 feet and fill slopes to 154 feet.

Remedial grading will be necessary prior to placing engineered fill in design fill areas. Removal of topsoil, surficial soils, alluvium, colluvium, landslide debris, and weathered bedrock units will be required. The approximate depths of remedial removals are shown on the attached Geotechnical Maps and are anticipated to extend to as much as approximately 62 feet below the existing ground surface.

1.4 Records Review

Review of previous reports for the site included those provided to us and references readily available within our library were used to prepare this report. Reports provided to us were prepared by GWV and are referenced herein. Geologic contacts, exploratory borings (1-92 were drilled between 2002 and 2013), exploratory borings (1-11 in 1995), exploratory test pits (TP-1 through TP-219 excavated between 2003 and 2007) and exploratory test pits (T1 through T23 in 1995) are shown on the Geotechnical Maps, Plates 1A through 1E attached herein. One boring drilled by Pacific Soils (B115) is also included.

Site Location Map

2.0 GEOTECHNICAL CONDITIONS

2.1 Regional Geology

The site vicinity lies in the Transverse Ranges geomorphic province of California. Westtrending valleys and ridges, reflecting a parallel series of anticlines, synclines, and reverse faults characterize this province. This structure and geomorphology is generally considered to be the result of south-directed compression caused by right lateral, strike-slip movement on the "Big Bend" segment of the San Andreas Fault (CGS, 1997 Revised 2001).

Specifically, the site lies within the Soledad Basin. The Soledad Basin is rhombohedral shaped with the long axis roughly situated east-west between the San Gabriel Fault and the San Andreas Fault. Mid-Miocene in age the basin represents an extensional or depositional region.

2.2 Site-Specific Geology

Tentative Tract 060922 is underlain by surficial soils, alluvium, colluvium, landslide debris, terrace deposits and bedrock assigned to the Saugus Formation and the Mint Canyon Formation. A brief description of each unit is as follows:

2.2.1 Surficial Soils

Surficial soils are seldom identified in the borings onsite. When surficial soils are noted in the borings they are generally less than 2.5 feet deep and consist of dark to medium brown silty and clayey fine to coarse sands that are typically dry, loose, porous and contain organic debris. Surficial soils are not suitable for support of fills or structures and should be removed and compacted. Although not noted in the borings logs, their presence should be anticipated across the surface of the site.
2.2.2 \quad Alluvium

Alluvial soils are present in the bottoms of natural drainage courses having a relatively gently sloping surface. Alluvium consists of sands, silts, gravels and cobbles that are dry, loose, and porous. Removals of alluvium will be required to competent bedrock. The alluvium has been observed from 5 to 15 feet in depth in the Whites Canyon drainage course.

2.2.3 Colluvium (Oc)

Colluvium is present near the base of slopes and in smaller drainage areas. Colluvium is derived from the downslope movement of surficial soils via gravity. Typically the colluvium onsite consists of brown to dark brown fine to coarse sands with varying amounts of clay, silt, cobbles and boulders. These materials are loose, porous and contain organic debris. Colluvium is not suitable for support of compacted fills or structures and should be removed to competent bedrock where fill is planned for site design. The colluvium will typically be thicker near the bottom of the canyon and thin upwards.

2.2.4 Landslide Debris (Qls)

Landslide debris for this report refers primarily to the larger blocks or zones of bedrock or soils that have moved down slope typically as a single event across the site. Landslide debris may consist of mixed bedrock or relatively intact blocks of bedrock, primarily within the Saugus Formation. Recent landslides are not suitable for foundation support or support of certified fills; therefore, removals of landslide debris may extend beyond the planned grading limits in order to create a $1: 1$ (horizontal to vertical, h:v) projection down away from the grading limit to competent material and a 1:1 (h:v) projection back up to the ground surface. There are 28 mapped landslides which are discussed in greater detail in the Recommendations section of this report.

2.2.5 Terrace Deposits (Ot)

Terrace Deposits were noted on some of the ridgelines adjacent to Whites Canyon. Terrace deposits are typically reddish brown, clayey sands and silty sands that contain local gravel and cobbles. Depths noted in the field exploration logs indicate thicknesses from 10 to 15 feet. Although not noted by GWV, terrace deposits (older alluvium) are often competent below the surficial weathering zone and are suitable for support of foundations or compacted fills. Field observation of these materials will have to be made in order to evaluate their suitability to remain in place. However, most of the terrace deposits appear to be eliminated in mass cuts.

2.2.6 Saugus Formation (TQs)

The Saugus Formation lies unconformably on the Mint Canyon Formation. The primary difference between the Saugus and the Mint Canyon formations is that the Saugus Formation can contain numerous red beds that signify silty clay and clay that is susceptible to landslides. Saugus Formation bedrock consists of interbedded sandstone, siltstone and claystone that are typically damp to moist, and dense to hard.

Saugus Formation is suitable for support of fill and structures below the weathered rind exposed near the existing ground surface. Where differing materials potentially having significantly different expansion potentials are present at pad grades (i.e. claystone adjacent to sandstone), over-excavation of the building pad and replacement as a fill cap will be required. The minimum depth of over-excavation is five feet and additional over-excavation may be warranted based on the observed conditions at the time of grading.

2.2.7 Mint Canyon Formation (Tmc)

The Mint Canyon Formation is divided into three facies; fluvial-deltaic, forsetbottomset, and marginal (Saul in AEG, 1990). The majority of the Mint Canyon Formation encountered onsite is the upper fluvial-deltaic facies. This portion of the Mint Canyon Formation consists of coarse-grained sandstones and conglomerates that contain volcanic clasts and igneous or crystalline rock types of plutonic origin; however, the igneous clasts are far more common. The sandstones are arkosic and the color is gray to gray brown. Difficulty differentiating the Saugus from the Mint Canyon arkosic sandy sediments may arise; however, Saul (1990) indicates that a primary identifier within the Mint Canyon sediments is the presence of a bright green mineral resembling epidote (under hand lens inspection).

The forest-bottomset and marginal facies of the Mint Canyon Formation are the units that typically contain lake deposits that consist of fine-grained siltstone and claystone susceptible to slope failures. These facies are not identified onsite.

Review of the boring logs by GWV, indicates that the Mint Canyon Formation is often difficult to excavate due to cementation and the presence of boulders. Thus difficult grading conditions will likely persist in the deeper cuts within the Mint Canyon formation.

The site is situated in an area where the basal conglomerate of the Saugus Formation sits on the conglomeratic unit (deltaic facies) of the Mint Canyon Formation. These conglomeratic units are not as severely affected by low angle clay beds subject to broad slope failure regimes as the upper Saugus layers where interbedded claystone and finer-grained sandstone occur.

2.3 Geologic Structure

The geologic structure of the region is that of northwest-southeast trending bedding that dips to the west or south, and faults and folds concurrent with the Transverse Ranges Geomorphic Province. As such, the bedrock formations become younger toward the southwest. Broadly, bedding dips to the southwest across the site. However, bedding within the Saugus and the Mint Canyon Formations is variable due to the cross bedded nature of the coarse-grained deposits. Thus, bedding is not likely to be unfavorable in many cut slopes due to the conglomeratic nature of the materials; however, along bedding analyses have been performed for conservancy.

2.4 Groundwater

Groundwater is generally not present within most excavations performed at the site and is not anticipated during site earthwork. Seepage was noted in many borings but is not thought to be of any significance with regard to grading of the site. However, perched water and groundwater levels fluctuate with the seasons and local zones of heavy seepage that require a sub-drain system may occur.

2.5 Surface Water

Based on our review of local maps and site reconnaissance, sheet flow is currently in all directions with a general trend toward the southwest. Surface water runoff relative to project design is the purview of the project civil engineer, but is anticipate to be directed away from planned structures and into approved drainage devices, where necessary.

2.6 Seismicity, Faulting and Related Effects

2.6.1 Seismicity

The main seismic parameters to be considered when discussing the potential for earthquake-induced damage onsite are the distances to the causative faults, earthquake magnitudes, and expected ground accelerations. We have performed sitespecific analysis based on these seismic parameters for the site and the onsite geologic conditions. The results of our analysis are discussed in terms of the potential seismic events that could be produced by the maximum probable earthquakes. A maximum probable earthquake is the maximum earthquake likely to occur given the known tectonic framework. The Santa Susana Fault is located approximately 1.6 miles (2.6 km) from the.

2.6.2 Seismic Design Criteria

The site seismic characteristics were evaluated per the guidelines set forth in Chapter 16, Section 1613 of the 2013 California Building Code (CBC). Representative site coordinates of latitude $34.4396^{\circ} \mathrm{N}$ and longitude $-118.4531^{\circ} \mathrm{W}$ were utilized in our analyses. The maximum considered earthquake (MCE) spectral response accelerations (S_{MS} and $\mathrm{S}_{\mathrm{M} 1}$) and adjusted design spectral response acceleration parameters (S_{DS} and S_{DI}) for Site Class D are provided in Table 1.

Table 1

Seismic Design Parameters

Selected Parameters from 2013 CBC, Section 1613 - Earthquake Loads	Seismic Design Values
Site Class per Chapter 20 of ASCE 7	D
Risk-Targeted Spectral Acceleration for Short Periods (S_{S})*	2.524 g
Risk-Targeted Spectral Accelerations for 1-Second Periods ($\left.\mathrm{S}_{1}\right)^{*}$	0.901g
Site Coefficient F_{a} per Table 1613.3.3(1)	1.00
Site Coefficient F_{v} per Table 1613.3.3(2)	1.50
Site Modified Spectral Acceleration for Short Periods $\left(\mathrm{S}_{\mathrm{MS}}\right)$ for Site Class D [Note: $\mathrm{S}_{\mathrm{MS}}=\mathrm{F}_{\mathrm{a}} \mathrm{S}_{\mathrm{S}}$]	2.524 g
Site Modified Spectral Acceleration for 1-Second Periods ($\mathrm{S}_{\mathrm{M} 1}$) for Site Class D [Note: $\mathrm{S}_{\mathrm{M} 1}=\mathrm{F}_{\mathrm{v}} \mathrm{S}_{1}$]	1.352 g
Design Spectral Acceleration for Short Periods (S_{DS}) for Site Class D [Note: $\mathrm{S}_{\mathrm{DS}}=(2 / 3) \mathrm{S}_{\mathrm{MS}}$]	1.683 g
Design Spectral Acceleration for 1-Second Periods (S_{DI}) for Site Class D [Note: $\mathrm{S}_{\mathrm{D} 1}=\left({ }^{2} / 3\right) \mathrm{S}_{\mathrm{M} 1}$]	0.901g
Mapped Risk Coefficient at 0.2 sec Spectral Response Period, C_{RS} (per ASCE 7)	0.981
Mapped Risk Coefficient at 1 sec Spectral Response Period, $\mathrm{C}_{\mathrm{R} 1}$ (per ASCE 7)	0.996

Section 1803.5.12 of the 2013 CBC (per Section 11.8.3 of ASCE 7) states that the maximum considered earthquake geometric mean $\left(\mathrm{MCE}_{\mathrm{G}}\right)$ Peak Ground Acceleration (PGA) should be used for geotechnical evaluations. The $\mathrm{PGA}_{\mathrm{M}}$ for the site is equal to 0.896 (USGS, 2013).

A deaggregation of the PGA based on a 2,475-year average return period indicates that an earthquake magnitude of 6.86 at a distance of approximately $10 \mathrm{~km}(2.1 \mathrm{mi})$ from the site would contribute the most to this ground motion (USGS, 2008).

2.6.3 Faulting

The subject site is not located within an Alquist-Priolo Earthquake Fault Zone (Hart and Bryant, 1997); therefore, there are no known active or potentially active faults onsite.

The possibility of damage due to ground rupture from earthquake fault rupture is considered nil since active faults are not known to cross the site. However, the site is in proximity of active faults (Sierra Madre/San Fernando, San Gabriel, and San Andreas) which are capable of producing significant ground shaking.

Secondary effects of seismic shaking resulting from large earthquakes on the major faults in the southern California region include shallow ground rupture, soil liquefaction, and seismically induced settlements, seiches and tsunamis.

In general, these secondary effects of seismic shaking are a possibility throughout the Southern California region and are dependent on the distance between the site and causative fault and the onsite geology. The major active fault that could produce these secondary effects is the Sierra Madre/San Fernando Fault located to the southwest of the site. Other active faults that may result in shaking to the site include the Northridge, San Gabriel and San Andreas Fault, among others. A discussion of liquefaction and these secondary effects is provided in the following sections

2.6.4 Shallow Ground Rupture

Shallow ground rupture due to active faulting is not likely to occur on site due to the lack of active or potentially active fault traces across the site. Therefore, this phenomenon is not considered a significant hazard, although it is a possibility at any site.

2.6.5 Liquefaction

Liquefaction is a seismic phenomenon in which loose, saturated, granular soils behave similarly to a fluid when subject to high-intensity ground shaking. Liquefaction occurs when three general conditions exist: 1) shallow groundwater; 2) low density non-cohesive (granular) soils; and 3) high-intensity ground motion. Liquefaction is typified by a buildup of pore-water pressure in the affected soil layer to a point where a total loss of shear strength occurs, causing the soil to behave as a liquid. Studies indicate that saturated, loose to medium dense, near surface cohesionless soils exhibit the highest liquefaction potential, while dry, dense, cohesionless soils and cohesive soils exhibit low to negligible liquefaction potential.

Due to the presence of shallow bedrock at the site, complete removals of loose alluvial materials beneath compacted fills and the general lack of shallow groundwater, the site is considered to have a low liquefaction hazard.

2.6.6 Seismically Induced Settlement

During a strong seismic event, seismically induced settlement can occur within loose to moderately dense, dry or saturated granular soil. Settlement caused by ground shaking is often non-uniformly distributed, which can result in differential settlement.

Provided that the recommendations in this report are followed and removals of unsuitable materials are performed, the site is not anticipated to be susceptible to seismically induced settlement.

2.6.7 Seiches and Tsunamis

A seiche is a standing wave in an enclosed or partially enclosed body of water propagated by earthquake waves. Tsunamis are large ocean waves or series of waves generated by displacement of a large volume of water. The site is not in close proximity to body of water or near the ocean; therefore, the hazard associated with seiches and tsunamis is considered low.

2.7 Laboratory Testing

Based on the results of previous laboratory testing within the vicinity of the project site by GWV, the anticipated near-surface soils are anticipated to have a very low to medium expansion potential with a potential for high expansion, and negligible soluble sulfate attack on normal concrete, and should be considered as corrosive to severely corrosive to ferrous metals. Laboratory test results were previously provided by GWV in the referenced reports. Previous laboratory test results by GWV are provided in Appendix C of this report.

Shear strengths utilized in our analyses conform to those utilized in the previous approved reports by GWV as a part of their review of the previously approved tentative tract map and grading plan review reports. The previous data was based on laboratory testing including Atterberg limits, sieve and hydrometer, and direct shear testing of representative onsite soils, along with the observations of the subsurface soils during site subsurface investigations, along with experience within the area of the project site. LGC reviewed the previous laboratory testing and the determination of the shear strength parameters and concurred with these results. The shear strength parameters used in slope stability calculations are summarized in Appendix D, Table D-1. The following discussions are reiterated from previous approved geotechnical reports by GWV with respect to the previous derivation of the shear strengths.

2.7. 1 Engineered Fill Shear Strengths

Representative samples of materials to be utilized as engineered fill were remolded at 90% relative compaction and subjected to direct shear testing. As indicated on Geolabs Plate S-f of Appendix C, a shear strength envelope of $\mathrm{phi}=33^{\circ}, \mathrm{C}=200 \mathrm{psf}$ yields a conservative shear strength for the modeling of the future engineered fill.

2.7.2 Saugus and Mint Canyon Formations Across-Bedding Shear Strengths

Direct shear testing of undisturbed samples of the materials encountered at the site were previously performed in order to develop representative "acrossbedding" strengths for the Saugus and Mint Canyon formations. Composite plots of the shear strength test data are presented on Plates S.TQs-1 (Saugus Formation) and S.Tmc-1 (Mint Canyon Formation) included in Appendix C. A shear strength of phi $=40^{\circ}, \mathrm{C}=225 \mathrm{psf}$ was selected for the Saugus Formation, while a shear strength of phi $=40^{\circ}, \mathrm{C}=200 \mathrm{psf}$ was selected for the Mint Canyon Formation. The higher angle of internal friction, lower cohesion strengths conform to the overwhelmingly coarse-grained nature of these formations at site.

2.7.3 Saugus Formation Along-Bedding Shear Strength

Based on GWV, in order to determine along-bedding strengths for the Saugus Formation, direct shear tests as well as multi-cycle residual shear tests were previously performed on a variety of material types. Along- bedding strengths were estimated for three categories: coarse-grained lithologies, unsheared finegrained lithologies, and sheared fine-grained lithologies. The results of undisturbed testing were plotted on two composite shear test diagrams S.TQs-1 and -2 by GWV. The results of the multi-cycle residual shear strength testing for the Saugus Formation is presented on Plate S.TQs-3 included in Appendix C.

Along-bedding shear strengths applicable to the three categories are indicated on the appropriate GWV plots in Appendix C. The envelope for along-bedding shear strength of coarse-grained lithologies is below the lower bound test results, yielding a shear strength of phi $=25^{\circ}, \mathrm{C}=100 \mathrm{psf}$. These values logically apply to the very poorly cemented, well sorted sandstones typical of the bedrock.

GWV Plate S.TQs-2 contains the results of direct shear testing of finegrained undisturbed samples, and corresponding shear strength envelope (phi $=17^{\circ}, \mathrm{C}=150 \mathrm{psf}$). This envelope is below the lower bound strength of the data. However, considering the relatively limited amount of data (due to the limited amount of fine-grained beds) the conservative values used in the tentative tract reports, as indicated on the plots, were maintained in the analysis. As seen on Plate S.TQs-3, the along-bedding shear strength envelope (phi=11 ${ }^{\circ}, \mathrm{C}=150 \mathrm{psf}$) selected for sheared fine-grained beds nearly forms a lower-bound for the data (which is dominated the remolded samples).

2.7.4 Mint Canyon Formation Along-Bedding Strength

Borings performed within the site indicate that the Mint Canyon Formation is primarily composed of sandstone, conglomeratic sandstone, and conglomerate. Even those siltstones and claystones noted in the logs commonly contain significant sand fractions. A shear strength of $\mathrm{phi}=25^{\circ}, \mathrm{C}=100 \mathrm{psf}$ was utilized to model failure surfaces along coarse-grained bedding of the Mint Canyon Formation. This shear strength envelope plots below the data presented on Plate S.Tmc-1 included in Appendix C. Multi-cycle shear test results on undisturbed and remolded samples of fine-grained materials are presented on Plate S.Tmc-2. Based on our review of the boring logs and geologic structure of the site, unsheard, finegrained shear strength parameters were used for the Mint Canyon Formation in areas assumed to have fine grained lithologies. The unsheared, fine-grained shear strength parameters consisted of a shear strength of phi $=17^{\circ}, \mathrm{C}=150 \mathrm{psf}$ that was utilized to model failure surfaces along fine-grained bedding of the Mint Canyon Formation.

2.7.5 Landslide Slide Plane

Based on the previous evaluations and testing by GWV, the shear strength parameters phi $=9^{\circ}, \mathrm{C}=150 \mathrm{psf}$ were used in our analyses for landslide slide plane materials. Two multi-cycle residual shear tests were performed by GWV on slide plane materials. The third test was performed on a soft, sheared claystone retrieved from B17 at 98 feet (see cross section 35-35' below for discussion of this unit). These test results have been added to Plate S.Qls, along with the line representing phi $=9^{\circ}, \mathrm{C}=150 \mathrm{psf}$. The landslide shear strengths have been used in slope stability calculations.

2.8 Slope Stability

The proposed site design consists of design cut and fill slopes planned at gradients of 2:1 (horizontal to vertical; h:v) and flatter. The highest cut slope at 3:1 (h:v) gradient is 179 feet high and is located in the northwest corner of the site, which will continue offsite to Tract 46018-11. The highest $2: 1$ (h:v) cut slope is 275 feet high and is located in the southern portion of the site. The highest fill slope is at a gradient of $2: 1$ (h:v) to a height 205 feet located in the southern portion of the site to the west of proposed Skyline Ranch Road.

LGC has accepted GWV's work which includes the shear data and determination of shear strengths; however, we disagree with the application of the data to the individual cross sections at some locations. For example, shearing is described in the boring logs as internally sheared, multidirectional, slickensides, grooved and striated. Shearing terms infer movement and movement must be denoted as slides or faults. These materials are not well bedded and are inconsistent. The boring logs indicate bedding, contacts, shears and fractures in all directions not well suited for correlation or stability analyses that conservatively assume well bedded materials. We believe this variability is due to the coarse grained nature of the conglomerates within the basal Saugus Formation and the Mint Canyon Formation. As such, the shears that are steeper than general bedding, and having conglomerate beds above and below, have been applied only where the lateral distance is small as they are unlikely to extend in any direction for more than a few tens of feet. Since they are not likely to continue long distances through conglomerate units, these features are not presented on all slope stability analyses.

For along bedding cases within the Saugus Formation Bedrock, only the along bedding clay beds that have variable terms within the boring logs are deemed applicable to use the lower clay shear strengths (cohesion 150 psf and 11° phi). All other cases use the non-sheared clay bed strength (cohesion 150 psf and $17^{\circ} \mathrm{phi}$), which we conclude is likely far more applicable across the site for the Saugus and Mint Canyon Formation.

After a review of the latest tentative tract map and based on our review of prior field investigations by GWV, twenty-five cross-sections (1-1' through 3-3', 5-5', 7-7' through 1515', 17-17' through 24-24', 28-28', 29-29', 32-32', and 34-34') were considered representative and critical with regards to slope stability analysis.

Generally, slope stability analyses were conducted using the computer program Slope W. The Bishop's Method was used to analyze rotational failure modes, and the Janbu or Spencer Method was used to analyze translational failure modes. A coefficient of horizontal acceleration of 0.15 g (FS of 1.1) was used to evaluate the pseudostatic stability analyses.

Other fill and cut slopes of various orientations and heights are proposed across the site. Based on our inspection of these slopes relative to the collected geologic data and orientation of design slopes, remediation was determined as shown on the geotechnical maps.

Please note: the toe of design fill slopes and other "edge conditions" will require the installation of a standard stability fill in order to lock in the proposed design fills. Stability fills for designed slopes are considered part of the standard of grading and are shown on the attached Geotechnical Maps, where necessary. A brief description of the analysis per section is included herein.

Cross Section 1-1’ and 17-17'

Cross sections 1-1' and 17-17'were drawn through a cut slope ascending along the north side of the proposed water tank pad. It ascends at a slope gradient of $2 \mathrm{H}: 1 \mathrm{~V}$, with benches, to an approximate height of approximately 85 feet. Also on Section 17-17' a slope descending from the tank pad was also analyzed.

Bedding within the underlying Saugus Formation dips out of slope; a dip range of 3 to 10° was used in our analyses. The upper portion was assigned the fine-grained non-sheared along-bedding shear strengths within the specified dip range, and across bedding parameters outside the range, and the sheared along bedding strength was applied below the available data in the Saugus Formation Bedrock.

Static and pseudostatic slope stability calculations considered both rotational and translational modes of failure. Based on the slope stability analysis an approximately 20 deep by 40 foot wide keyway was designed for the ascending slope and a 5 foot deep by 15 foot wide keyway was designed for the slope descending from the south site of the pad. With the design keyway the static and pseudostatic analysis resulted in a factor of safety (FOS) greater than a 1.5 and 1.1 , respectively. The proposed backcut was considered to be $2 \mathrm{H}: 1 \mathrm{~V}$, slope stability of the temporary condition resulted in a FOS of greater that 1.25.

Cross Section 2-2' and 3-3'

Cross sections 2-2 and 3-3' were drawn through a south facing cut slope ascending along the north side of the proposed development. It ascends at a slope gradient of $2 \mathrm{H}: 1 \mathrm{~V}$, with benches, to an approximate height of approximately 170 feet.

Bedding within the underlying Saugus Formation and Mint Canyon Formation dips out of slope at various angles at shown on the cross-section and analysis. The analysis considered coarse grained shear strength and fine-grained non-sheared along-bedding shear strengths were data was available, and the sheared along bedding strength was applied below the available data in the Saugus Formation Bedrock, and non-sheared along bedding within the Mint Canyon Formation Bedrock. Also three sheared beds were considered in the analysis of Cross section 2-2'.

Static and pseudostatic slope stability calculations considered both rotational and translational modes of failure. Based on the slope stability analysis an approximately 30 deep by 75 foot wide keyway was designed along cross-section 2-2' and a 30 foot deep by 100 foot wide keyway was designed along cross-section 3-3'. With the design keyways the static and pseudostatic analysis resulted in a factor of safety (FOS) greater than a 1.5 and 1.1, respectively. The proposed backcut was considered to be $3 \mathrm{H}: 1 \mathrm{~V}$, slope stability of the temporary condition resulted in a FOS of greater that 1.25 .

Cross Section 5-5,

Cross section 5-5' was drawn through a southeast facing cut slope ascending along the north side of the proposed development. It ascends at a slope gradient of $2 \mathrm{H}: 1 \mathrm{~V}$, with benches, to an approximate height of approximately 70 feet.

Bedding within the underlying Saugus and Mint Canyon Formations dips out of slope at various angles at shown on the cross-section and analysis. The analysis considered coarse grained shear strength for the upper portion of the slope to the depth of the available data and fine-grained sheared along-bedding shear strengths was applied below the available data in the Saugus Formation Bedrock, and non-sheared along bedding within the Mint Canyon Formation Bedrock. Also one sheared beds was considered within the upper/mid height of the slope in the analysis.

Static and pseudostatic slope stability calculations considered both rotational and translational modes of failure. Based on the slope stability analysis an approximately 5 foot deep by 35 foot wide keyway was designed. With the design keyway the static and pseudostatic analysis resulted in a factor of safety (FOS) greater than a 1.5 and 1.1, respectively. The proposed backcut was considered to be $2 \mathrm{H}: 1 \mathrm{~V}$, slope stability of the temporary condition resulted in a FOS of greater that 1.25.

Cross Section 7-7

Cross section 7-7' was drawn through an interior south facing cut slope ascending from an interior road to pads within the proposed development. It ascends at a slope gradient of $2 \mathrm{H}: 1 \mathrm{~V}$, with benches, to an approximate height of approximately 70 feet.

Bedding within the underlying Saugus Formations dips out of slope at bedding angles ranging from 4 to 8 degrees as shown on the cross-section and analysis. The analysis considered fine-grained bedding strength for the upper portion of the slope to the depth of the available data and fine-grained sheared along-bedding shear strengths was applied below the available data in the Saugus Formation Bedrock.

Static and pseudostatic slope stability calculations considered both rotational and translational modes of failure. Based on the slope stability analysis an approximately 10 foot deep by 30 foot wide keyway was designed. With the design keyway the static and pseudostatic analysis resulted in a factor of safety (FOS) greater than a 1.5 and 1.1, respectively. The proposed backcut was considered to be $2 \mathrm{H}: 1 \mathrm{~V}$, slope stability of the temporary condition resulted in a FOS of greater that 1.25 .

Cross Section 8-8'

Cross section $8-8$ ' was drawn through a southwest facing fill over cut slope ascending along the central portion of the proposed development between pads. It ascends at a slope gradient of $2 \mathrm{H}: 1 \mathrm{~V}$, with benches, to an approximate height of approximately 120 feet.

Bedding within the underlying Saugus and Mint Canyon Formations dips out of slope at various angles at shown on the cross-section and analysis. The analysis considered coarse grained shear strength for the upper portion of the slope for the Saugus and upper Mint to the depth of the available data and fine-grained non-sheared along-bedding shear strengths was applied below the available data in the Mint Canyon Formation Bedrock.

Static and pseudostatic slope stability calculations considered both rotational and translational modes of failure. Based on the slope stability analysis an approximately 5 foot deep by 45 foot wide keyway was designed. With the design keyway the static and pseudostatic analysis resulted in a factor of safety (FOS) greater than a 1.5 and 1.1, respectively. The proposed backcut was considered to be $2 \mathrm{H}: 1 \mathrm{~V}$, slope stability of the temporary condition resulted in a FOS of greater that 1.25 .

Cross Section 9-9', 29-29', 32-32', and 34-34'

These cross sections were drawn through Qls-2 and 8 along the western portion of the proposed development. Fills are proposed to be placed within the canyon areas at the toe and above the lower portions of the landslides. The upper portions of the landslide within the proposed development area and within a $2 \mathrm{H}: 1 \mathrm{~V}$ projection from the limit of the proposed design slope/roadway should be removed. On Cross-section 9-9' an approximately 70 foot high west/southwest facing cut slope was also analyzed.

For cross-sections 9-9' $29-29^{\prime}, 32-32^{\prime}$ and 34-34’ along Qls 2 and 8, Static and pseudostatic slope stability calculations considered translational modes of failure along the existing landslide rupture surface. Based on the slope stability analysis, with the proposed removals of the upper portion of the slide to a $2 \mathrm{H}: 1 \mathrm{~V}$ projection from the proposed slopes and roadway and placement of buttress fills in the lower portion of the landslide, the static and pseudostatic analysis resulted in a factor of safety (FOS) greater than a 1.5 and 1.1, respectively.

For the upper portion of cross-section 9-9', bedding within the underlying Saugus and Mint Canyon Formations dips out of slope at various angles at shown on the cross-section and analysis. The analysis considered fine-grained shear strength for the upper portion of the slope for the Saugus to the depth of the available data, and fine-grained sheared alongbedding shear strengths was applied to the lower portion of the Saugus and fine-grained nonsheared below the available data in the Mint Canyon Formation Bedrock. Static and pseudostatic slope stability calculations considered both rotational and translational modes of failure. Based on the slope stability analysis an approximately 30 foot deep by 50 foot wide keyway was designed. With the design keyway the static and pseudostatic analysis resulted in a factor of safety (FOS) greater than a 1.5 and 1.1, respectively. The proposed backcut was considered to be $3 \mathrm{H}: 1 \mathrm{~V}$, slope stability of the temporary condition resulted in a FOS of greater that 1.25 .

Cross Section 10-10’

Cross section 10-10' was drawn through a south facing cut slope in the northwestern portion of the proposed development. It ascends at a slope gradient of $2 \mathrm{H}: 1 \mathrm{~V}$, with benches, to an approximate height of approximately 120 feet.

Bedding within the underlying Saugus Formations dips out of slope at various angles as shown on the cross-section and analysis. The analysis considered fine grained non sheared shear strength for the upper portion of the slope to the depth of the available data and finegrained sheared along-bedding shear strengths was applied below the available data in the Saugus Formation Bedrock.

Static and pseudostatic slope stability calculations considered both rotational and translational modes of failure. Based on the slope stability analysis an approximately 15 foot deep by 60 foot wide keyway was designed. With the design keyway the static and pseudostatic analysis resulted in a factor of safety (FOS) greater than a 1.5 and 1.1, respectively. The proposed backcut was considered to be $2 \mathrm{H}: 1 \mathrm{~V}$, slope stability of the temporary condition resulted in a FOS of greater that 1.25 .

Cross Section 11-11'

Cross section 11-11' was drawn through a south facing cut slope in the northwestern portion of the proposed development. It ascends at a slope gradient of $2 \mathrm{H}: 1 \mathrm{~V}$, with benches, to an approximate height of approximately 180 feet.

Bedding within the underlying Saugus Formations dips out of slope at various angles as shown on the cross-section and analysis. The analysis considered fine grained non sheared shear strength for the upper portion of the slope to the depth of the available data and finegrained sheared along-bedding shear strengths was applied below the available data in the Saugus Formation Bedrock.

Static and pseudostatic slope stability calculations considered both rotational and translational modes of failure. Based on the slope stability analysis an approximately 40 foot deep by 200 foot wide keyway was designed. With the design keyway the static and pseudostatic analysis resulted in a factor of safety (FOS) greater than a 1.5 and 1.1, respectively. The proposed backcut was considered to be $3 \mathrm{H}: 1 \mathrm{~V}$, slope stability of the temporary condition resulted in a FOS of greater that 1.25 .

Cross Section 12-12'

Cross section 12-12' was drawn through a south facing cut slope in the northeastern portion of the proposed development. It ascends at a slope gradient of $2 \mathrm{H}: 1 \mathrm{~V}$, with benches, to an approximate height of approximately 175 feet.

Bedding within the underlying Mint Canyon Formation dips out of slope at approximately 8 to 15 degrees as shown on the cross-section and analysis. The analysis considered coarse grained shear strength for the upper portion of the slope to the depth of the available data and fine-grained non-sheared along-bedding shear strengths was applied below the available data in the Mint Canyon Formation Bedrock.

Static and pseudostatic slope stability calculations considered both rotational and translational modes of failure. Based on the slope stability analysis an approximately 50 foot deep by 70 foot wide keyway was designed. With the design keyway the static and pseudostatic analysis resulted in a factor of safety (FOS) greater than a 1.5 and 1.1, respectively. The proposed backcut was considered to be $2 \mathrm{H}: 1 \mathrm{~V}$, slope stability of the temporary condition resulted in a FOS of greater that 1.25 .

Cross Section 13-13'

Cross section 13-13' was drawn through a south facing fill over cut slope in the northeastern portion of the proposed development. It ascends to the water tank pad at a slope gradient of $2 \mathrm{H}: 1 \mathrm{~V}$, with benches, to an approximate height of approximately 140 feet.

Bedding within the underlying Mint Canyon Formation dips out of slope at various angles to as shown on the cross-section and analysis. The analysis considered coarse grained shear strength for the upper portion of the slope to the depth of the available data and fine-grained non-sheared along-bedding shear strengths was applied below the available data in the Mint Canyon Formation Bedrock.

Static and pseudostatic slope stability calculations considered both rotational and translational modes of failure. Based on the slope stability analysis an approximately 5 foot deep by 20 foot wide keyway was designed. With the design keyway the static and pseudostatic analysis resulted in a factor of safety (FOS) greater than a 1.5 and 1.1, respectively. The proposed backcut was considered to be $2 \mathrm{H}: 1 \mathrm{~V}$, slope stability of the temporary condition resulted in a FOS of greater that 1.25 .

Cross Section 14-14'

Cross section 14-14' was drawn through a west facing cut slope in the eastern portion of the proposed development. It ascends at a slope gradient of $2 \mathrm{H}: 1 \mathrm{~V}$, with benches, to an approximate height of approximately 170 feet.

Bedding within the underlying Mint Canyon Formation dips into slope at bedding angles between approximately 12 to 20 degrees as shown on the cross-section and analysis. The analysis considered coarse grained shear strength for the upper portion of the slope to the depth of the available data and fine-grained non-sheared along-bedding shear strengths was applied below the available data in the Mint Canyon Formation Bedrock.

Static and pseudostatic slope stability calculations considered both rotational and translational modes of failure. Based on the slope stability analysis an approximately 25 foot deep by 50 foot wide keyway was designed. With the design keyway the static and pseudostatic analysis resulted in a factor of safety (FOS) greater than a 1.5 and 1.1, respectively. The proposed backcut was considered to be $3 \mathrm{H}: 1 \mathrm{~V}$, slope stability of the temporary condition resulted in a FOS of greater that 1.25 .

Cross Section 15-15’

Cross section 15-15' was drawn through a west facing cut slope in the eastern portion of the proposed development. It ascends at a slope gradient of $2 \mathrm{H}: 1 \mathrm{~V}$, with benches, to an approximate height of approximately 120 feet.

Bedding within the underlying Mint Canyon Formation dips into slope at various bedding angles between approximately 0 to 11 degrees as shown on the cross-section and analysis. The analysis considered coarse grained shear strength for the upper portion of the slope to the depth of the available data and fine-grained non-sheared along-bedding shear strengths was applied below the available data in the Mint Canyon Formation Bedrock.

Static and pseudostatic slope stability calculations considered both rotational and translational modes of failure. Based on the slope stability analysis an approximately 15 foot deep by 30 foot wide keyway was designed. With the design keyway the static and pseudostatic analysis resulted in a factor of safety (FOS) greater than a 1.5 and 1.1, respectively. The proposed backcut was considered to be $2 \mathrm{H}: 1 \mathrm{~V}$, slope stability of the temporary condition resulted in a FOS of greater that 1.25 .

Cross Section 18-18'

Cross section 18-18' was drawn through a west facing cut slope in the eastern portion of the proposed development. It ascends at a slope gradient of $2 \mathrm{H}: 1 \mathrm{~V}$, with benches, to an approximate height of approximately 60 feet.

Bedding within the underlying Saugus and Mint Canyon Formation dips out of slope at various bedding angles as shown on the cross-section and analysis. The analysis considered coarse grained shear strength for the upper portion of the slope to the depth of the available data and fine-grained non-sheared along-bedding shear strengths was applied below the available data in the Mint Canyon Formation Bedrock.

Static and pseudostatic slope stability calculations considered both rotational and translational modes of failure. Based on the slope stability analysis, the static and pseudostatic analysis resulted in a factor of safety (FOS) greater than a 1.5 and 1.1, respectively.

Cross Section 19-19'

Cross section 19-19' was drawn through a south facing cut slope descending below the road and fill over cut slope above the roadway in the central portion of the proposed development. It ascends at a slope gradient of $2 \mathrm{H}: 1 \mathrm{~V}$, with benches, to an approximate height of approximately 100 feet below the roadway and 40 feet above the roadway.

Bedding within the underlying Saugus and Mint Canyon Formation dips out of slope at various bedding angles as shown on the cross-section and analysis. The analysis considered fine grained shear strength for the upper Saugus Bedrock with two sheared layers in the upper portions, and coarse grained shear strength for the upper portion of the Mint Canyon Formation to the depth of the available data and fine-grained non-sheared along-bedding shear strengths was applied below the available data in the Mint Canyon Formation Bedrock.

Static and pseudostatic slope stability calculations considered both rotational and translational modes of failure. Based on the slope stability analysis an approximately 20 foot deep by 50 foot wide keyway was designed for the lower slope and an approximately 10 foot deep by 25 foot wide keyway for the upper slope. With the design keyways the static and pseudostatic analysis resulted in a factor of safety (FOS) greater than a 1.5 and 1.1, respectively. The proposed backcut was considered to be $2 \mathrm{H}: 1 \mathrm{~V}$, slope stability of the temporary condition resulted in a FOS of greater that 1.25 .

Cross Section 20-20,

Cross section 20-20' was drawn through a south facing cut slope in the southeastern portion of the proposed development. It ascends at a slope gradient of $2 \mathrm{H}: 1 \mathrm{~V}$, with benches, to an approximate height of approximately 280 feet above the roadway.

Bedding within the underlying Saugus and Mint Canyon Formation dips into slope at various bedding angles as shown on the cross-section and analysis. The analysis considered coarse grained shear strength for the upper Saugus Bedrock with one sheared layer in the upper portions, and coarse grained shear strength for the Mint Canyon Formation Bedrock.

Static and pseudostatic slope stability calculations considered both rotational and translational modes of failure. Based on the slope stability analysis an approximately 15 foot deep by 30 foot wide keyway was designed for the upper portion of the slope. With the design keyways the static and pseudostatic analysis resulted in a factor of safety (FOS) greater than a 1.5 and 1.1 , respectively. The proposed backcut was considered to be $3 \mathrm{H}: 1 \mathrm{~V}$, slope stability of the temporary condition resulted in a FOS of greater that 1.25 .

Cross Section 21-21'

Cross section 21-21' was drawn through a north/northeast facing cut slope in the southeastern portion of the proposed development. It ascends at a slope gradient of $2 \mathrm{H}: 1 \mathrm{~V}$, with benches, to an approximate height of approximately 190 feet above the roadway.

Bedding within the underlying Saugus and Mint Canyon Formation dips into slope to slightly out of slope at various bedding angles as shown on the cross-section and analysis. The analysis considered coarse grained shear strength for the slope in the Saugus and Mint canyon Formation Bedrock to approximately 20 to 25 feet below the the toe of slope, and fine grained shear strength for the Mint Canyon Formation Bedrock below that portion.

Static and pseudostatic slope stability calculations considered both rotational and translational modes of failure. Based on the slope stability analysis an approximately 25 foot deep by 60 foot wide keyway was designed for the slope. With the design keyways the static and pseudostatic analysis resulted in a factor of safety (FOS) greater than a 1.5 and 1.1, respectively. The proposed backcut was considered to be $2 \mathrm{H}: 1 \mathrm{~V}$, slope stability of the temporary condition resulted in a FOS of greater that 1.25 .

Cross Section 22-22'

Cross section 22-22' was drawn through a southwest and north/northeast facing cut slopes in the southeastern portion of the proposed development. The slopes ascend at a slope gradients of $2 \mathrm{H}: 1 \mathrm{~V}$, with benches, to an approximate height of approximately 160 feet on the south side of the roadway and 120 feet on the north side of the roadway.

Bedding within the underlying Saugus and Mint Canyon Formation dips into slope to slightly out of slope at various bedding angles as shown on the cross-section and analysis. The analysis considered coarse grained shear strength in the upper portion of the slope in the Saugus and Mint Canyon Formation Bedrock, and fine grained shear strength for the Mint Canyon Formation Bedrock below that portion.

Static and pseudostatic slope stability calculations considered both rotational and translational modes of failure. Based on the slope stability analysis, the design slopes have a static and pseudostatic factor of safety (FOS) greater than a 1.5 and 1.1, respectively.

Cross Section 23-23'

Cross section 23-23' was drawn through a west/southwest facing cut slopes in the southeastern portion of the proposed development. The slopes ascend at a slope gradients of $2 \mathrm{H}: 1 \mathrm{~V}$, with benches, to an approximate height of approximately 70 feet above an interior roadway and pad.

Bedding within the underlying Saugus and Mint Canyon Formation dips out of slope at various bedding angles as shown on the cross-section and analysis. The analysis considered coarse grained shear strength in the upper portion of the slope in the Saugus and Mint Canyon Formation Bedrock, and fine grained shear strength for the Mint Canyon Formation Bedrock below that portion.

Static and pseudostatic slope stability calculations considered both rotational and translational modes of failure. Based on the slope stability analysis, the design slopes have a static and pseudostatic factor of safety (FOS) greater than a 1.5 and 1.1, respectively.

Cross Section 24-24'

Cross section 24-24 was drawn through a south/southwest facing sliver fill slope in the southeastern portion of the proposed development. The slopes ascend at a slope gradients of $2 \mathrm{H}: 1 \mathrm{~V}$, with benches, to an approximate height of approximately 210 feet on the south side of the roadway.

Bedding within the underlying Saugus and Mint Canyon Formation dips out of slope at various bedding angles as shown on the cross-section and analysis. The analysis considered fine-grained shear strength for the Saugus Formation Bedrock and coarse grained shear strength in the upper portion of the Mint Canyon Formation Bedrock to the depth of available data, and fine grained shear strength for the Mint Canyon Formation Bedrock below that portion.

Static and pseudostatic slope stability calculations considered both rotational and translational modes of failure. Based on the slope stability analysis an approximately 30 foot deep by 100 foot wide keyway was designed for the slope. With the design keyways the static and pseudostatic analysis resulted in a factor of safety (FOS) greater than a 1.5 and 1.1, respectively. The proposed backcut was considered to be $3 \mathrm{H}: 1 \mathrm{~V}$, slope stability of the temporary condition resulted in a FOS of greater that 1.25 .

Cross Section 28-28,

Cross section 28-28' is representative of cross-section 26-26' and 27-27' drawn through a fill over native condition along the western portion of the site, decending to the west below Skyline Ranch Road. The slopes descend at a slope gradient of $2 \mathrm{H}: 1 \mathrm{~V}$, with benches, to an approximate height of approximately 30 to 60 feet on the west side of the roadway.

Bedding within the underlying Saugus and Mint Canyon Formation dips out of slope at various bedding angles as shown on the cross-section and analysis. The analysis considered fine-grained shear strength for the upper portion and coarse grained for the lower portion of the Saugus Formation Bedrock to the depth of available data, and fine grained shear strength for the Mint Canyon Formation Bedrock below that portion.

Static and pseudostatic slope stability calculations considered both rotational and translational modes of failure. Based on the slope stability analysis an approximately 10 foot deep by 55 foot wide keyway was designed for the slope. With the design keyways the static and pseudostatic analysis resulted in a factor of safety (FOS) greater than a 1.5 and 1.1, respectively. The proposed backcut was considered to be $2 \mathrm{H}: 1 \mathrm{~V}$, slope stability of the temporary condition resulted in a FOS of greater that 1.25 .

3.0 CONCLUSIONS

Based on our review of prior reports, it is our conclusion that the site development proposed on the attached Geologic Maps (Plates 1A-1E) is feasible from a geotechnical standpoint, provided the following recommendations included in this report are incorporated into the project plans and specifications, and followed during site grading and construction.

Our geotechnical conclusions are as follows:

- The site is within the County of Los Angeles and thus is subject to the Specifications and Guidelines set by the County.
- Sandy soils typically obtain the majority of settlement for deeper fills within a much shorter time frame than finer-grained soils. Thus the majority of site settlement for deeper fills is anticipated to occur shortly after the completion of grading.
- Engineered fill shall meet the requirements of 90 percent relative compaction and 93 percent relative compaction for fill zones less than and greater than 40 feet in thickness, respectively.
- Deeper fill zones (>50 feet) will require the review of settlement monuments installed at the completion of major grading operations to help ensure that primary and secondary settlement are within design limits prior to the release of lots for home construction.
- Remedial removals are not anticipated to encounter deep alluvium (greater than approximately 15 feet). Thicker sections of landslide debris and large landslide complexes will be encountered. Estimated depths of removals of these units are shown on the Geotechnical Maps. As such, removal depths are anticipated to vary, and steeper portions of slopes may have to be laid back to accommodate benching and the required cut-fill transition angle of $2: 1(\mathrm{H}: \mathrm{V})$ near pad grade which helps reduce the potential for differential settlement below home sites. The upper portion (20 feet) of native slopes below pads where a cut/fill transition occurs will need to be laid back to a $2: 1$ $(\mathrm{H}: \mathrm{V})$ angle to reduce the potential for differential settlement in these areas.
- No significant groundwater was encountered at the site, though local perched conditions were observed. Groundwater is not anticipated to affect site grading operations. However, water may occur anywhere and be more likely where landslide removals are required.
- Site bedrock and adjacent units are anticipated to be rippable with conventional earthwork machinery; however, the conglomeratic units within the Saugus Formation and the Mint Canyon Formation are anticipated to be difficult to excavate. Additionally, conglomeratic units contain boulders and cemented zones that are anticipated to generate oversized materials requiring disposal in deeper fills.
- Stability fill keyways are depicted on the Geotechnical Maps, Plates 1A through 1E. The typical standard for stability fill keyways is provided within this report.
- Subdrains should be installed in the bottoms of canyons and natural drainage courses once removals of unsuitable materials has been accomplished; subdrains may also be required for stability fill areas. The following pipe diameter versus length of run should be planned for site construction:

4-inch diameter pipe up to 500 feet
6 -inch diameter pipe over 500 and up to 1000 feet
8 -inch diameter pipe up to 1,500 feet
10 -inch diameter pipe Greater than 1,500 feet
(or 28 -inch pipes)

- Active or potentially active faults are not known to exist on the site; however, faults have been mapped on or trending towards the site. These faults are considered to be inactive based on the work of others and do not require structural setbacks. The location of these faults should be carefully mapped during site grading to review the potential for clay gouge or other features that may negatively affect planned structures which can occur on proposed pads should these features trend across them.
- Previous laboratory test results of representative site soils indicate a very low to medium with potential locally high expansion potentials.
- Previous laboratory test results of the onsite soils indicate a negligible potential for soluble sulfates. However, the Mint Canyon Formation may have a potential for negligible to severe sulfate content.
- Previous laboratory test results of the onsite soils indicate a negligible potential of hydro-collapse.
- From a geotechnical perspective, the existing onsite soils are suitable for use as fill, provided they are relatively free from rocks (larger than 12 inches in maximum dimension), construction debris, and organic material.

4.0 RECOMMENDATIONS

4.1 Site Earthwork

We anticipate that earthwork during the mass/rough grading operations at the site will consist of site preparation, removals of unsuitable soil, excavation of cut material, and fill placement. We recommend that earthwork onsite be performed in accordance with the recommendations herein, the County of Los Angeles grading Requirements, and the General Earthwork and Grading Specifications for Rough Grading included in Appendix E. In case of conflict, the recommendations in the following sections shall supersede those included as part of Appendix E.

4.1.1 Site Preparation

Prior to grading of areas to receive structural fill or engineered structures, all ground surfaces should be cleared of obstructions, any existing debris, unsuitable material, and stripped of vegetation. Heavy vegetation and debris should be removed and properly disposed of offsite. All debris from any demolition activities at the site should also be removed and disposed off-site. Holes or depressions resulting from the removal of buried obstructions should be replaced with compacted fill.

Following remedial removals, areas to receive fill should be scarified to a minimum depth of 6 inches, brought to a near-optimum moisture condition, and recompacted to at least 90 or 93 percent relative compaction (based on American Standard of Testing and Materials [ASTM] Test Method D1557) depending on the thickness of fills.

4.1.2 Removal and Recompaction

As discussed in Sections 2.2, portions of the site are underlain by unsuitable soils, which may settle under the surcharge of fill and/or foundation loads. These materials include surficial soils, undocumented fills (stockpiles), alluvium, landslide debris and weathered terrace deposits and bedrock of the Saugus Formation. Compressible materials not removed by the planned grading should be excavated to competent terrace deposits, Saugus Formation bedrock or Mint Canyon Formation bedrock, moisture conditioned or dried back (as needed) to obtain an above-optimum moisture content, and then recompacted prior to additional fill placement or surface improvements. The actual depth and extent of the required removals should be determined during grading operations by the geotechnical consultant; however, estimated removal depths are summarized below and are shown on the attached Geotechnical Maps (Plates 1A through 1G). The project geologist should approve all bottoms prior to fill placement.

Debris not suitable for compacted fills, such as, rebar, plastic, trash, metal, etc. should be removed and wasted from the site. Organic debris should be mulched and incorporated into compacted fills such that the fills maintain less than 2 percent organics by volume. Concrete and large rocks (greater than 12 inches in diameter) may be placed in windrows in accordance with the detail provided herein. Windrows should be maintained a minimum of 10 feet below finished grade and 10 from slope faces. Isolated boulders should be maintained a minimum of 20 feet below finish grade.

Survey bottom removals are required for canyon bottoms and keyways. Subdrains and backdrains, and windrows should also be surveyed.

4.1.2.1 Topsoil

Areas to receive fill, which are on slopes flatter than 5:1 (horizontal to vertical) and where normal benching would not completely remove the topsoil, should be stripped to suitable formational material prior to fill placement. Topsoil is expected to be generally 1 to 3 feet thick, although localized deeper accumulations may be encountered during grading.

4.1.2.2 Colluvium/Alluvium

Within the limits of grading, colluvial and alluvial materials should be completely removed to competent material. Alluvial depths have been observed up to 12 feet deep.

4.1.2.3 Landslide Deposits

The landslide deposits within the limits of the planned grading should be completely removed to competent material during site grading in order to remove the highly disturbed and weathered material. The actual depth of stripping or overexcavation should be determined during grading based on field observations by the geotechnical consultant. However, based on our review of previous data, the depth of removals for each slide is shown on the Geotechnical Maps, Plates 1A through 1E in areas of proposed fill.
(NOTE: The following landslide discussion represents estimated depths based on approximate cross section geometry, geomorphic expression, and some borehole data that may not be thoroughly representative.)

There are 28 landslides on site labelled as L1 through L28. A brief description of each landslide follows:

- L1 - Located mostly offsite on Tract 46018-11 (northwest portion of site), explored by B91, approximately 20-25 feet deep. Strong geomorphic expression and hummocky terrain. Complete removal of slide is recommended.
- $\mathbf{L} \mathbf{2}$ - Located in the northwestern portion of the site, explored by B26 and B54, approximately 31 to 60 feet deep. Geomorphic expression of the headscarp is clear. Partial removal of slide is recommended within the $1: 1$ (h:v) influence of the planned grading (see cross sections 11-11', 29-29' and 30-30'). Remaining portion of slide will be delineated as Restricted Use Area. Additionally, we recommend a remedial fill be placed in the canyon below the landslide as shown on the Geotechnical Map, Plate 1A in order to provide support for the landslide and inhibit reactivation. The remedial fill will not require removals of unsuitable materials prior to placement; however, a subdrain should be installed to one side within fairly competent material to inhibit bending of the pipe due to settlement. This subdrain will connect and provide outlets for proposed drains further up the canyon.
- $\mathbf{L 3}$ - Located east of L2, TP-102 indicates 2 feet deep at toe only. Weak geomorphic expression with offset drainage at toe. A working cross section indicates a possible depth of 15 feet. Complete removal is recommended.
- $\mathbf{L 4}$ - Located southeast of L3, weak geomorphic expression, explored by TP-104 and TP-105 (8.9 and 12+ feet deep, respectively), cross section 4-4' indicates a potential thickness of 20 feet. Complete removal is recommended.
- $\mathbf{L 5}$ - Small slide on the side of L28, minor geomorphic expression, no exploration, no sections, estimated depth 15-20 feet.
- L6 - No obvious geomorphic expression, no exploration (steep terrain), section 3-3' indicates nearly complete removal with planned cut grades.
- L7 - Large landslide, explored by B27, B85, and B86 (slide depths 21.5, 18 and 33.3 feet, respectively), section 4-4' and 9-9', within a
 planned cut area; however, additional removals of up to 20 feet may be required beneath planned cuts.
L8 - Large landslide, explored by B71 and B80 (slide depths 23 and 30 feet, respectively), sections 9-9' and 29-29' depict geometry. Along 9-9' estimate 10-40 feet of removals beneath cut areas. This slide will be remediated with a fill added to the canyon. Portion of slide will remain within a Restricted Use Area.
- L8a - Small feature between L7 and L8, not explored, section 9-9 indicates 15 removals required beneath planned grades.
- $\mathbf{L 9}$ - Outside grading limits to the north of the site. Slide will not impact proposed development; however, it will be placed in a Restricted Use Area.
- L10 - Large feature with good geomorphic expression, explored by B81 and B82 (depths of slide 25 and 27.1 feet, respectively), no sections were created through this feature. The upper portion of the slide will be excavated by planned cuts and the lower portion should be removed to depths of 25 feet.
- L10a - Small feature between L10 and L11, no exploration, will partially be removed by planned cuts and should partially require
removals on the order of L10 an L11 of 25 to 30 feet.
- L11 - Downslope of L10 and L10a, explored by B73, B51 and B83 (slide depths 44.5, 29.4 and 31.9 feet, respectively), depicted on section 27-27' and 28-28'. Situated mostly beneath proposed fill, removals are anticipated to be on the order of 32 feet.
- L12 - Located downslope of L11 and upslope of L13, no exploration
- L-13 - Located downslope of L11 and L12, explored by B75 and B84 (slide depths not identified to total depths of 28 and 53 feet, respectively), questionable slide.
- L14 - Located downslope of L11, explored by B74 (questionable slide to total depth of 27.5 feet, refusal on boulder), no sections.
- L15 - Small feature, not explored, no sections, estimated depth 10-15 feet.
- L16 - Small feature, explored at the toe by TP-164 and TP-165 (depth of slide 10 and 7 feet, respectively), no sections, estimated depth 15 feet.
- $\mathbf{L 1 7}$ - Smaller feature, located in the southeastern portion of the site, explored at the toe by TP-46 and TP-47 (both indicate depths greater than 8 feet), no cross sections, estimated depth 35 feet.
- L18 - Small feature in Mint Canyon Formation, explored at the toe by TP-93 and nearby TP-84 (do not indicate slide debris but describe material as Saugus), possible slopewash, estimated depth 4 to 12 feet.
- L19 - Similar to L18, no explored, nearby TP-85 indicates terrace deposits to 3 feet then Saugus Formation within an area mapped as Mint Canyon, weathered slopewash, possible depth 10 feet?
- $\mathbf{L 2 0}$ - Small feature, no exploration, estimated depth
- L21 - Outside proposed grading limits and will not impact the development. Will be delineated as a Restricted Use Area.
- L22 - Outside proposed grading limits and will not impact the development. Will be delineated as a Restricted Use Area.
- L23 - Small feature, south side of Whites Canyon drainage course along the edge of the proposed fill slope, not explored (steep terrain), section 33-33', estimated slide depth 10-15 feet.
- L24 - Outside proposed grading limits and will not impact the development. Will be delineated as a Restricted Use Area.
- L25 - Outside proposed grading limits and will not impact the development. Will be delineated as a Restricted Use Area.
L27 - Located partially on Tract 46626 (east of site) and Tract 46018-11 (northeast of site). A portion of the slide appears to have been buttressed by grading of Tract 46626. Removals of L27 will be contained inside the property boundary; therefore, a 1:1 cut from the property line will be made along the onsite boundary (TT 060922) and along the boundary of Tract 46018-11. Estimated depth is 20 feet per cross section $25 \mathrm{~b}-25 \mathrm{~b}$ '.
- L28 - Large feature, good geomorphic expression, explored by B88, B89 and B90 (slide depths 59, 51 and 67.5 feet, respectively), seepage noted above the slide plane, section 4-4' indicates 45 feet of removals beneath proposed cut areas.

4.1.2 4 Terrace Deposits

The weathered and desiccated surface of the Terrace deposits within the limits of the planned grading should be removed to a competent surface as approved by the Geotechnical Engineer. Depths should be anticipated to range from 1 to 4 feet.

4.1.2.5 Saugus Formation

The weathered and desiccated surface of the Saugus Formation bedrock within the limits of the planned grading should be removed to a competent surface as approved by the Geotechnical Engineer. Depths should be anticipated to range from 1 to 3 feet. Where clay beds are exposed near proposed pad grades, the pad overexcavation will be increased to 10 feet. Portions of the Saugus Formation consist of conglomerate and may be difficult to excavate and may also generate oversized materials which will require disposal in deeper fill areas.

4.1.2.6 Mint Canyon Formation

The weathered and desiccated surface of the Mint Canyon Formation bedrock within the limits of the planned grading should be removed to a competent surface as approved by the Geotechnical Engineer. Depths should be anticipated to range from 1 to 3 feet. The Mint Canyon Formation is more cemented than the Saugus Formation and may require difficult or heavy excavation techniques. This formation may also generate oversized materials that will require disposal in deeper fills. In cut pads and streets areas that will expose Mint Canyon Formation Bedrock, for ease of foundation and utility excavation, it is recommended that these areas be overexcavated a minimum of 5 feet below pad graded within lots areas, and to a depth of 2-feet below the lowest utilities within proposed street areas.

4.1.2.7 Water Reservoir Pad Overexcavations

Two water tank pads are planned within the proposed project site. The proposed water tank pads are anticipated to be within cut bedrock of the Saugus Formation or within cut/fill transition pad within the Mint Canyon Formation. Overexcavation of the tank pads within cut pads will only be necessary if lithologies of different expansion potential are encountered at pad grade, or if a cut/fill transition is encountered within the tank pad. As necessary, the cut portion of the tank pads should be overexcavated at least 7 feet below pad grade or to a depth to match the fill depths across the tank, to at least 10 feet beyond the tank perimeter. The engineered fill placed within this overexcavation and within 15 feet (horizontal) of tanks' footprints should be moistened to optimum moisture content and compacted to at least 95% relative compaction.

4.1.3 Cut/Fill Transition Conditions

In order to reduce the potential for differential settlement in areas of cut/fill transitions, we recommend the entire cut portion of the transition building pads be overexcavated and replaced with properly compacted fill to mitigate the transition condition beneath the proposed structure. For transitions less steep than a 2:1 (horizontal to vertical), the overexcavation of the cut portion of the building pad should be a minimum of 5 feet below the planned finish grade elevation of the pad. Lot overexcavations will be reviewed on a lot by lot basis during grading to determine if deeper overexcavations area required based on the exposed graded conditions.

For cut/fill transitions steeper than a $2: 1$ (horizontal to vertical), we recommend that native slopes be laid back to nearly a $2: 1$ slope angle, and that fill below future home sites have no greater than a $3: 1$ ratio of fill thickness across the pad in any direction to help reduce future potential differential settlement damage to homes and other structures. All overexcavations should extend across the entire lot or laterally at least 5 feet beyond the building perimeter or footprint. Details regarding cut/fill transitions are provided in the attached General Earthwork and Grading Specifications (Appendix E).

4.1.4 Cut Slope Stability/Replacement Fills

Geologic mapping of design cut slopes and fill over cut slopes should be performed by a geologist during grading operation to evaluate the slopes for potential slope instabilities. If unsuitable soils are present or if potential slope instabilities are found, we recommend that the unsuitable cut slopes on the site be replaced with stability fills.

We recommend that the stability/replacement fill have a minimum horizontal width of 15 feet from the backcut to the slope face. We also recommend that the stability/replacement fill key be excavated a minimum of 15 feet wide with a minimum depth of at least 2 to 3 feet below the toe-of-slope. The key bottom should be tilted a minimum of 2 percent into-the-slope. Benching of the backcut as the fill is placed, as well as, overbuilding the slope and trimming it back may be required. Keys for design fill over cut slopes are shown on the attached geotechnical maps, Plates 1A through 1G.

We also recommend that a subdrain be installed along the back bottom edge of the key and at mínimum 30 -foot vertical intervals if the replacement fill is greater than 30 feet in height. The outlet locations of the subdrains should be determined in the field during site grading. The subdrains should consist of a 4 -inch diameter perforated PVC pipe surrounded by 3 cubic feet (per linear foot) of crushed rock wrapped in filter fabric (Marifi 140 N or equivalent). The subdrain should have a minimum fall of 1-percent toward the outlet.

4.1.5 Side-Hill Shear Keys

Any side-hill daylight cut situations (i.e. the edge of the cut area will start right at the top edge of a descending natural slope). Due to potentially weathered soils along the edge of the descending relatively-steep natural slope and anticipated steep hillside soil creep conditions; we recommend that a side-hill shear key be constructed along the edge of the side-hill daylight cut.

The side-hill shear key should be excavated a minimum of 12 to 15 feet in horizontal width with the bottom at the outer edge (i.e. closest to the hillside) excavated to a depth of 5 feet or at least 2 feet into competent formational material, whichever is deeper. The key bottom should also have a fall of at least 2-percent into-the-slope.

4.1.6 Buttress Keys

Based on slope stability analysis performed as a part of this review, buttress keys have been designed for proposed site slopes, as necessary. The buttress widths and depths are variable based on the design slope heights and the geologic conditions at those locations. The buttress widths and depths and backcut angles are provided on the geotechnical maps and cross-sections included in this report.

Buttresses should have backdrains in accordance with oûr typical detail provided herein. Backcuts should be performed in accordance with the recommendations shown on the geotechnical maps and cross-sections provided herein.

4.1.7 Fill Slope Keys

Prior to the placement of fill slopes that will be placed above natural and/or cut areas on the site; a fill slope key should be constructed. The fill slope key should be excavated at least 2 feet into competent soil along the toe-of-slope and constructed approximately 15 feet wide with the key bottom angled a minimum of 2 percent into-the-slope.

4.1.8 Shrinkage/Bulking and Subsidence

Based on the previous evaluation and testing by GWV, both shrinkage and bulking is anticipated at the site. Prior values given by GWV, indicate mostly bulking across the site. The data from the borings onsite do not appear to be representative due to the method of sampling (Kelly bar) and the coarse-grained nature of the materials tested (i.e. conglomerates, cobbles and boulders). Our opinion regarding shrinkage and bulking onsite, based upon experience, is as follows:

Soil/Colluvium/Alluvium - Shrink 10-15\%
Landslide Debris - Shrink 0-15\% to 15 feet depth; 15 ' + bulk 0-2\%
Saugus Formation - Bulk 2-4\% 0-5 feet depth; 5’+ bulk 5\%
Mint Canyon Formation - Bulk 6\%
These are preliminary rough estimates which will vary with depth of removal, stripping losses, field conditions at the time of grading, etc. In addition, handling losses are not included in the estimates.

4.1.9 Temporary Stability of Removal Excavations

Temporary excavations maybe cut vertically up to five feet. Excavations over five feet should be slot-cut, shored, or cut to a $1: 1$ (h:v) slope gradient. Surface water should be diverted away from the exposed cut, and not be allowed to pond on top of the excavations. Temporary cuts should not be left open for an extended period of time. Planned temporary conditions should be reviewed by the geotechnical consultant of record in order to reduce the potential for sidewall failure. The geotechnical consultant may provide recommendations for controlling the length of sidewall exposed.

4.1.10 Fill Placement and Compaction

From a geotechnical perspective, the onsite soils are suitable for use as compacted fill, provided they are screened of rocks greater than 6 inches in maximum dimension, organic material, and construction debris. Areas prepared to receive structural fill and/or other surface improvements should be scarified to a minimum depth of 6 inches, brought to at least optimum-moisture content, and recompacted to at least 90 percent relative compaction (based on ASTM Test Method D1557). Fills greater than 40 feet deep should be compacted to at least 93percent relative compaction. The optimum lift thickness to produce a uniformly compacted fill will depend on the type and size of compaction equipment used. In general, fill should be placed in uniform lifts generally not exceeding 8 inches in loose thickness. Placement and compaction of fill should be performed in accordance with local grading ordinances under the observation and testing of the geotechnical consultant.

If possible, import soils to be used as fill shall be essentially free from organic matter and other deleterious substances, and should contain no materials over 6 inches in maximum dimension, have a very low to low expansion potential (i.e Expansion Index ranging from 0 to 50), and negligible sulfate content. Representative samples of the desired import source shall be given to the Geotechnical Consultant at least 48 hours (2 working days) before importing grading begins so that its suitability can be determined and appropriate tests performed.

Previous testing of the crushed rock (created from the oversize cobbles and boulders) by GWV on the site indicates that the on-site rock is of sufficient quality for use as rip rap, crushed aggregate base, and subdrain/backdrain rock. Periodic testing of any crushed rock product should be performed for verification purposes, should it be proposed for use as a construction material. We anticipate that utilizing oversize rock as crushed aggregate base for future streets would require coordination with the County of Los Angeles Public Works department.

4.1.11 Trench Backfill and Compaction

The onsite soils may generally be suitable as trench backfill provided they are screened of rocks and other material over 6 inches in diameter and organic matter. Trench backfill should be compacted in uniform lifts (generally not exceeding 8 inches in compacted thickness) by mechanical means to at least 90 percent relative compaction (per ASTM Test Method D1557).

If trenches are shallow and the use of conventional equipment may result in damage to the utilities; clean sand, having sand equivalent (SE) of 30 or greater, should be used to bed and shade the utilities. Sand backfill should be densified. The densification may be accomplished by jetting or flooding and then tamping to ensure adequate compaction. A representative from LGC should observe, probe, and test the backfill to verify compliance with the project specifications.

4.2 Control of Ground Water and Surface Waters

4.2.1 Canyon Subdrains

In order to help reduce the potential for ground water accumulation in the proposed fill areas, we recommend subdrains be installed in the bottoms of canyons fill areas prior to fill placement. The canyon subdrains should consist of a 4 to 10 -inch diameter PVC pipe surrounded by a minimum of 9 -cubic feet (per linear foot) of $3 / 4$-inch gravel wrapped in a filter fabric (Mirafi 140N or equivalent). Where the subdrain is placed on fill in order to outlet the subdrain, the subdrain should consist of solid PVC pipe. The subdrain should have a minimum fall of at least 1 percent.

Preliminary canyon subdrain locations are presented on the Geotechnical Maps (Plate 1 A through 1 K). Details for subdrain construction are provided in the attached General Earthwork and Grading Specifications (Appendix E). The actual need and/or location of canyon subdrains should be based on the evaluation of the configuration of the canyon bottoms by the geotechnical consultant after the removal of compressible soils have been completed.

A representative of the project civil engineer should survey the installed subdrains for alignment and grade. Sufficient time should be allowed for the surveys prior to commencement of fill placement operations over the subdrain. The subdrain outlets should be installed to discharge water into positive drainage devices (e.g. storm drain boxes, natural canyon bottoms, etc.).

The following pipe diameter versus length of run should be planned for site construction:

4-inch diameter pipe up to 500 feet
6 -inch diameter pipe over 500 and up to 1000 feet
8 -inch diameter pipe up to 1,500 feet
10 -inch diameter pipe Greater than 1,500 feet
(or 28 -inch pipes)

4.2.2 Stability Fill Subdrains

Subdrains should be provided in the stability fills constructed on-site in order to minimize surficial slope instability. The subdrains should be placed along the heel of the stability fill key (across the entire length of the key) and along the backcut at approximately 30 -foot vertical intervals. The subdrains should be placed and constructed in accordance with the recommendations presented in Appendix E.

4.3 Settlement Monitoring

Settlement monuments should be installed in deep fill areas (greater than 50 feet in thickness) to record the fill settlement once design grades are achieved. Locations of these settlement monuments will be determined during grading based on the observed and final site conditions. A detail indicating the construction of the settlement monuments is shown on Figure 2.

The schedule for recording site settlement should be as follows:
Monuments should be surveyed immediately after installation, weekly for the first month, every two weeks for the next three months, and monthly after that. The monitoring should be performed until the survey data plots indicate that the estimated remaining settlement is no longer significant (i.e. three consecutive readings indicate relatively no change).

4.4 Surface Drainage and Lot Maintenance

Positive drainage of surface water away from structures is very important. No water should be allowed to pond adjacent to buildings or the top of slopes. Positive drainage may be accomplished by providing drainage away from buildings at a gradient of at least 2 percent for a distance of at least 5 feet, and further maintained by a swale of drainage path at a gradient of at least 1 percent. Where limited by 5 -foot side yards, drainage should be directed away from foundations for a minimum of 3 feet and into a collective swale or pipe system. Where necessary, drainage paths may be shortened by use of area drains and collector pipes. Eave gutters also help reduce water infiltration into the subgrade soils if the downspouts are properly connected to appropriate outlets.

Property owners should be reminded of the responsibilities of hillside maintenance practices (i.e., the maintenance of proper lot drainage; the undertaking of property improvements in accordance with sound engineering practices; and the proper maintenance of vegetation, including prudent lot and slope irrigation).

Planters with open bottoms adjacent to buildings should be avoided. Planters should not be designed adjacent to buildings unless provisions for drainage, such as catch basins, liners, and/or area drains, are made. Overwatering must be avoided.

4.5 Foundations

4.5.1 General

Preliminary recommendations for foundation design and foundation construction are presented herein. When the structural loads for the proposed structures are known they should be provided to our office to verify the recommendations presented herein.

The following foundation recommendations are provided. The three foundations recommended for the proposed structures are: (1) Conventional foundation for very low expansion potential and shallow fills; (2) Post-Tension foundations; or (3) Mat Slabs.

The information and recommendations presented in this section are not meant to supersede design by the project structural engineer or civil engineer specializing in the structural design nor impede those recommendations by a corrosion consultant. Should conflict arise, modifications to the foundation design provided herein can be provided.

4.5.2 Bearing Capacity

Shallow foundations may be designed for a maximum allowable bearing capacity of $1,500 \mathrm{lb} / \mathrm{ft}^{2}$ (gross), for continuous footings a minimum of 12 inches wide and 12 inches deep, and spread footings 24 inches wide and 12 inches deep, into certified compacted fill. A factor of safety greater than 3 was used in evaluating the above bearing capacity value. This value maybe increased by 300 psf for each additional foot in depth and 100 psf for each additional foot of width to a maximum value of 3,000 psf.

Lateral forces on footings may be resisted by passive earth resistance and friction at the bottom of the footing. Foundations may be designed for a coefficient of friction of 0.35 , and a passive earth pressure of $250 \mathrm{lb} / \mathrm{ft}^{2} / \mathrm{ft}$. The passive earth pressure incorporates a factor of safety of greater than 1.5 .

All footing excavations should be cut square and level as much as possible, and should be free of sloughed materials including sand, rocks and gravel, and trash debris. Subgrade soils should be pre-moistened for the assumed low expansion potential (to be confirmed at the end of grading). These allowable bearing pressures are applicable for level (ground slope equal to or flatter than $5 \mathrm{H}: 1 \mathrm{~V}$) conditions only.

Bearing values indicated above are for total dead loads and frequently applied live loads. The above vertical bearing may be increased by one-third for short durations of loading which will include the effect of wind or seismic forces.

4.5.3 Conventional Foundations

Conventional foundations may be used to support proposed structures underlain by very low expansive soils (i.e. Expansion Index less that 20 and Plasticity Index less than 15) and with less than 40 feet of fills.

Continuous footings should have minimum widths of 12 inches, 15 inches or 18 inches for one-story, two-story or three-story structures, respectively. Individual column footings should have a minimum width of 24 inches.

Footings for proposed two story structures should have minimum depths (below lowest adjacent finish grade) of 18 inches and 12 inches for exterior and interior footings, respectively for assumed very low expansion potential ($0-20$ Expansion Index).

The subgrade should be moisture-conditioned and proof-rolled just prior to construction to provide a firm, relatively unyielding surface, especially if the surface has been loosened by the passage of construction traffic.

The underslab vapor/moisture retarder (i.e. an equivalent capillary break method) may consist of a minimum $15-\mathrm{mil}$ thick vapor/moisture retarder (or equivalent) in conformance with ASTM E 1745 Class A material, placed in general conformance with ASTM E1643, underlain by a minimum 2-inch of sand and overlain by 1-inch of sand, as needed. The sand layer requirements above the vapor barrier are the purview of the foundation engineer/structural engineer, and should be provided in accordance with ACI Publication 302 "Guide for Concrete Floor and Slab Construction". These recommendations must be confirmed (and/or altered) by the foundation engineer, based upon the performance expectations of the foundation. Ultimately, the design of the moisture retarder system and recommendations for concrete placement and concrete mix design, which will address bleeding, shrinkage, and curling are the purview of the foundation engineer, in consideration of the project requirements provided by the architect and developer. The underslab vapor/moisture retarder described above is considered a suitable alternative in accordance with the Capillary Break Section 4.505.2.1 of the CALGreen code.

Subgrade soils should be pre-saturated to optimum moisture content to a depth of 12 inches for a very low expansion potential. Expansion index testing should be performed at the end of grading for confirmation. The minimum thickness of the floor slabs should be at least 4.5 inches, and joints should be provided per usual practice.

4.5.4 Post-Tension Foundations

Based on the site geotechnical conditions and provided the remedial recommendations provided herein are implemented, the site may be considered suitable for the support of the anticipated structures using a post-tensioned slab-ongrade foundation system, for the anticipated low to high expansive soils and for deeper fill areas. The following section summaries our recommendations for the foundation system.

Table 2 contains the geotechnical recommendations for the construction of PT slab on grade foundations. The structural engineer should design the foundation system based on these parameters including the foundation settlement as indicated in the following section to the allowable deflection criteria determined by the structural engineer/architect.

TABLE 2
Preliminary Geotechnical Parameters for Post-Tensioned Foundation Design

Parameter	Value	
Expansion Classification the completion of grading)	Low and High Expansion	
Moisture Index (From Figure 33):	-20	
Constant Soil Suction (From Figure 3.4):	PF 3.6	
Center Lift Edge moisture variation distance (from Figure 3.6), e Center lift, y_{m} :	Low 9.0 feet $\frac{\text { Medium }}{9.0 \text { feet }}$ 0.3 inches 0.47 inches	$\begin{gathered} \underline{\text { High }} \\ 9.0 \text { feet } \\ 0.66 \text { inches } \end{gathered}$
Edge Lift Edge moisture variation distance (from Figure 3.6), Edge lift, y_{m} :	$\underline{\text { Low }}$ $\underline{\text { Medium }}$ 5.2 feet 5.0 feet 0.61 inches 1.1 inches	High 5.0 feet 1.6 inches
Soluble Sulfate Content for Design of Concrete Mix in Contact with Site Soils in Accordance with American Concrete Institute standard 318, Section 4.3:	Assume Negligible Exposure (to be confirmed at the completion of grading)	
Corrosivity of Earth Materials to Ferrous Met	Severely Corrosi	
Modulus of Subgrade Reaction, k (assuming presaturation as indicated below):	100 pci (low) 85 pci (medium to high)	
Additional Recommendations: 1. Presaturate slab subgrade to at least optimum-moisture content or to 1.2 times optimum moisture, to minimum depths of 12 and 18 inches below ground surface, respectively for low and medium expansion potentials and 1.3 times optimum moisture, to minimum depths of 24 inches for high expansion. 2. Install a $15-\mathrm{mil}$ moisture/vapor barrier (or equivalent) moisture/vapor barrier in direct contact with the concrete (unless superseded by the Structural/Post-tension engineer*) with 1 to 2 inches of sand below the moisture/vapor barrier. 3. Minimum perimeter foundation embedment below finish grade for moisture cut off should be 12 18 , and 24 inches, respectively for low, medium, and high expansion potentials. 4. Minimum slab thickness should be 5 inches.		
* The above sand and Visqueen recommendations are traditionally included with geotechnical foundation recommendations although they are generally not a major factor influencing the geotechnical performance of the foundation. The sand and Visqueen requirements are the purview of the foundation engineer/corrosion engineer (in accordance with ACI Publication 302 "Guide for		
Concrete Floor and Slab Construction") and the homebuilder to ensure that the concrete cures more evenly than it would otherwise, is protected from corrosive environments, and moisture penetration of through the floor is acceptable to future homeowners. Therefore, the above recommendations may be superseded by the requirements of the previously mentioned parties.		

4.5.5 Mat Foundations

A mat foundation can be used for support of proposed residential buildings. An allowable soil bearing pressure of $1,000 \mathrm{psf}$ may be used for the design of the mat at the surface under the slab area.

The allowable bearing value is for total dead loads and frequently applied live loads and may be increased by one-third for short durations of loading which will include the effect of wind or seismic forces. A coefficient of vertical subgrade reaction, k, of 85 pounds per cubic inch (pci) may be used to evaluate the pressure distribution beneath the mat foundation.

The magnitude of total and differential settlements of the mat foundation will be a function of the structural design and stiffness of the mat. Based on assumed structural loads, we estimate that total static settlement will be on the order of an inch at the center of the mat foundation. Post construction differential settlement can be taken as one-half of the maximum estimated settlement

Resistance to lateral loads can be provided by friction acting at the base of foundations and by passive earth pressure. Foundations may be designed for a coefficient of friction of 0.35 . Minimum perimeter footing embedment provided in the previous sections maybe reduced for the mat slab design.

Coordination with the structural engineer will be required in order to ensure structural loads are adequately distributed throughout the mat foundation to avoid localized stress concentrations resulting in potential settlement. The foundation plan should be reviewed by LGC to confirm preliminary estimated total and differential static settlements.

4.5.6 Foundation Settlement

Based on the site design relative to native grades and considering site remedial removals, fill at the site will range from approximately 5 to over 150 feet in thickness within the site. Surface settlement monuments are planned to be installed in the deep fill areas within the subject tract. It is anticipated that most of the consolidation will be complete by the time final design grades are achieved due to the sandy nature of site soils. To provide documentation that the settlement is complete and three consecutive readings indicate relatively no change approximately three to four months of readings should be anticipated from the time that grading is complete.

Based on a preliminary review of site grading plans major fill differentials are not anticipated across building pad areas. Once site development plans are finalized the anticipated fill thickness and differentials on a lot by lot basis can be determined and considered in future foundation designs.

Based on preliminary evaluations and following the geotechnical release for construction, the preliminary static post-construction settlements are estimated to be up to 1 -inch with a differential settlement of approximately of 0.75 -inches The above differential settlement value should be evaluated at the completion of grading based on the final fill conditions.

4.5.7 Building Clearance and Foundation Setbacks

All building foundation located close to slopes should have a minimum setback per Figure 1808.7.1 of the 2013 CBC. The setback distances should be measured from competent materials on the outer slope face, excluding any weathered and loose materials.

Per the 2013 CBC Section 1808.7.1 and Figure 1808.7.1, building clearance from the toe of an ascending slope should be equal one-half of the total slope height to a maximum setback of 15 feet. Retaining walls may be constructed at the base of the slope to achieve the required building clearances.

Per the 2013 CBC Section 1808.7.2 and Figure 1808.7.1, the building foundation constructed on or near a descending slope should be setback or deepened to provide a minimum footing setback equal to the total height of slope (H) divided by $3(\mathrm{H} / 3)$. The footing setback should be a minimum of 5 feet for slopes up to 15 feet in height and vary up to 40 feet for slopes up to 120 feet in height. The footing setbacks should be measured from the edge of the footing to the competent materials on the outer slope face.

4.6 Lateral Earth Pressures and Retaining Wall Design

The following lateral earth pressures may be used for the design of any future site retaining walls. We recommend low expansive soils for retaining wall backfill if no onsite soils fit the required minimum parameters ($\mathrm{SE}>30$). The recommended lateral pressures for approved soils (expansion index less than 30 per U.B.C. 18-I-B, less than 15 percent passing \#200 sieve, and PI less than 15) for level or sloping backfill are presented on the table below. The recommended lateral pressures for clean sand or approved select soils for level or sloping backfill are presented on the following Table 3.

Table 3
Lateral Earth Pressures for Retaining Walls

Conditions	Level Backfill	$\mathbf{2 : 1}$ Backfill Sloping Upwards	Seismic Earth Pressure (pcf) *
	Approved Select Material	Approved Select Material	
	35	55	13
Active	50	75	--
At-Rest	250	--	-
Passive			

* For walls with greater than 6 -feet in backfill height, the above seismic earth pressure should be added to the static pressures given in the table above. The seismic earth pressure should be considered as an inverted triangular distribution with the resultant acting at 0.6 H in relation to the base of the retaining wall footing (where H is the retained height).

Embedded structural walls should be designed for lateral earth pressures exerted on them. The magnitude of these pressures depends on the amount of deformation that the wall can yield under load. If the wall can yield enough to mobilize the full shear strength of the soil, it can be designed for "active" pressure. If the wall cannot yield under the applied load, the shear strength of the soil cannot be mobilized and the earth pressure will be higher. Such walls should be designed for "at-rest" conditions. If a structure moves toward the soils, the resulting resistance developed by the soil is the "passive" resistance.

For design purposes, the recommended equivalent fluid pressure for each case for walls founded above the static groundwater and backfilled with low expansive onsite or import soils is provided in the table above. The equivalent fluid pressure values assume free-draining conditions. The backfill soils should be compacted to at least 90 percent relative compaction. The walls should be constructed and backfilled as soon as possible after backcut excavation. Prolonged exposure of backcut slopes may result in some localized slope instability. If conditions other than those assumed above are anticipated, the equivalent fluid pressure values should be provided on an individual-case basis by the geotechnical engineer.

Surcharge loading effects from any adjacent structures should be evaluated by the geotechnical and structural engineers. Surcharge loading on retaining walls should be considered when any loads are located within a 1:1 (horizontal to vertical) projection from the base of the retaining wall and should be added to the applicable lateral earth pressures. Where applicable, a minimum uniform lateral pressure of 100 psf should be added to the appropriate lateral earth pressures to account for typical vehicle traffic loading.

All retaining wall structures should be provided with appropriate drainage and appropriately waterproofed. The outlet pipe should be sloped to drain to a suitable outlet. Typical wall drainage design is illustrated on the attached Figure 3. It should be noted that the recommended subdrain does not provide protection against seepage through the face of the wall and/or efflorescence. Efflorescence is generally a white crystalline powder (discoloration) that results when water, which contains soluble salts, migrates over a period of time through the face of a retaining wall and evaporates. If such seepage or efflorescence is undesirable, retaining walls should be waterproofed to reduce this potential.

For sliding resistance, the friction coefficient of 0.35 may be used at the concrete and soil interface. Wall footings should be designed in accordance with structural considerations. The passive resistance value may be increased by one-third when considering loads of short duration such as wind or seismic loads. For short term loading (i.e. seismic) the allowable bearing capacity may be increased by one-third for seismic loading.

Foundations for retaining walls in properly compacted fill should be embedded at least 18 inches below lowest adjacent grade. At this depth and a minimum of 12 inches in width, an allowable bearing capacity of $1,500 \mathrm{psf}$ may be assumed. A factor of safety greater than 3 was used in evaluating the above bearing capacity value. This value maybe increased by 300 psf for each additional foot in depth and 100 psf for each additional foot of width to a maximum value of $3,000 \mathrm{psf}$. All excavations should be made in accordance with Cal OSHA. Excavation safety is the sole responsibility of the contractor.

4.7 Slope Creep

Due to the potentially expansive nature of the fill soils within the site, the probability exists for development of a creep condition on the slopes within the site with the passage of time. Creep is a very slow nearly continuous downward and outward movement of slope soils. The movement is minimal under small shear stresses, however sufficient to produce permanent deformation but not large enough to produce a shear failure as occurs in a landslide. For the site slopes, the principal cause for development of a creep condition is a result of repeated cycles of swelling and contraction of expansive soils over a period of time due to seasonal variations in the moisture content and is an irreversible process resulting in a loss of shear strength and subsequent buildup of small shear stresses. Experience has shown that creep can affect surficial soils to vertical depths of several feet depending on the expansiveness of the soils and the slope height and inclination, as well as a number of other factors. Other factors which can contribute to development of a slope creep condition include overwatering and subsequent saturation of the slope soils, prolonged or intense rainfall, prolonged periods of drought, rodent activity, inadequate plant materials used for slope protection, inadequate drainage facilities, and/or lack of a proper slope maintenance program. Creep cannot be stopped or eliminated; however, proper foundation embedment and design can be provided such that the magnitude, depth and rate of creep movement can be mitigated for structures proposed on or near descending slopes. For slope heights greater than 10 feet, the slope creep will impact improvements within approximately 10 to 15 feet from the top of slope. Some settlement and tilting may occur in improvements located in this outer 10 to 15 feet of the pad.

4.8 Freestanding (Top-of-Slope) Walls

Freestanding wall footings should be founded a minimum of 18 inches below the lowest adjacent grade. To reduce the potential for unsightly cracks, we recommend inclusion of construction joints at 10 - to 20 -foot intervals.

Due to the potential creep of soils, where free standing walls are constructed close to top-ofslope, some tilt of the wall should be anticipated. To reduce the amount of tilt, a combination of grade beam and caisson foundations may be used to support the wall. The system should consist of minimum 12 -inch diameter caissons placed at 8 feet maximum on centers, and each 8 feet long and connected together at top with 12 -inch by 12 -inch grade beam. The geotechnical design parameters for the caisson are shown on the attached Figure 4.

4.9 Pavement Recommendations

Based on a preliminary assumed minimum R-value of 20 and an assumed Traffic Indices (TI's) of 6,7 , and 8.5 , we recommend the following minimum pavement sections (Table 4). The Rvalue should be determined during the concluding stages of grading, and the final pavement section should be designed accordingly. TI's for the streets within the subject project site should be obtained from the appropriate regulatory agency or calculated by a traffic engineer. Final pavement sections should be confirmed by the project civil engineer based upon the project traffic index and the County of Los Angeles Department of Public Works minimum requirements.

TABLE 4

Recommended Minimum Pavement Sections			
Traffic Index 6 7 8.5 Asphalt Concrete (in.) 4 4 4 Aggregate Base (in.) 10 12 17			

The aggregate base material should conform to the specifications for Class 2 Aggregate Base (Caltrans) or Crushed Aggregate/Miscellaneous Base (Standard Specifications for Public Works Construction). The base material should be compacted to achieve a minimum relative compaction of 95 percent. The subgrade should achieve a minimum relative compaction of 90 percent through the upper 12 inches. Base and subgrade materials should be moistureconditioned to relatively uniform moisture content at or slightly over optimum.

4.10 Corrosivity to Concrete and Metal

The National Association of Corrosion Engineers (NACE) defines corrosion as "a deterioration of a substance or its properties because of a reaction with its environment." From a geotechnical viewpoint, the "environment" is the prevailing foundation soils and the "substances" are the reinforced concrete foundations or various buried metallic elements such as rebar, piles, pipes, etc., which are in direct contact with or within close vicinity of the foundation soil.

In general, soil environments that are detrimental to concrete have high concentrations of soluble sulfates and/or pH values of less than 5.5. ACI 318R-08 Table 4.3.1 provides specific guidelines for the concrete mix design when the soluble sulfate content of the soils exceeds 0.1 percent by weight or $1,000 \mathrm{ppm}$. The minimum amount of chloride ions in the soil environment that are corrosive to steel, either in the form of reinforcement protected by concrete cover, or plain steel substructures such as steel pipes or piles, is 500 ppm per California Test 532.

Based on previous site soil testing by others, the onsite soils are classified as having a negligible sulfate exposure condition with a potential for localized moderate to severe sulfate content in accordance with ACI 318R-08 Table 4.3.1. As a preliminary recommendation due to results of previous sulfate content testing, concrete in contact with onsite soils should be designed in accordance with ACI 318R-08 Table 4.3.1 for the negligible category. It is also our opinion that onsite soils should be considered severely corrosive to buried metals. Site grading will redistribute the materials, which may result in soils with different corrosion potentials. Therefore, the as-graded soil conditions should be verified with confirmatory sampling and testing during the grading phase of the project.

Despite the minimum recommendation above, LGC is not a corrosion-engineering firm. Therefore, we recommend that after site grading, consultation with a competent corrosion engineer be initiated to evaluate the actual corrosion potential of the site and to provide recommendations to reduce the corrosion potential with respect to the proposed improvements, as necessary. The recommendations of the corrosion engineer may supersede the above requirements.

4.11 Nonstructural Concrete Flatwork

Concrete flatwork (such as walkways, bicycle trails, etc.) have a high potential for cracking due to changes in soil volume related to soil-moisture fluctuations because these slabs are typically much thinner than foundation slabs and are not reinforced with the same dynamic as foundation elements. To reduce the potential for excessive cracking and lifting, concrete should be designed in accordance with the minimum guidelines outlined in Table 5. These guidelines will reduce the potential for irregular cracking and promote cracking along construction joints, but will not eliminate all cracking or lifting. Thickening the concrete and/or adding additional reinforcement will further reduce cosmetic distress.

TABLE 5
Nonstructural Concrete Flatwork

	Homeowner Sidewalks	Private Drives	Patios/Entryways	City Sidewalk Curb and Gutters
Minimum Thickness (in.)	4	5		City/Agency Standard
Presaturation	Wet down prior to placing	Presoak to 12 inches	Presoak to 12 inches	City/Agency Standard
Reinforcement	-	No. 3 at 24 inches on centers	No. 3 at 24 inches on centers	City/Agency Standard
Thickened Edge	-	$8 " \times 8$ "		City/Agency Standard
Crack Control	Saw cut or deep tool joint to a minimum of $1 / 3$ the concrete thickness	Saw cut or deep tool joint to a minimum of $1 / 3$ the concrete thickness	Saw cut or deep tool joint to a minimum of $1 / 3$ the concrete thickness	City/Agency Standard
Maximum Joint Spacing	5 feet	10 feet or quarter cut whichever is closer	6 feet	City/Agency Standard
Aggregate Base		2	2	City/Agency Standard

4.12 Slope Maintenance

To reduce the potential for erosion and slumping of graded slopes, all slopes should be planted with ground cover and deep-rooted vegetation as soon as practical upon completion of grading. Surface water runoff and standing water at the top-of-slopes should be avoided. Oversteepening of slopes should be avoided during construction activities and landscaping. Maintenance of proper lot drainage, undertaking of property improvements in accordance with sound engineering practice, and proper maintenance of vegetation, including regular pad and slope irrigation, should be performed. Trenches excavated on a slope face for utility of irrigation lines and/or for any purpose should be properly backfilled and compacted by a vibratory plate, or equivalent, in order to obtain a minimum 90 percent relative compaction, in accordance with ASTM Test Method D1557, to the slope face. Observation/testing and acceptance by the geotechnical consultant during trench backfill is recommended. A rodent control program should be established and maintained.

4.13 Construction Observation and Testing

The recommendations provided in this report are based on subsurface observations and geotechnical analysis by others. The interpolated subsurface conditions should be checked in the field during construction by a representative of LGC.

Construction observation and testing should also be performed by the geotechnical consultant during future grading, excavations, backfill of utility trenches, preparation of pavement subgrade and placement of aggregate base, foundation or retaining wall construction or when an unusual soil condition is encountered at the site. Grading plans, foundation plans, and final project drawings should be reviewed by this office prior to construction.

5.0 LIMITATIONS

Our services were performed using the degree of care and skill ordinarily exercised, under similar circumstances, by reputable engineers and geologists practicing in this or similar localities. No other warranty, expressed or implied, is made as to the conclusions and professional advice included in this report. The samples taken and submitted for laboratory testing, the observations made and the in-situ field testing performed are believed representative of the entire project; however, soil and geologic conditions revealed by excavation may be different than our preliminary findings. If this occurs, the changed conditions must be evaluated by the project soils engineer and geologist and design(s) adjusted as required or alternate design(s) recommended.

This report is issued with the understanding that it is the responsibility of the owner, or of his/her representative, to ensure that the information and recommendations contained herein are brought to the attention of the architect and/or project engineer and incorporated into the plans, and the necessary steps are taken to see that the contractor and/or subcontractor properly implements the recommendations in the field. The contractor and/or subcontractor should notify the owner if they consider any of the recommendations presented herein to be unsafe.

The findings of this report are valid as of the present date. However, changes in the conditions of a property can and do occur with the passage of time, whether they be due to natural processes or the works of man on this or adjacent properties.

In addition, changes in applicable or appropriate standards may occur, whether they result from legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated wholly or partially by changes outside our control.

Figure 2

TYPICAL SURFACE SETTLEMENT aMONUMENT

Figure 3: Retaining Wall Detail, Sand Backfill

Project Name	Pardee/Skyline
Project No.	$153035-01$
Eng. / Geol.	BIH/SMB
Scale	n / a
Date	March 2016

APPENDIX A

References

American Society of Civil Engineers (ASCE), 2013, Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-10, Third Printing, 2013.

California Geologic Survey, 1998, State of California Seismic Hazard Zone Map, Mint Canyon 7.5 Minute Quadrangle, Los Angeles County, California.
\qquad , 1998, Seismic Hazard Evaluation Report of the Mint Canyon 7.5-Minute Quadrangle, Los Angeles County, California, SHZR 018.
\qquad , 2008, Guidelines for evaluating and mitigating seismic hazards in California, Special Publication 117a: California Geological Survey

California Building Standards Commission, 2013, California Building Code, California Code of Regulations Title 24, Volumes 1 and 2, dated July 2013.

County of Los Angeles Department of Public Works, Geotechnical and Materials Engineering Division, Geologic Review and Soils Engineering Review Sheets dated October 29, 2015, Tentative Tract Map 060922-1, Tentative Map Dated October 7, 2015, Santa Clarita.
__, Geotechnical and Materials Engineering Division, Geologic Review and Soils Engineering Review Sheets dated September 18, 2014, Approval Letter, Tract 60922, Santa Clarita, Skyline Ranch, Miscellaneous Transfer Drain No. 2628, P.D. 2628.
__, Geotechnical and Materials Engineering Division, Geologic Review and Soils Engineering Review Sheets dated June 16, 2014, Approval Letter, Tract 60922, Santa Clarita, Skyline Ranch, Grading P.C. No 60922-01R1.

Dibblee, T.W., Jr., 1996, Geologic Map of the Mint Canyon Quadrangle, Los Angeles County, California: Dibblee Geological Foundation Map \# DF-57, Scale $=1: 24,000$.

Geolabs-Westlake Village, Inc., July 15, 2014, Response to GMED Review, P.D. 2628, Skyline Ranch, Santa Clarita Area, County of Los Angeles, California (W.O. 8838).
__, May 20, 2014, Response \#4 to GMED Review and Summary of Minor Grading Plan Modification, Phase 1A Grading, Tentative Tract 60922, Skyline Ranch, Santa Clarita Area, County of Los Angeles, California, Grading Plan Check No. 60922-00R1, (W.O. 8838).
__, January 6, 2014, Response \#2 to GMED Review, D.S. 540, Skyline Ranch Road, County of Los Angeles, California (W.O. 8838).

APPENDIX A

References (cont.)
__, October 1, 2013, Response \#3 to GMED Review, Phase 1A Grading, Tentative Tract 60922, Skyline Ranch, Santa Clarita Area, County of Los Angeles, California, Grading Plan Check No. 60922-00R1, (W.O. 8838).
__, August 27, 2013, Grading Plan Review, Phase 3 of Tract 60922, Skyline Ranch, Santa Clarita Area, County of Los Angeles, California, (W.O. 8838).
__, April 23, 2013, Response \#2 to GMED Review, Phase 1A of Tentative Tract 60922, Skyline Ranch, Santa Clarita Area, County of Los Angeles, California, Grading Plan Check No. 6092200R1, (W.O. 8838).
__, April 1, 2013, Grading Plan Review, Phase 2 of Tract 60922, Skyline Ranch, Santa Clarita Area, County of Los Angeles, California, (W.O. 8838).
__, January 25, 2013, Response to GMED Review, D.S. 540, Skyline Ranch Road, County of Los Angeles, California, (W.O. 8838)
__, July 27, 2012, Response to GMED Review, Phase 1A of Tract No. 60922, Skyline Ranch, Santa Clarita Area, County of Los Angeles, California, Grading Plan Check No. 60922-00R1, (W.O. 8838).
__, March 7, 2012, Geotechnical Review, Storm Drain Plans for P.D. 2627 within D.S. 540, County of Los Angeles, California (W.O. 8838).
__, March 5, 2012, Grading Plan Review, D.S. 540, Skyline Ranch Road, County of Los Angeles, California, (W.O. 8838).
__, January 20, 2012, Grading Plan Review, Phase 1A of Tract No 60922, Skyline Ranch, Santa Clarita Area, County of Los Angeles, California, (W.O. 8838).
__, August 28, 2008, Addendum Geotechnical Report, Tentative Tract Map No. 060922, Skyline Ranch, Santa Clarita Area, County of Los Angeles, California, (W.O. 8838).
__, July 25, 2007, Geotechnical Review of Mass Grading Plans (Scale 1" $=40$ feet), Tentative Tract Map No. 060922, Skyline Ranch, Santa Clarita Area, County of Los Angeles, California, (W.O. 8838, Volumes I through VI).
\qquad , April 13, 2007, Response to Soils Engineering Review Sheet dated February 8, 2007, Tentative Tract Map No. 060922, Skyline Ranch, Santa Clarita Area, County of Los Angeles, California, (W.O. 8838).
__, November 16, 2006, Addendum Geotechnical Report, Tentative Tract Map No. 060922, Skyline Ranch, Santa Clarita Area, County of Los Angeles, California, (W.O. 8838).

APPENDIX A
 References (cont.)

Hart, 1994, Fault-Rupture Hazard Zones in California, Alquist-Priolo Special Studies Zones Act of 1974 with Index to Special Studies Zones Maps, CDMG, SP Map No. 1.

Ishihara, K., 1985, "Stability of Natural Deposits During Earthquakes". Proceedings of the Eleventh International Conference on Soil Mechanics and Foundation Engineering. A.A. Bakema Publishers, Rotterdam, Netherlands.

Larson, R.A., and C.I. Buckley, November 3, 1990, Geology and Engineering Geology of the Western Soledad Basin, Los Angeles County, California: Southern California Section of the Association of Engineering Geologists, Field Trip Guidebook.

LGC Valley, Inc., January 22, 2016, 40-Scale Grading Plan Review, Tract 46018-11, Park Site, Skyline Ranch Road, and Multi-Family Site, Plum Canyon, County of Los Angeles, California (W.O. 153034-01).

Post-Tensioning Institute, 2006, Design of Post Tensioned Slabs-on-ground, Third Addition, Addendum 1 dated May 2007, and Addendum 2 Dated May 2008, with errata February 4, 2010.

Pradel, D., 1998, "Procedure to Evaluate Earthquake Induced Settlements in Dry Sandy Soils", Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 4, April 1998.

Sadigh, K., Chang, C.-Y., Egan, J.A., Makdisi, F., and Youngs, R.R. (1997), "Attenuation Relations for Shallow Crustal Earthquakes Based on California Strong Motion Data," Seismological Research Letters, Vol. 68, No. 1, pp. 180-189.

Saul, Richard B. and Tom M. Wootton, 1983, Geology of the South Half of the Mint Canyon Quadrangle, Los Angeles County, California: DMG OFR 83-24.

Seed, H.B., Tokimatsu, K., Harder, L.F., and Chungh, R.M., 1985, "Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations," Journal of Geotechnical Engineering, Vol. 111, No. 12, December 1985.

Tokimatsu, Kohji, and Seed, H.B., "Evaluation of Settlements in Sands Due to Earthquake Shaking," Journal of Geotechnical Engineering, Vol. 113, No. 8, August 1987.

United States Geological Survey (USGS), 2008a, "2008 National Seismic Hazard Maps - Fault Parameters" Retrieved December 17, 2013, from:
http://geohazards.usgs.gov/cfusion/hazfaults_search/hf_search_main.cfm
___, 2008b, "2008 Interactive Deaggregations (Beta)," Retrieved December 12, 2013, from: https://geohazards.usgs.gov/deaggint/2008/
__, 2013, U.S. Seismic Design Maps, Retrieved December 12, 2013, from: http://geohazards.usgs.gov/designmaps/us/batch.php\#csv

APPENDIX B

LGC Boring Logs

Borings B-LGC-1 through B-LGC-4

Geotechnical Boring Log B-LGC2

APPENDIX B

Excavation Logs By Others

LOG OF BORING B3

Orientation Summary Table BIPS Features

Santa Clarita Project, Boring: \#7
September 10, 2002
ATTITUDES CORRECTED + 14 DEG. FOR MAGNETIC DECLINATION FEATURES IN BOLD CONSIDERED BEDDING-RELATED

	Feature No.	Depth (meters)	Depth (feet)	Strike and Dip Angle (degrees)	$\begin{gathered} \text { Feature } \\ \text { Rank } \\ (0 \text { to } 5) \end{gathered}$	1
FEATURE DESCRIPTION						CORRECTED ATTITUDE
Top of cobble	1	494	162	N 40W 47NE	0	N54W/ 47NE
Bottom of cobble	2	526	173	V 98 W 29 N	0	N78E/ 29NW
Gravel lense	3	763	250	N 30 E 3 N	1	N66E/37NW
Pebble brsected by core	4	774	254	N 27E 58E	0	N13E/ 58SE
Channel	5	10.04	329	V 10 W 36 SW	2	N54W/ 36SW
Top of sandstone	6	1024	33.6	N 31 El 10 S	3	N67El 10SE
ADPx bottom of sandstone	7	1171	38.4	N +0E 14SE	0	N26E/ 14SE
Bottom of cobble	8	1198	39.3	N 84 E 39 S	0	N70E/ 39SE
Pebbles	9	1251	410	N63W 29N	0	N7TW/ 29NE
Pebbles	10	1266	415	N $38 W 27 \mathrm{~S}$	0	N78E/ 27SE
Pebbles	11	1329	436	v 53 W 24 S	1	N77WI 24SW
Pebbles	12	1341	44.0	- 51E 30NW	0	N37E/ 30NW
Top of pebble	13	1386	455	V 78 W 18N	$1)$	N88E/ 18NW
Bottom of pebble	14	1395	45.8	N ${ }^{\text {dW }}$ 20N	0	N88W/ 20NW
Grave! lense	15	1529	502	V $30 W 275 W$	0	N44WI 27SW
Top of cobble	16	15.33	50.3	V $33 E 17 \mathrm{NW}$	0	N19E/ 17NW
Bottom of cobble	17	1571	51.5	V 4 W 45 W	0	N18W/ 45SW
Bottom of pebble	18	1651	54.2	$\therefore 56 \mathrm{E} 47 \mathrm{NW}$	1	N42E/ 47NW
Top of cobble	19	1695	556	V 29 E 31 E	0	N15E; 31SE
Bottom of cobble	20	1729	56.7	V36E 18SE	0	N22E! 18SE
Top of cobble	21	1841	60.4	VS 44W	0	N14WI 44SW
Sottom of cobble	22	1859	61.0	V11W21E	0	N25W/ 21NE
Appx Channel	23	1993	65.4	N77W 415	1	N89E/ 41SE
Appx Channel	24	2017	662	V 44W 35SW	1	N58W/ 35 SW
Appx Channel	25	2024	664	N 37W 45SW	1	N51W/ 45SW
Top of pebble	26	2135	701	N 53E 23SE	1	N39E/ 23SE
Too of cobble	27	2157	708	N62W 51N	0	N76W/ 51NE
Appx Channel	28	2183	716	N 19W 43W	0	N33W/ 43SW
Bottom of cobble	29	2201	72.2	N 51W 28SW	0	N65W/ 28SW
Appx Channel	30	22.59	74.1	N 26W 35W	0	N40W/ 35SW
Bottom of pebble	31	2485	81.5	N 2W 41W	1	N16W/41SW
Top of cobble	32	25.03	82,1	N 29E 23 W	0	N15E/ 23NW
Bottom of cobble	33	25.16	82.5	N 46W 29NE	0	N60W/ 29NE
Bottom of cobble	34	2635	86.4	N 87W 28N	0	N79E/ 28NW
Top of cobble	35	27.19	8922	N 56W 46NE	0	N70WI 46NE
Bottom of cobble	36	27.33	89.68	N 26E 19E	0	N12E/ 19SE
Tod of cobble	37	2906	95.34	N 9E 14W	0	N5WI 14SW
Top of cobble	38	29623	97.19	N 36E 48NW	0	N25E/ 48NW
Bottom of cobble	39	29825	97.85	N 43E 7SE	0	N29E/ 7SE
Pebbles	40	30.357	9960	N 14E29E	0	NS/ 29E
Btm of Cobble/Top of SS	41	31.619	103.74	N 6E 21W	0	N8W/ 21SW
Scour/Channel	42	32.305	105.99	N 26W 28E	1	N4OW/ 28NE
Top of sandstone	43	32343	106.12	N 17W 16W	0	N31W/ 16SW

All directions are with respect to magnetic north

Orientation Summary Table
 RIPS Features

Santa Clarita Project, Boring: \# 7
September 10, 2002

FEATURE DESCRIPTION	Feature No.	Depth (meters)	Depth (feet)	Strike and Dip Angle (degrees)	Feature Rank $(0 \text { to } 5)$	CORRECTED ATTITUDE
Channel?	44	32768	10751	N 25 W 31W	0	N39W/ 31SW
Too of cobble	45	344	11286	N 85 E 20 N	0	N71E/ 20NW
Top of sandstone	46	34774	11409	N 66W 22S	1	N80W/ 22SW
unknown	47	34992	11481	N 72W 18N	0	N86W/ 18NE
unknown	48	35017	11489	N 66E 46S	0	N52E/46SE
Channel?	49	36.298	11909	N 78 W 44 N	2	N88E/ 44NW
Channel?	50	37.616	12342	N 23E 27E	0	N9E/ 27SE
Top of cobble	51	37.708	12372	N 12E 29E	0	N2W/ 29NE
Tod of cobble	52	38517	12637	N 42E 29SE	0	N28E/ 29SE
Too of cobble	53	38.893	12761	N 42E 22NW	0	N28E/ 22NW
Graveily Sandstone/Fine SS	54	41.221	13524	N35W 13SW	0	N49W/ 13SW
Pebble	55	41.641	13662	N 32W 33NE	0	N46W/ 33NE
Appx. Top of Sandstone	56	$+172$	13688	N 56W 13SW	0	N70W/ 13SW
Tco of Pebbles	57	42.143	13827	N 69 W 24 N	0	N83W/ 24NE
Bortom of Cobble	58	43626	14313	N 40W 35NE	0	N54WI 35NE
Tod of sandstone	59	43964	14424	N38W 24SW	0	N52W/ 24SW
Alopx Bottom of gravel lense	60	44.422	14575	N $37 W 35 \mathrm{SW}$	0	N51W/ 35SW
unknown	61	46059	151.12	N 70 W 43 N	0	N84W/ 43NE
Too of cobble	62	4692	15394	N 77E42S	0	N63E/42SE
Bortom of cobble	63	47.026	15429	EW 17S	0	N76E/ 17SE
Too of cobble	64	48323	15855	N 54W 14SW	0	N68W/ 14SW
Sottom of Cobble	65	48.517	15918	N 88E 16S	0	N74E/16SE
Too of sandstone	66	50466	16558	N 36W 15SW	0	N50W/ 15SW
Too of cobble	67	53126	17430	N 39W 38SW	0	N53W/ 38SW

ATTITUDES CORRECTED + 14 DEG FOR MAGNETIC DECLINATION
FEATURES IN BOLD CONSIDERED BEDDING-RELATED

Orientation Summary Table

 BIPS FeaturesSanta Clarita Project, Boring 8 .
September 17, 2002
ATTITUDES CORRECTED + 14 DEG. FOR MAGNETIC DECLINATION FEATURES IN BOLD CONSIDERED BEDDING-RELATED

	FEATURES IN BOLD CONSIDERED BEDDINS-RELATED					
	Feature No.	Depth	Depth	Strike and Dip Angle	Feature Rank	1
FEATURE DESCRIPTION		(meters)	(feer)	(degrees)	(0 to 5)	CORRECTED ATTITUDE
Gravei stringer	1	$4+4$	14.6	N 54W 34SW	0	N68W/ 34SW
Aodrox Bedding	2	457	15.0	N 75 W 47 S	0	N89W/ 47SW
Cross Bedding	3	519	17.0	N 11W 54W	0	N25W/ 54SW
Gravel Lense	4	606	199	N 76E 26S	0	N62E! 26SE
Approx Bedding	5	1095	359	N63W33S	0	N7TWI 33SW
Unknown	6	1377	452	N 41 W 12NE	0	N55W/ 12NE
Bottom of Gravel	7	1427	46.8	N68E37N	0	N54E/37NW
Tod of Grave! Lense	8	1587	52.1	V28E18E	0	N14E/ 18SE
Top of Gravel Lense	9	1685	553	N $79 W 37 \mathrm{~N}$	0	N87E/ 37NW
Too of Gravel Lense	10	1953	64.1	N 5 E 25 E	0	N9W/ 25NE
Bottom of Pebble	11	1960	643	N 3 E 30 E	0	N11W/ 30NE
Approx Top of Sandstone	12	2057	675	N 10W 25E	0	N24W/ 25NE
Ton of Boulder	13	2138	70.1	N SE 67W	0	N6W/ 67NE
Btm of Bouder	14	2169	71.2	V 24 W 25 W	0	N38W/ 25SW
Top of Sandstone	15	2193	72.0	N61W16S	0	N75W/ 16SW
Bottom of Pebble	16	2210	72.5	N H2W 21NE	0	N56W/ 21NE
Stained Sandstone Bed	17	2363	77.5	N 49 W l3SW	1	N63W/13SW
Fracture	18	2874	943	V 43 W 71 SW	2	N57W/ 12SW
Cobble	19	3024	992	v 27W 24W	0	N41W/ 245 W
Fracture	20	3334	1094	N13W37W	0	N27W/ 37SW
Unknown	21	3347	1098	V1+W 32W	0	N28W/ 32SW
Sancsione Lamination	22	3407	111.8	N +2W 12SW	0	N56W/ 12SW
Approx Sandstone Channel	23	3456	1134	N67W 285	0	N81W/ 28SW
Boitom of Cobble	24	3695	121 ?	N 48 W 38 SW	0	N62W/38SW
Bottom of Cobble	25	3754	1232	N68E 22N	0	N54E/22NW
Top of Cobble	26	3948	1295	N26E16E	0	N12E/ 16SE
Bottom of Cobble	27	3978	1305	N 74E7S	0	N60E/ 7SE
Bottom of Pebble	28	43.53	1428	N $48 W$ SSW	0	N62W/ 5SW
Aoprox Top of Sandstone	29	4364	1432	N 43 W 39 SW	0	N57W/ 39SW
Laminated Sandstone	30	4431	145.4	N 45 W 20 SW	0	N59W/ 20SW
Bottom of Sandstone	31	4461	1464	N 26W 35W	0	N40W/ 35SW
Bottom of Pebble	32	4516	148.2	N 15W 52W	0	N29W/ 52SW
Bottom of Pebble	33	4852	159.2	N 86W 22N	0	N80E/ 22NW
Unknown	34	4970	1631	N 77E 32S	0	N63E/32SE
Bottom of Sandstone	35	5031	165.06	N 58W 16SW	0	N72W/16SW
Top of Sandstone	36	5341	175.23	NS 18W	0	N14W/ 18SW
Laminated Sandstone	37	53555	175.71	N:7W 21 W	0	N41W/ 21SW
Laminated Sandstone	38	53713	176.23	N 29W 21 W	0	N43W/ 21SW
Bottom of Sandstone	39	53872	176.75	N 24W 43W	0	N38W/ 43SW
Apprx Gravelly Sandst.	40	54384	178.43	N 76E 22N	0	N62E/ 22NW
Bettom of Clayey Sandstone	41	54616	17919	N 16E16W	0	N2E/ 16NW
Unknown	42	54.635	179.25	N 64E 51N	0	N50E/51NW
Laminated Sandstone	43	59384	194.84	N 9W 16W	0	N25W/ 16SW

Orientation Summary Table
 BIPS Features

Santa Clarita Project, Boring 8
September 17, 2002

DEPTH (ft)	DIP DIRECTION AZIMUTH (MAGNETIC)	DIP DIRECTION AZIMUTH CORRECTED TO TRUE NORTH ${ }_{1}$	STRIKE AZIMUTH2	STRIKE AND DIP OF FEATURE	TYPE OF FEATURE
16.9	337	323	233	N53E/66NW	FRACTURE
18.5	3	-11	-101	N79E/46NW	FRACTURE
23.8	138	124	34	N34E\%65E	FRACTURE
45.1	205	191	101	N79W/43SW	APPX. BEDDING
45.8	25	11	-79	N79W/38NE	APPX. CHANNEL
48.7	338	324	234	N54E/37NW	APPX. BEDDING
50.6	33	19	-71	N71W/27NE	BEDDING
56.7	178	164	74	N74E/34SE	CLASTS
58.5	180	166	76	N76E/50SE	TOP OF CLAST
60.3	301	287	197	N17E/42NW	BOTTOM OF CLAST
65.7	186	172	82	N82E/17SE	TOP OF CLAST
67.7	308	294	204	N44E54NW	FRACTURE
68.1	178	164	74	N74E/39SE	APPX. CHANNEL
72	85	71	-19	N19W/19NE	BEDDING
75.3	12	-2	-92	N88E/30NW	APPX. BEDDDING
81.1	261	247	157	N23WI14SW	APPX. BEDDING
84.6	248	234	144	N36W/21SW	APPX. BEDDING
89	299	285	195	N15E/13NW	APPX. BEDDING
94.2	231	217	127	N53W/48SW	MUD ON SIDEWALLS?
94.4	30	16	-74	N74W/11NE	BEDDING
100	36	22	-68	N68W/9NE	BEDDING
104.7	250	236	146	N34W/54SW	FRACTURE
106.4	213	199	109	N71W/23SW	BEDDING
108.3	156	142	52	N52E/28SE	BEDDING
113	65	51	-39	N39W/19NE	BEDDING
113.6	0	0	0	HORIZONTAL	BEDDING
114.2	16	2	-88	N88W/28NE	APPX BEDDING
1168	127	113	23	N23E/6SE	APPX BEDDING
1198	191	177	87	N87E/2SE	BEDDING
120.6	355	341	251	N71E/16NW	BEDDING
124	252	238	148	N32W/14SW	BEDDING
126.6	325	311	221	N41E/20NW	BEDDING
129	209	195	105	N75W/4SW	BEDDING

129.7	352	338	248	N68E/20NW	BEDDING
132.8	50	36	-54	N54W/3NE	APPX BEDDING
134	354	340	250	N70E/9NW	APPX. BEDDING
142.7	232	218	128	N52W/59SW	SCOUR
145.3	233	219	129	N51W/37SW	CLAST
146	256	242	152	N28W/62SW	CLAST
146.3	98	84	-6	N6W/10NE	APPX. BEDDING
153.4	196	182	92	N88W/38SW	CHANNEL
158.7	94	80	-10	N10W/7NE	BTM OF CLAST
164.2	104	90	0	DUE N/26E	BTM OF CLAST
166.1	187	173	83	N83E/23SE	TOP OF CLAST
166.4	174	160	70	N70E/12SE	BTM OF CLAST
178.1	329	315	225	N45E/43NW	CHANNEL
180.6	12	-2	-92	N88W/45NE	CHANNEL
186.2	98	84	-6	N6W/17NE	TOP OF CLAST
188	102	88	-2	N2W/19NE	BTM OF CLAST

4. FEATURES IN BOLD CONSIDERED PERTINENT FOR PLOTTING ON GEOLOGIC MAP

\(\left.$$
\begin{array}{|c|c|c|c|c|c|}\hline \begin{array}{c}\text { DEPTH } \\
(\mathrm{t})\end{array} & \begin{array}{c}\text { DIP DIRECTION } \\
\text { AZIMUTH } \\
\text { (MAGNETIC) }\end{array} & \begin{array}{c}\text { DIP DIRECTION AZIMUTH } \\
\text { CORRECTED TO TRUE NORTH }\end{array} & \begin{array}{c}\text { STRIKE } \\
\text { AZIMUTH2 }\end{array}
$$ \& \begin{array}{c}STRIKE AND

DIP OF

FEATURE\end{array} \& TYPE OF FEATURE\end{array}\right]\)| BEDDING |
| :---: |
| 6 |
| 260 |

4. FEATURES IN BOLD CONSIDERED PERTINENT FOR PLOTTING ON GEOLOGIC MAP

BORING 22
SKYLINE RANCH, VTTM 060922
\(\left.$$
\begin{array}{|c|c|c|c|c|c|}\hline \begin{array}{c}\text { DEPTH } \\
\text { (ft) }\end{array} & \begin{array}{c}\text { DIP DIRECTION } \\
\text { AZIMUTH } \\
\text { (MAGNETIC) }\end{array} & \begin{array}{c}\text { DIP DIRECTION AZIMUTH } \\
\text { CORRECTED TO TRUE NORTH1 }\end{array} & \begin{array}{c}\text { STRIKE } \\
\text { AZIMUTH } 2\end{array}
$$ \& \begin{array}{c}STRIKE AND

DIP OF

FEATURE\end{array} \& TYPE OF FEATURE\end{array}\right]\)| TOP OF COBBLE |
| :---: |
| 2.2 |

1. MAGNETIC DIP AZIMUTH CORRECTED 14 DEGREES TO TRUE NORTH
2. STRIKE AZIMUTH OF FEATURE OBTAINED FROM CORRECTED DIP AZIMUTH
3. OPTICAL LOG REVIEWED TO DETERMINE FEATURE TYPE
4. OPTICAL LOG REVIEWED TO DETERMINE FEATURE TYPE 4. FEATURES IN BOLD CONSIDERED PERTINENT FOR PLOTTING ON GEOLOGIC MAP

3

[^2]

[^3]

SUBSURFACE DATA
LOG OF BORING B82

SUBSURFACE DATA
LOG OF BORING B92

LOG OF BORING B92

PACIFIC SOILS ENGINEERING, INC.

Boring Log

PROJECT: WESTON - WHITES CANYON

$\begin{aligned} & \underset{ \pm}{ \pm} \\ & \stackrel{5}{\Delta} \\ & \frac{0}{0} \end{aligned}$		$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ 0 \\ 0.0 \\ 0 . \\ 5 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & \pm \\ & \text { in } \\ & \frac{0}{0} \\ & \frac{0}{0} \end{aligned}$	$\begin{aligned} & \overline{0} \\ & 3 \\ & 0 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \text { s } \\ & \text { s } \\ & \text { s. } \\ & \text { 辰 } \end{aligned}$	$\begin{aligned} & 0 \\ & 5 \\ & 50 \\ & 0 \\ & 0 \end{aligned}$
0						

Boring Date Sample Method:

B-115
11-16-88
W.O. 11143-A

Sheet ${ }^{1}$ OF 3 241By: M.M. /W.J. 2700 \# to 23% 1600\# to 45 800\# below 45'

Description

SOIL: Silty Sand, tan, dry, loose.
BEDROCK, SAUGUS FORMATION (TQs): Silty Clayey Sandstone
dense, 10% redbbrown, medium coan and pebbles.
Cobble bed: attitude: N80E, 35NW.
Clayey sandstone, tan, coarse grained, pebbles and cobbles, slightly moist, dense.

Fault: attitude: NTOW, 60SW; SW side of hole up.

Claystone bed, red, 6 inch thick sheared and discontinuous around the hole. At the bottom of the bed; attitude: N35E, 15NW.

Cobble bed, attitude: N55E, 26 NW.
Claystone bed, red-brown randomly sheared, occasional caliche, about 1 inch thick, at the base: attitude: N5OE, 30NW.
$116.8 \quad 12.1$

cobble bed, attitude: N55E, 26 NW.	
	claystone bed, red-brown randomly sheared, occasional caliche, about inch thick, at the base: attitude: N50E, 30NW.

W.O. 11143-A

Sheet 2 OF 3
By: M.M. W.J. 271 Bucket Auger
$2700 \#$ to 23',
1600\# to 45, 800\# below 45'

Description

Sandstone bed, medium-grained. Northwest side of boring; attitude: N55E, 17NW.

Sandstone, medium to coarse grained, occasional pebbles, very pebbly at 35 feet.

Claystone, red to red-brown, attitude is very good and consistent around the boring: N10E, 16 NH . This bed is approximately 3 feet thick.

Claystone bed, 2 feet thick, attitude: N45E, 22NW.

Claystone contact very pebbly and coarse above, red
clay below; attitude N50E, 18 NW .

Sandstone, coarse-grained, pebbly, moist, well
cemented.

Gravelly Claystone, dark brown, moist, dense.

Clayey Sandstone, red-brown, moist, sheared.
Cobble bed, attitude: N2OE, 5NW.

Rocks, switched to 24 inch coring bucket.

Clayey Sandstone, tan, moist.
Clayey Sandstone tan with light grey streaks, dense with rocks 4 inch to 8 inch in diameter.

\square chann

0-3

3-5
Total Depth - 5^{\prime} No caving
from 3'-4', grad
slightly moist.
No groundwater
Soil/Colluvium: Clayey gravelly fine to medium grat
$6^{\prime \prime}$ depth, sharp contact with underlying bedrock. subangular to subround clasts commonly $1^{\prime \prime}$ to $6^{\prime \prime}$ diameter, channel deposits, very dense, slightly dry, carbonate precipitation th light red brown clayey fine grained SANDSTONE, poorly indurated, very dense, \qquad
Comments
OHWM -
ordinary high
water mark
tly dry.

Date Excavated:

Depth (ft)
0-2.5
2.5-6

Total Depth - 6'
No caving

abundant root hairs.

Saugus Formation: s peu!es6 әu! доu!u \square \square
.

Comments OHWM - ordinary high water mark Shears: N55W/35NE N30W/2ONE

2

Date Excavated: 11/20/03 \quad Client: Pardee Homes

Logged By: SBS

LOG OF EXCAVATION
Trench No. TP12

Depth (it)
Depth (it)
$0-4.5$ Soil/Colluvium: ed, very dense, slightly dry.
Description

0-4.5
4.5-7

	$\begin{array}{l}\text { Total Depth - 7' } \\ \text { No groundwater } \\ \text { No caving }\end{array}$
S.	
Mraphic Log	

| 0-15 Alluvium: Dark clayey silty SAND to silty sandy CLAY with abundant subrounded cobbles and boulders, porous, abundant roots |
| :--- | :--- |
| to 4', dry and loose. |
| 15-18 Mint Canyon Formation: Yellowish olive brown cobbly CONGLOMERATE, cemented, dry, very hard, massive. |

arse SAND
ense, massive.
\square

LOG OF EXCAVATION
Trench No. TP30
Logged By: AH
Client: Pardee Homes
Date Excavated: 3/2706
Description
Colluvium: Brown silty SAND with gravel, roots, very moist.
Depth (ft)
$0-1$
$1-8.5$
Total Depth - 8.5^{\prime}
No caving
Backfilled

LOG OF EXCA	VATION	Logged By: NM	Date Excavated:	5/23/06	Client:	Pardee H		
Depth (ft) 0-4 4-6 6-7	Description Alluvium: Dark brown sandy silty CLAY with dispersed rounded and subrounded granitic boulders up to 3' diameter (approximately 25% are greater than 12" diameter), very moist, medium stiff, rootlets. Dark brown clayey fine to coarse grained SAND with gravels, cobbles, and lesser boulders (less than 10\%), well graded, moist, dense. Mint Canyon Formation: Sharp undulating contact with light grayish to yellowish brown medium grained SANDSTONE with occasional coarse sand lenses, moderately graded, moist, very dense. Total Depth - 7 \% No groundwater No caving Backilled							
\|303raphic Log								

Alluvium: Dark brown fine to coarse grained sandy CLAY with abundant gravels, cobbles and lesser boulders (approximately 30\% greater than $12^{\prime \prime}$ diameter), well graded, moist to very moist, medium stiff.
8-10 Mint Canyon Formation: Light gray fine to coarse grained gravel cobble CONGLOMERATE with occasional boulders approximately

0-3 slightly moist, medium dense.
Alluvium: Medium brown coarse grained gravelly SAND with abundant cobbles and boulders (approximately 25% greater than 12 " diameter), well graded, subangular to rounded clasts typically $6^{\prime \prime}$ to $18^{\prime \prime}$ diameter (up to $3^{\prime \prime}$), moist to wet at 8^{\prime}, medium dense.
Mint Canyon Formation: Light gray gravel cobble CONGLOMERATE with sandstone supported matrix, very moist, very dense
Seep at 9^{\prime} (bottom of alluvium)
No caving
Description
ameter),
n
$\frac{2}{D}$
E
E
0
0

5-7 Mint Canvon Formation: Grayish green to greenish gray fine to medium grained SANDSTONE with occasional white calciun carbonate stringers, poorly graded, occasional blocky planar randomly oriented fractures, moist to very moist, very dense.
Description Alluvium: Medium brown silty fine to coarse grained gravelly SAND with abundant subangular to rounded cobbles and boulders (approximately 15% greater than 1 ' diameter), occasional pockets of clean gravelly SAND, well graded, clasts typically a few inches
Depth (ft)
$0-5$
Total Depth - 7^{\prime}
No groundwater
No caving
Backfilled

```
5-7
```


LOG OF EXCAVATION
Trench No. TP112

Total Depth -6^{\prime} No groundwater No caving

Depth (ft)

Description

moist, very dense. Mint Canyon Form grains, poorly grad

grains, poorly graded, massive, moist, very dense.
Light greenish gray sandy CONGLOMERATE, irr
2.5-5
0-2.5
5-6

Description

0-4.5 Alluvium: Medium brown silty fine to coarse grained gravelly SAND with cobbles and lesser boulders (approximately 15\%), several clasts up to approximately 2^{\prime} diameter (fractures when hit with bucket) but typically 1-3" diameter, well graded, slightly friable in bottom 1' (less fines), moist, medium dense.
4.5-6 Mint Canyon Formation?: Light gray gravel cobble CONGLOMERATE, moist, very dense, massive.
otal Depth - 6^{\prime} No groundwater
OG OF EXCAVATION Trench No. TP116
Depth (tt)
No caving
Backfilled
Backfilled

Client: Pardee Homes
 Date Excavated: 6/8/06

Colluvium: Dark brown sandy CLAY with scattered gravels and cobbles (approximately 5% are gravel to cobble clasts), rootlets, porous, moist, medium stiff.
Saugus Formation: Sharp contact with light brown fine grained SANDSTONE with occasional scattered gravels and lesser cobbles, massive, poorly graded, moist, very dense, color change to light reddish brown at 5.5^{\prime}.

0-3

Total Depth - $\mathbf{6}^{\prime}$
No groundwater
No caving

рә|щ>ея

LOG OF EXCÁVÁTIÓN
Trench No. TP162

Alluvium: Medium brown fine to coarse grained gravelly SAND with scattered cobbles and very sparse boulders up to 1.5 ' diameter (one at surface approximately 2 ' diameter), well graded, loose to medium dense, dry, rootiels.
Saugus Formation: Light brown sandy CONGLOMERATE with fine to coarse grained sandstone supported matrix, massive, moist, very dense.
Total Depth - 4' No groundwater
No caving
Depth (ft)
$0-1.5$
1.5-4

Topsoil: Brown very clayey fine to coarse grained SAND, graded, dense, moist.

Saugus Formation: Yellowish brown clayey silty fine to coarse grained SANDSTONE, graded, dense to very dense, moist, weakly indurated, dry, white carbonate veins throughout, rootlets.

Fine grained gravels in SANDSTONE.

Mottled appearance (brown, olive green, yellowish brown) in SANDSTONE, olive green colored material is finer grained (fine to medium grained sandy clayey SILTSTONE).
Grades to yellow brown fine to medium grained SANDSTONE, hard, moist.
, hard, most

| LOG OF EXCAVATION | | | |
| :--- | :--- | :--- | :--- | :--- |
| Trench No. TP180 | Logged By: RMP | Date Excavated: $8 / 4 / 06$ | Client: Pardee Homes |

Depth (ft)
$0-1.5$
1.5-3.5
3.5-4
Topsoil: Dark brown silty fine to coarse grained SAND with subangular fine gravel, graded, medium dense, moist, weakly cemented,
rootlets.
Colluvium: Yellowish brown very silty fine grained SAND, poorly graded, medium dense, moist, weakly cemented, pervasive
Description
Colluvium: Yellowish brown very silty fine grained SAND, poorly graded, medium dense, moist, weakly cemented, pervasive fracturing filled with white carbonate veins, rootlets.
 cemented. Saugus Formation; Mottled dark yellowish brown silty fine grained SANDSTONE to fine grained sandy SILTSTONE, poorly graded, very dense to hard, moist, weakly cemented, and olive green clayey silty fine to coarse grained SANDSTONE, graded, very dense. moist, weakly cemented.
3-4" thick discontinuous channel deposit, olive green fine gravel CONGLOMERATE with silty fine to coarse sand matrix, graded, weakly cemented, subangular to subrounded.

Total Depth - 9^{\prime}

 No groundwater No cavingBackfilled

NH5E \rightarrow

Comments
@4' B
N24W/16SW

Client: Pardee Homes
rootlets.
Comments
\square
se, moist,

Colluvium: Brown cobbly SAND with clay and scattered subrounded boulders up to 24 " diameter, predominantly granitic lithologies, dry and medium dense.
Depth (ft)
$0-2$
2-4 Saugus Formation: Yellowish tan gravel CONGLOMERATE with scattered subrounded granitic cobbles up to $18^{\prime \prime}$ diameter, matrix supported, matrix consists of poorly sorted sand, moderately cemented, refusal at 4' due to cementation and boulder, massively bedded, dry and very dense.
$0-2$
$2-4$

of sidewalls from 0-2
 容

No groundwater
2.5-5 Saugus Formation: White to light gray sandy CONGLOMERATE, massive bedding, subrounded clasts from $1^{\prime \prime}$ to $18^{\prime \prime}$ diameter, predominantly granitic and monzonite composition, matrix supported with poorly sorted silty sand, dry and dense, poorly cemented, friable.
Total Depth - 5' Depth (ft)
0-2.5 Colluvium: Grayish brown sandy CLAY with gravel and lesser cobbles, clasts typically subrounded granitics, slightly dessicated Tontill No caving
\qquad
Description

Total Depth - 5^{\prime} No groundwater No caving
$s-\varepsilon$
$\varepsilon-0$
(H) पाईव
Comments

@4' Fracture
N33W/34SW
@5' Approx.
BN3E/20NW
BN2W/20SW

Comments

$\begin{gathered} \text { Depth (ft) } \\ 0-18^{\prime \prime} \end{gathered}$	Description Slope Wash: Medium brown sandy CLAY, dry, loose, porous, desiccated rootlets throughout.
$18 \prime-6^{\prime}$ $6-8$	Saugus Formation: Medium orange brown silty SAND, frequent subrounded coarse sands, small pebbles, carbonate nodules and veins, rootlets, dry, medium firm. Light grey to brown fine to coarse SANDS and GRAVELS, dry, dense, well-graded, gravels subrounded to subangular, rootlets.
8-9	Medium orange brown, silty SAND, to sandy SILT, slightly moist, dense, carbonate nodules, occasional subrounded coarse sands and pebble.
	NE SW

0
0
0
1
0
等
0
0
0
0
5
530
Client: Pardee-Monarch Hills
comments
Date Excavated: 8/8/95
Mつ : Кq рәббол
LOG OF EXCAVATION
Trench No. 4

Depth (ft)	Description $0-3$
Slope Wash: Dark brown clayey SILT, dry, loose, very porous, cobbles at base of unit, rootlets, desiccation cracks.	
$3-5-7.5$	Saugus Formation: Medium brown fine to coarse SAND, well-bedded, some black mineral lineation, slightly moist, loose. Medium brown to reddish brown silty sAND, fine to coarse gravels and cobbles, moist, dense, subangular cobbles, moderately graded.
	W

帾

PLATE T4

Date Excavated: $8 / 8 / 95 \quad$ Client: Pardee-Monarch Hills

\section*{Comments} | Depth (ft) | $\begin{array}{l}\text { Description } \\ 0-3\end{array} \left\lvert\, \begin{array}{l}\text { Slope Wash: Medium to dark brown sandy clayey SILT, } \\ \text { dry, loose, porous, rootlets to l2", cobbles, gravels. }\end{array}\right.$ |
| :--- | :--- |
| $\begin{array}{l}\text { Saugus Formation: Mottled orange/white conGLoMERATE, } \\ \text { dry, dense, cemented, iron staining at contact and } \\ \text { around cobbles and gravels. }\end{array}$ | |

Client: Pardee-Monarch Hills
8/8/95

$$
\begin{aligned}
& \text { to } \\
& \text { s. } \\
& \hline \text { on } \\
& \hline \underline{ } \\
& \hline
\end{aligned}
$$

Comments

Comments

Comments

\square

$$
\bar{\square}
$$

Date Excavated: 8/9/95 Client:Pardee-Monarch Hills
Comments
Client: Pardee-Monarch Hills

Client: Pardee-Monarch Hills
Date Excavated: $8 / 9 / 95$

Logged By: CW

LOG OF EXCAVATION
Trench NO. 18

Comments

PLATE T18
Client: Pardee-Monarch Hills Comments
Depth (ft) Description

APPENDIX C

Laboratory Testing Results by Geolabs-Westlake Village

APPENDIX C

LABORATORY TEST RESULTS

Atterberg Limits Results	.Plate AL. 1
Consolidation Diagram .	.Plates C (boring).(depth)
Corrosivity Results..	.HDR Engineering/Schiff
Laboratory Test Data	.Table
Particle Size Diagrams	.Plate PS.1-PS. 3
Shear Test DiagramsPlates S(boring).(depth)

Grading Plan Review
Phase 3 of Tract No. 60922, Skyline Ranch, Santa Clarita Area, County of Los Angeles, California
W.O. 8838

August 27, 2013

LABORATORY TESTING

Undisturbed and bulk samples of soil and rock materials encountered at the site were collected during the course of our field work. Selected laboratory tests completed on the retrieved samples are described below:

Moisture-Density

The field moisture content and dry unit weight were determined for each undisturbed sample. Dry unit weight is expressed in pounds per cubic foot and the moisture content represents a percentage of the dry unit weight. This test data is presented on the boring logs.

Shear Test

Shear tests were performed in a Direct Shear Machine of the strain control type commensurate with ASTM D 3080. The rate of deformation is approximately 0.01 inches per minute. Selected samples, as noted in the shear test diagram, were sheared at reduced rates of deformation. Shearing occurred under a variety of confining loads in order to determine the Coulomb shear strength parameters. The test was performed on undisturbed and remolded (@ 90\% relative compaction) samples in an artificially saturated condition.

Stress-strain curves are presented in the page following the shear test diagram. It should be noted that for the case of undisturbed single-cycle shear tests the value at the end of the stress-strain curve were selected (residual value per LACDPW Manual for Preparation of Geotechnical Reports). The shear test diagrams have the descriptor of "Ultimate" to distinguish such single-cycle tests from multi-cycle shear tests.

Consolidation Test

Settlement predictions of the soil's behavior under load are made on the basis of consolidation tests (ASTM D 2435). A one inch high sample is loaded in a geometric progression and the resulting deformation is recorded at selected time intervals. Porous stones are placed in contact with the sample (top and bottom) to permit addition and release of pore fluid. The sample is inundated at a selected load (typically near overburden pressure) during the progression. Results are plotted on the enclosed Consolidation-Pressure Curves.

Compaction and Expansion Tests

To determine the compaction characteristics of the onsite materials, compaction tests are performed in accordance with ASTM D 1557. The maximum dry density is reported in pounds per cubic foot and the optimum moisture content as a percentage of the maximum dry density. Expansion index tests were performed in accordance with the criteria in U.B.C. 18-2. The results of these tests are included in Laboratory Test Data Table.

Table I Laboratory Test Data

Sample	Description	Maximum Dry Density PCF	Optimum Moisture Content \%	Expansion Index
B2@11-15'	Tan silty SAND (Saugus Fm.)	134	8	6
B3@5'	Tan clayey silty SAND (Saugus Fm.)	127	9	0
B3@38'	Lt. gray silty SAND w/ grave. (Mint Cyn.Fm.	.) 132	10	0
B9@15'	Lt. brown sandy SILT	124	11	19
B10@20'	Tan clayey med-cs SAND w/ gravel	137	7	4
B16@60'	Dark red sandy CLAY (TQs)			56
B19@15'	Tan silty f-cs SAND w/ gravel	128	10	10
B29@63'	Tan silty med.-coarse SAND (Saugus Fm.)) 130	9	
B39@0-5'	Dark brown silty clayey SAND w/ gravel	133	10	2
B50 @ 30'	Lt. gray silty SAND	130	10	
B50 @ 67'	Lt. gray clayey silty SAND	126	12	
B58 @ 80'	Tan fine-med. Grained SAND	131	9	
B59 @ 25'	Tan silty SAND w/ gravel	129	9	
B60 @ 28'	Light brown clayey SAND	126	12	
B62 @ 5'	Light reddish brn. Clayey silty SAND			
B77@15'	Tan silty SAND w/ gravel	128	10	

B77@52'	Reddish brown sandy SILT	123	12
T3@1.5'	Brown clayey silty f-med. SAND	126	9.5
TP168@3.5-5.5'	Brown sandy CLAY	115	14
B1(1995)@15'	Gray silty SAND w/ gravel	133	7
B1(1995)@35'	Lt gray silty med-cs SAND	131	9
B1(1995)@72'	Lt. gray clayey silty SAND	125	10
B11(1995)@40'	Lt. gray clayey SAND	130	10

Atterberg Limits and Particle Size Analyses

Selected fine-grained samples were subject to particle-size analyses (ASTM D 422), hydrometer analyses, and Atterberg Limit testing (ASTM D 4318). The results of this testing is presented in the following table. Particle size analyses are presented on Plate PS.1-PS. 3 of.

Sample	Liquid Limit	Plastic Limit	Plasticity Index	\% Clay (finer than $\mathbf{0 . 0 0 5 ~ m m})$
B5@12' (TQs)	36.9%	18.9%	18	18%
B5@72' (Tmc)	40%	20.7%	20	9%
B13@27' (Tmc)	38.4%	17.4%	21	25%
B16@60' (TQs)	42.7%	15.9%	27	---
B16@63' (TQs)	57.5%	18.2%	40	---
B16@80' (TQs)	91.9%	32.2%	60	90%
B21@49' (TQs)	57.9%	18.2%	40	50%
B23@70' (TQs)	84.3%	27.3%	57	86%
B25@53' 'TQs)	46.7%	19.2%	28	12%
B40@55' (Tmc)	36.3%	18.3%	18	54.2%
B48@97' (TQs)	63.9%	19.6%	45	---
B48@120' (TQs)	71%	21.3%	50	---
B54@56.5' (TQs)	65.7%	17.9%	48	---

Sand Equivalent

Selected samples were submitted for Sand Equivalent testing in accordance with California Test Method 217. The results of this testing is presented in the following table:

Sample	Material	Sand Equivalent
B77@15'	TQs-silty sand w/clay	17
B77@52'	TQs-silty sand	23

Qal \#1 (from terminus of Canyon Crest Drive)	Alluvium-clean sand	85
Qal \#2 (from terminus of Canyon Crest Drive)	Alluvium-sand	64
Tmc \#1 (from terminus of Canyon Crest Drive)	Mint Canyon Fm. - Silty Sandstone	30

Durability, Specific Gravity, and Absorption Testing

Samples of the oversize rock present within the alluvium, Saugus Formation, and Mint Canyon Formation were collected and crushed into 1" diameter or less fragments for determination of their quality for various on-site construction material uses. The majority of these oversize rocks consisted of subrounded cobbles and boulders of granite, granodiorite, syenite, gabbro, and gneiss. The crushed material was submitted to BTC Laboratories for testing, the result of which is presented in the following table.

Sample	```Durability Index California Test Method No. 229```	Percentage Wear ASTM C 131		Apparent Specific Gravity ASTM C127	Absorption California Test Method No. 206
		100 Rev.	500 Rev.		
Alluvium Oversize Rock	65	9.5	37	2.67	0.6\%
Saugus Fm. Oversize Rock	70	14.1	50.5	2.65	1.1\%
Mint Cyn Fm. Oversize Rock	75	11.9	44.7	2.64	0.9\%
2006 Greenbook Criteria for Rip Rap	52 Minimum	--	45 Maximum	2.5 Minimum	4.20 Maximum
2006 Greenbook Criteria for Crushed Aggregate Base	--	15 Maximum	52 Maximum	--	--

Based on these test results, the oversize rock from the alluvium and Mint Canyon Formation would pass the 2006 Standard Specification for Public Works Construction (Greenbook) criteria for Durability, Percentage Wear, Apparent Specific Gravity, and Absorption for use as rip rap. The durability results indicate that the rock from all three
geologic units is of adequate quality for use in crushed aggregate base. Of course, gradation, R-value, and Sand Equivalent criteria would be need to be met on materials crushed and screened for use as crushed aggregate base.

Crushed rock could be also utilized as subdrain/backdrain rock or simply entrained in engineered fills as a means of disposing of excess of oversize rock towards the end of rough grading.

CHEMICAL TESTING

Selected samples were submitted to M.J. Schiff and Associates for chemical testing to evaluate their corrosion potential. Results presented in Appendix G are summarized herein.

Sulfates

Preliminary testing of samples obtained from our borings indicate the on-site soils have low levels (< 0.10% by weight) of sulfates which indicates a low corrosion potential for concrete. Near the completion of grading additional testing should be performed to verify the corrosion potential of the soils.

Sample	Sulfate \% by weight
B2@10-15'	None Detected
B9@15'	0.061
B39@0-3'	0.037

Table 19-A-4 is reproduced for your reference with respect to concrete requirements for soils bearing soluble sulfates above 0.1% by weight.

TABLE 4.3.1- REQUIREMENTS FOR CONCRETE EXPOSED TO SULFATE-CONTAINING SOLUTIONS (ACI 318-05)

SULFATE EXPOSURE	WATER-SOLUBLE SULFATE $\left(\mathrm{SO}_{4}\right)$ IN SOIL, \% by weight	SULFATE $\left(\mathrm{SO}_{4}\right)$ IN WATER, ppm	CEMENT TYPE	Maximum Water- Cementitious Materials Ratio, by Weight, NormalWeight Aggregate Concrete	Minimum f_{c} Normal Weight and Lightweight Aggregate Concrete, psi ${ }^{1}$

Negligible	$0.00-0.10$	$0-150$	--	--	--
Moderate 2	$0.10-0.20$	$150-1,500$	II, IP(MS), IS(MS), P(MS), I(PM)(MS), I(SM)(MS)	0.50	
Severe	$0.20-2.00$	$1,500-10,000$	V	0.45	4,000
Very severe	Over 2.00	Over 10,000	V plus pozzolan		

${ }^{1}$ When both Table 4.3.2 and Table 4.2.2 are considered, the lowest applicable maximum water-cementitious
material ratio and highest applicable minimum f_{c} shall be used.
${ }^{2}$ Seawater
${ }^{3}$ Pozzolan that has been determined by test or service record to improve sulfate resistance when used in concrete containing Type V cement.

Chlorides

Test results indicate that chloride levels (40 to 210 ppm) are below levels of concern with respect to corrosion.

pH levels

Test results presented in Appendix G indicate the on-site soils are typically neutral to slightly basic ($\mathrm{pH} 7-8$).

Soil Resistivity

Representative samples of the earth materials encountered at the site were tested for resistivity. Resistivity of soils is inversely proportional to corrosiveness. Thus, the analysis helps in determining whether the soils may have a deleterious affect on underground metallic structures. A generally accepted correlation between resistivity and soil corrosiveness toward metals is provided below:

Resistivity (Ohm-Centimeter)	Corrosiveness
$<1,000$	Severely Corrosive
$1,000-2,000$	Corrosive
$2,000-10,000$	Increasingly Moderate
$>10,000$	Increasingly Mild

Laboratory Test Results

	As-Received Resistivity	Saturated Resistivity
Sample	ohm-cm	ohm-cm
B2@10-15'	930,000	1,700
B9@15'	7,400	690
B39@0-3'	6,300	3,500

Based on these test results, the on-site soils are considered moderately corrosive to severely corrosive to ferrous metals when saturated. Appropriate mitigation measures should be obtained from an experienced corrosion engineer.

Atterberg Limits Test Results

Location	Depth (ft)		LL	PI
Classification				
B5 (TQs)	12	36.9	18.9	CL
B5 (Tmc)	72	40	20	CL
B13 (Tmc)	27	38.4	21	CL
B16 (TQs)	60	42.7	27	CL
B16 (TQs)	63	57.5	40	CH
B16 (TQs)	80	91.9	60	CH
B17 (TQs)	81.5	57.3	41	CH
B17 (TQs)	95	54.2	40	CH
B17 (TQs)	98	52.2	33	CH
B21 (TQs)	49	57.9	40	CH
B23 (TQs)	70	84.3	57	CH
B25 (TQs)	53	46.7	28	CL
B40 (Tmc)	55	36.3	18	CL
B48 (TQs)	97	63.9	45	CH
B48 (TQs)	120	71	50	CH
B54 (TQs)	56.5	65.7	48	CH

CONSOLIDATION - PRESSURE CURVE

Project Skyline Ranch
Location B2(1995)
Depth 10 Feet

Material Alluvium
\% Consolidation

CONSOLIDATION - PRESSURE CURVE

Project	Skyline Ranch
Location	B2(1995)
Depth	20 Feet
Material	Mint Canyon Formation

CONSOLIDATION - PRESSURE CURVE

Project	Skyline Ranch
Location	B2(1995)
Depth	30 Feet
Material	Mint Canyon Fm.

CONSOLIDATION - PRESSURE CURVE

CONSOLIDATION - PRESSURE CURVE

roject	Skyline R
Location	B3(1995)
Depth	25 Feet
Material	Alluvium

CONSOLIDATION - PRESSURE CURVE

Geolabs - Westlake Village

DATE _ BY DS
SCALE
w.o. 8838

CONSOLIDATION - PRESSURE CURVE

Project	Monasabian Property
Location	$\frac{\text { Boring } 1}{20 \text { Feet }}$
Depth	
Material	Saugus Fm. - Silty SANDS TONE

CONSOLIDATION - PRESSURE CURVE

Geolabs - Westlake Village
geolocy ano soll engineering

DATE 8/02	BY DS
SCALE	w. o. 8838

SCALE
w.o.

8838

CONSOLIDATION - PRESSURE CURVE

CONSOLIDATION - PRESSURE CURVE

CONSOLIDATION - PRESSURE CURVE

Project	Monasabian Property	
Location		
Depth	30 Feet	

Geolabs - Westlake Village
geology and soll engineering
date 8/02 by_DS
SCALE \qquad \%o 8838

Material Saugus Fm. - Sandy CONGLOM.

CONSOLIDATION - PRESSURE CURVE


```
Project Monasabian Prop.
Location Boring 4
Depth 10.5 Feet
```

Material Saugus Fm. - Sandy Cong omerate

CONSOLIDATION - PRESSURE CURVE

Project Monasabian Prop.
Location Boring 4
Depth 20 Feet
Material

Saugus Fm. - Gravelly SAIIDSTONE

Geolabs - Westlake Village
GEOLOGY ANO SOIL ENGINEERING
date_ 9/02 By_DS
SCALE8838

CONSOLIDATION - PRESSURE CURVE

$\begin{array}{ll}\text { Project } & \text { Monosabian Prop. } \\ \text { Location } & \frac{\text { Boring } 5}{10 \text { Feet }} \\ \text { Depth } & \\ \text { Material } & \text { Saugus Fm. - Fine to med. SANDSTONE }\end{array}$
C5.10

CONSOLIDATION - PRESSURE CURVE

CONSOLIDATION RESULTS

Undisturbed Sample

Sample Inundated At Normal Pressure of 2500 psf

Sample Location: B30
Sample Depth: 25 ft .
Initial Moisture: 5.6 \%
Init. Dry Density: 121.9 pcf

Geologic Unit: Alluvium
Material: gravelly SAND

PLATE C-B30.25

CONSOLIDATION RESULTS

Undisturbed Sample

Sample Inundated At Normal Pressure of 1000 psf

Sample Location: B35
Sample Depth: 8 ft .
Initial Moisture: 6.2 \%
Init. Dry Density: 119.5 pcf

Geologic Unit: Alluvium
Material: silty SAND w/gvl

CONSOLIDATION - PRESSURE CURVE

Project	Tr. 060922 Skyline Ranch
Location	B53
Depth 20 Feet Material Saugus Formation	

Saugus Formation

CONSOLIDATION - PRESSURE CURVE

CONSOLIDATION - PRESSURE CURVE

CONSOLIDATION - PRESSURE CURVE

CONSOLIDATION - PRESSURE CURVE

[^4]Geolabs - Westlake Village
geology and soll engineering

$\begin{array}{ll} \text { date } \frac{9 / 4 / 07}{\text { NTS }} & \text { by } \begin{array}{l} \text { RMP } \\ \text { scale } \\ \hline \end{array} \text { w.o. } 8838 \\ \hline \end{array}$	

PLATE C80.7.5

CONSOLIDATION - PRESSURE CURVE

Project	Skyline Ranch
Location	B80
Depth	14^{\prime}
Material	Landslide Debris - clayey SAND with silt and gvl

Geolabs - Westlake Village

9/4/07	RMP
${ }_{\text {date }}^{\text {dcale }}$ NTS	8838

CONSOLIDATION - PRESSURE CURVE

Project	Skyline Ranch
Location	B80 Depth
Material	Landslide Debris - sandy SILT

Geolabs - Westlake Village
geology and soil engineering

ate 9/4/07	RMP
scale NTS	8838

CONSOLIDATION - PRESSURE CURVE

[^5]Geolabs - Westlake Village
geology and soil engineering
date $\begin{array}{ll}\text { 9/4/07 } \\ \text { Scale } & \text { BY } \\ \text { в.o. } & \text { RMP } \\ 8838\end{array}$

CONSOLIDATION - PRESSURE CURVE

Geolabs - Westlake Village
geology and soil engineering

date 9/4/07	MP
scale NTS	8838

CONSOLIDATION - PRESSURE CURVE

Project	Skyline Ranch
Location	B81
Depth	15^{\prime}
Material	Landslide Debris - sandy GRAVEL

Geolabs - Westlake Village
geology and soil engineering

date 9/4/07	RMP
scale NTS	8838

CONSOLIDATION - PRESSURE CURVE

Project	Skyline Ranch
Location	B81
Depth	22^{\prime}
Material	Landslide Debris - sandy CLAY

Geolabs - Westlake Village
geology and soil engineering
date $\frac{9 / 4 / 07}{\text { STS }}$ вy $\frac{\text { RMP }}{8838}$

CONSOLIDATION - PRESSURE CURVE

\qquad Geolabs - Westlake Village
geology and soll engineering
date $\frac{9 / 5 / 07}{\text { NTS }}$ By RMP
scale NTS
w.o. 8838

CONSOLIDATION - PRESSURE CURVE

Geolabs - Westlake Village
geology and soil engineering
date $9 / 5 / 07$
scale NTS By RMP
scale NTS w.o. 8838

CONSOLIDATION - PRESSURE CURVE

Geolabs - Westlake Village
geology and soll engineering
date $\frac{9 / 5 / 07}{\text { Scale }}$ вTS \quad w.o. 8838

CONSOLIDATION - PRESSURE CURVE

Geolabs - Westlake Village
geology and soil engineering
date $\frac{9 / 5 / 07}{\text { NTS }}$ By RMP
scale NTS
w.o. 8838

CONSOLIDATION - PRESSURE CURVE

Geolabs - Westlake Village
geology and soil engineering
date $9 / 5 / 0$
scale NTS By RMP
w.o. 8838

CONSOLIDATION - PRESSURE CURVE

Project	Skyline Ranch
Location	B83
Depth	22^{\prime}
Material	Landslide Debris - silty CLAY and silty SAND

Geolabs - Westlake Village
geology and soil engineering
DAtE 9/5/07 By RMP
scale NTS
w. 0.8838

CONSOLIDATION - PRESSURE CURVE

[^6]Geolabs - Westlake Village
geology and soil engineering
date $\frac{9 / 5 / 07}{\text { NTS }}$
scale NTS вy RMP
w.o. 8838

CONSOLIDATION - PRESSURE CURVE

Geolabs - Westlake Village
geology and soll engineering
date $\begin{array}{ll}\text { 9/5/07 } \\ \text { Scale } & \text { BTS } \\ \text { в.o. } 8838\end{array}$

PLATE C84.7

CONSOLIDATION - PRESSURE CURVE

Geolabs - Westlake Village
geology and soll engineering
date $\frac{9 / 5 / 07}{\text { Scale }}$ (\quad вy $\frac{\text { RMP }}{8838}$

CONSOLIDATION - PRESSURE CURVE

[^7]

Geolabs - Westlake Village
geology and soil engineering
date 9/5/07
scale NTS sy RMP
w.o. 8838

CONSOLIDATION - PRESSURE CURVE

Geolabs - Westlake Village
geology and soil engineering
date $\frac{9 / 5 / 07}{\text { NTS }}$ By RMP
scale NTS
w.o. 8838

CONSOLIDATION - PRESSURE CURVE

Geolabs - Westlake Village
geology and soll engineering
date $\frac{9 / 5 / 07}{\text { Scale }}$ (\quad вy $\frac{\text { RMP }}{8838}$

CONSOLIDATION - PRESSURE CURVE

[^8]Geolabs - Westlake Village
geology and soil engineering
date $9 / 5 / 0$
scale NTS By RMP
w.o. 8838

CONSOLIDATION - PRESSURE CURVE

[^9]Geolabs - Westlake Village
geology and soil engineering
date $\frac{9 / 5 / 07}{\text { NTS }}$ By $\frac{\text { RMP }}{8838}$
scale NTS
w.o. 8838

PLATE C86.7

CONSOLIDATION - PRESSURE CURVE

Geolabs - Westlake Village
geology and soil engineering
date 9/5/07
scale NTS вy RMP w. 0.8838

CONSOLIDATION - PRESSURE CURVE

Project	Skyline Ranch
Location	B86
Depth	22^{\prime}
Material	Landslide Debris - silty SAND and silty CLAY

Geolabs - Westlake Village
geology and soil engineering
date $\frac{9 / 5 / 07}{\text { NTS }}$ By RMP
scale NTS
w.o. 8838

CONSOLIDATION - PRESSURE CURVE

[^10]Geolabs - Westlake Village
geology and soil engineering
date $9 / 5 / 07$
scale NTS By RMP
w.o. 8838

CONSOLIDATION - PRESSURE CURVE

Project	Skyline Ranch
Location	B86
Depth	35^{\prime}
Material	Saugus Formation - clayey SANDSTONE

Geolabs - Westlake Village
geology and soil engineering
date $9 / 5 / 0$
scale NTS

CONSOLIDATION - PRESSURE CURVE

Geolabs - Westlake Village
geology and soil engineering
date 9/5/07
scale NTS By RMP w.o. 8838

CONSOLIDATION - PRESSURE CURVE

Project	Skyline Ranch
Location	B88
Depth	20^{\prime}
Material	Landslide Debris - clayey SAND with gvl

Geolabs - Westlake Village
geology and soil engineering
date $9 / 5 / 07$
scale NTS

CONSOLIDATION - PRESSURE CURVE

[^11]Geolabs - Westlake Village
geology and soil engineering
date $9 / 5 / 07$
scale NTS By RMP
w.o. 8838

CONSOLIDATION - PRESSURE CURVE

Geolabs - Westlake Village
geology and soil engineering
date 9/5/07 By RMP
scale NTS w. 8838

CONSOLIDATION - PRESSURE CURVE

[^12]Geolabs - Westlake Village
geology and soil engineering
date $\left.\begin{array}{ll}9 / 5 / 07 \\ \text { scale } & \text { BTS } \\ \text { By } & \text { R.o. } 8838\end{array}\right)$.

CONSOLIDATION - PRESSURE CURVE

Geolabs - Westlake Village
geology and soil engineering
$\begin{array}{ll}\text { date } \\ \text { scale } & \text { 9/5/07 } \\ \text { NTS }\end{array}$ by RMP

CONSOLIDATION - PRESSURE CURVE

[^13]Geolabs - Westlake Village
geology and soil engineering
date $9 / 5 / 0$
scale NTS By RMP
w.o. 8838

CONSOLIDATION - PRESSURE CURVE

[^14]

Geolabs - Westlake Village
geology and soil engineering
date 9/5/07
scale NTS By RMP w. 8838

CONSOLIDATION - PRESSURE CURVE

Project Location	Skyline Ranch	为
	B89	
Depth	60^{\prime}	
Material	Saugus Formation - gravelly SANDSTONE	

Geolabs - Westlake Village
geology and soil engineering
date $\begin{array}{ll}\text { 9/5/07 } \\ \text { Scale } & \text { BTS } \\ \text { By } & \text { RMP } \\ 8838\end{array}$

CONSOLIDATION - PRESSURE CURVE

[^15]Geolabs - Westlake Village
geology and soil engineering
date $\frac{9 / 5 / 07}{\text { NTS }}$ BY RMP
scale NTS
By RMP

CONSOLIDATION - PRESSURE CURVE

Geolabs - Westlake Village
geology and soil engineering

DATE
SCALE \quad BY $\frac{\text { DS }}{}$

CONSOLIDATION - PRESSURE CURVE

Geolabs - Westlake Village
geology and soil engineering

DATE	BY $\frac{\text { DS }}{}$
SCALE	w.o. 8838

CONSOLIDATION - PRESSURE CURVE

Geolabs - Westlake Village
geology and soil engineering

DATE	BY $\frac{\text { DS }}{}$
SCALE	w.o. 8838

CONSOLIDATION - PRESSURE CURVE

Geolabs - Westlake Village
geology and soil engineering

DATE	BY $\frac{\text { DS }}{}$
SCALE	w.o. 8838

CONSOLIDATION - PRESSURE CURVE

Project Location Depth Material	Skyline Ranch T20	S2	Geolabs - Westlake Village GEOLOCY AND SOIL ENGINEERING
	1.5 Feet	-	DATE - BY DS
	Terrace Deposits		vo. 8838

CONSOLIDATION - PRESSURE CURVE

Project Skyline Ranch Location T21
Depth 3 Feet
Material Slopewash

Geolabs - Westlake Village
GEDLOCY AND SOL ENCWIERENG

PLATE Ct21.3

CONSOLIDATION - PRESSURE CURVE

Project	Tr. 060922 Skyline Ranch
Location	B 19
Depth	15 Feet
Material	Silty fine-coarse SAND (Saugus Fm.)

Geolabs - Westlake Village

DATE
scale
geology and soll engineering

BY \qquad 8838.00

CONSOLIDATION - PRESSURE CURVE

Geolabs - Westlake Village
Project

$\frac{\text { Tr. } 060922 \text { Skyline Ranch }}{\text { B19 }}$
15 Feet
Silty fine-coarse SAND (Saugus Fm.)

DATE
scale
geology and soil engineering

*Y $-\frac{\text { DS }}{8838.001}$

CONSOLIDATION - PRESSURE CURVE

CONSOLIDATION - PRESSURE CURVE

Project
Location
Depth
Material

Tr. 060922 Skyline Ranch B77 15 Feet
Silty SAND (Saugus Fm.)

Geolabs - Westlake Village GEOLOGY AND SOIL ENGINEERING

SCALE

my.o.	DS
w.	

CONSOLIDATION - PRESSURE CURVE

Project
Location Depth
Material

Tr. 060922 Skyline Ranch

Silty SAND (Saugus Fm.)

Geolabs - Westlake Village

scale

CONSOLIDATION - PRESSURE CURVE

Project	Tr. 060922 Skyline Ranch
Location	B77
Depth	52 Feet
Material	Sandy SILT (Saugus Fm.)

Geolabs - Westlake Village
geology and soll engineering
DATE
SCALE

CONSOLIDATION - PRESSURE CURVE

Project	Tr. 060922 Skyline Ranch
Location	B77
Depth	52 Feet
Material	Sandy SILT (Saugus Fm.)

Geolabs - Westlake Village
geology and soil engineering
DATE
SCALE By $\quad \frac{\text { DS }}{8838.0}$

CONSOLIDATION - PRESSURE CURVE

Project	Tr. 060922 Skyline Ranch
Location	B77
Depth	52 Feet
Material	Sandy SILT (Saugus Fm.)

Sandy SILT (Saugus Fm.)

CONSOLIDATION - PRESSURE CURVE

Project Tr. 060922 Skyline Ranch
Location \qquad
Depth 3.5 to 5.5 Feet

Sandy CLAY (Alluvium)
Material

CONSOLIDATION RESULTS

Bulk Sample Remolded to 92 Percent Relative Compaction

Sample Location: TP168
Sample Depth: 3.5 ft .
Initial Moisture: 16 \%
Init. Dry Density: 105.8 pcf

Geologic Unit: Alluvium Material:

CONSOLIDATION RESULTS

Bulk Sample Remolded to 95 Percent Relative Compaction

Sample Location: TP168
Sample Depth: 3.5 ft . Initial Moisture: 16 \%
Init. Dry Density: 109.25 pcf

Geologic Unit: Alluvium Material:

CONSOLIDATION - PRESSURE CURVE

CONSOLIDATION RESULTS

Bulk Sample Remolded to 95 Percent Relative Compaction

Sample Location: TP168
Sample Depth: 3.5 ft .
Initial Moisture: 16 \%
Init. Dry Density: 109.25 pcf

Geologic Unit: Alluvium
Material:

TRANSMITTAL LETTER

DATE: December 4, 2002

ATTENTION: Dave

To:
Geolabs
31119 Via Colinas, Suite 502
Westlake Village, CA 91362

SUBJECT: Laboratory Test Data
Monosabian
Your \# 8838
Our \# 02-1161LAB

COMMENTS: Enclosed are the results for the subject project.

Table 1 - Laboratory Tests on Soil Samples

Monosabian
Your \#8838, MJS\&A \#02-1161LAB
22-Nov-02

Sample ID

B2
@ $10-15^{\prime}$

Resistivity

\quad| as-rece |
| ---: |
| saturat |

pH
Electrical
Conductivit

Conductivity

Units

ohm-cm 930,000
ohm-cm
1,700

Chemical Analyses

Cations

calcium $\mathrm{Ca}^{2+} \mathrm{mg} / \mathrm{kg} \quad 16$
magnesium $\mathrm{Mg}^{2+} \mathrm{mg} / \mathrm{kg} \quad \mathrm{ND}$
sodium $\quad \mathrm{Na}^{1+} \mathrm{mg} / \mathrm{kg} \quad 47$
Anions
carbonate $\mathrm{CO}_{3}{ }^{2-} \mathrm{mg} / \mathrm{kg} \quad \mathrm{ND}$
bicarbonate $\mathrm{HCO}_{3}{ }^{1 .} \mathrm{mg} / \mathrm{kg} \quad 104$
chloride $\mathrm{Cl}^{1 .} \mathrm{mg} / \mathrm{kg} \quad 40$
sulfate $\quad \mathrm{SO}_{4}{ }^{2} \quad \mathrm{mg} / \mathrm{kg} \quad \mathrm{ND}$
Other Tests
ammonium $\mathrm{NH}_{4}{ }^{1+} \mathrm{mg} / \mathrm{kg} \quad$ na
nitrate $\quad \mathrm{NO}_{3}{ }^{1-} \mathrm{mg} / \mathrm{kg} \quad$ na
sulfide $\mathrm{S}^{2 .}$ qual na
Redox mv na

Electrical conductivity in millisiemens/cm and chemical analysis were made on a $1: 5$ soil-to-water extract.
$\mathrm{mg} / \mathrm{kg}=$ milligrams per kilogram (parts per million) of dry soil.
Redox $=$ oxidation-reduction potential in millivolts
$\mathrm{ND}=$ not detected
na $=$ not analyzed

TRANSMITTAL LETTER

DATE: December 3, 2003

ATTENTION: Dave Sakissian

To:	Geolabs
	31119 Via Colinas, Suite
	Westlake Village, CA. 91
SUBJECT:	Laboratory Test Data Montasabian Your \# 8838 MJS\&A \# 03-1370LAB

COMMENTS: Enclosed are the results for the subject project.

Table 1 - Laboratory Tests on Soil Samples

Montasabian
Your \#8838, MJS\&A \#03-1370LAB
20-Nov-03

Sample ID

Chemical Analyses
Cations

calcium	Ca^{2+}	$\mathrm{mg} / \mathrm{kg}$	ND
magnesium	Mg^{2+}	$\mathrm{mg} / \mathrm{kg}$	19
sodium	Na^{1+}	$\mathrm{mg} / \mathrm{kg}$	159

Anions
carbonate $\mathrm{CO}_{3}{ }^{2-} \mathrm{mg} / \mathrm{kg} \quad \mathrm{ND}$
bicarbonate $\mathrm{HCO}_{3}{ }^{1+} \mathrm{mg} / \mathrm{kg} \quad 82$
chloride $\quad \mathrm{Cl}^{1-} \quad \mathrm{mg} / \mathrm{kg} \quad 210$
sulfate $\quad \mathrm{SO}_{4}{ }^{2-} \mathrm{mg} / \mathrm{kg} \quad 61$
Other Tests

ammonium	$\mathrm{NH}_{4}{ }^{1+}$	$\mathrm{mg} / \mathrm{kg}$	na
nitrate	$\mathrm{NO}_{3}{ }^{1-}$	$\mathrm{mg} / \mathrm{kg}$	na
sulfide	S^{2-}	qual	na
Redox		mv	na

Electrical conductivity in millisiemens/cm and chemical analysis were made on a 1:5 soil-to-water extract.
$\mathrm{mg} / \mathrm{kg}=$ milligrams per kilogram (parts per million) of dry soil.
Redox $=$ oxidation-reduction potential in millivolts
$\mathrm{ND}=$ not detected
na $=$ not analyzed

TRANSMITTAL LETTER

DATE: June 20, 2006

ATTENTION: Mr. Dave Sarkisian

To: Geolabs Westlake Village 3119 Via Colinas
Suite 502
Westlake Village, CA 91362
SUBJECT: Laboratory Test Data
Sklyline Ranch
Your \#8838
SA \#06-1003LAB

COMMENTS: Enclosed are the results for the subject project.

431 West Baseline Road Claremont, CA 91711
Phone: 909.626.0967 Fax: 909.626.3316
wnw．schiffassociates．com
Consulting Corrosion Engineers－Since 1959

Table 1 －Laboratory Tests on Soil Samples

Geolabs Westlake Village
Skyline Ranch
Your \＃8838，MJS\＆A \＃06－1003LAB
7－Jun－06

Sample ID

> B-39e 0-3
：

Resistivity as－received saturated		Units ohm－cm ohm－cm	$\begin{aligned} & 6,300 \\ & 3,500 \end{aligned}$
pH			7.4
Electrical			
Conductivity		$\mathrm{mS} / \mathrm{cm}$	0.13
Chemical Analyses			
Cations			
calcium	Ca^{2+}	$\mathrm{mg} / \mathrm{kg}$	83
magnesium	Mg^{2+}	$\mathrm{mg} / \mathrm{kg}$	0.6
sodium	$\mathrm{Na}^{\text {I＋}}$	$\mathrm{mg} / \mathrm{kg}$	34
Anions			
carbonate	$\mathrm{CO}_{3}{ }^{2-}$	$\mathrm{mg} / \mathrm{kg}$	ND
bicarbonate	$\mathrm{HCO}_{3}{ }^{1+}$	$\mathrm{mg} / \mathrm{kg}$	278
clloride	Cl^{1-}	$\mathrm{mg} / \mathrm{kg}$	4.2
sulfate	$\mathrm{SO}_{4}{ }^{\text {－}}$	$\mathrm{mg} / \mathrm{kg}$	37
Other Tests			
ammonium	$\mathrm{NH}_{4}{ }^{\text {＋}}$	$\mathrm{mg} / \mathrm{kg}$	na
nitrate	$\mathrm{NO}_{3}{ }^{\text {－}}$	$\mathrm{mg} / \mathrm{kg}$	na
sulfide	s^{2-}	qual	
Redox		mV	na

Electrical conductivity in millisiemens／cm and chenical analysis were made on a $1: 5$ soil－to－water extract． $\mathrm{mg} / \mathrm{kg}=$ milligrams per kilogram（parts per million）of dry soil．
Redox $=$ oxidation－reduction potential in millivolts
$\mathrm{ND}-$ not detected
$\mathrm{na}=$ not analyzed

SHEAR TEST DIAGRAM

SHEAR TEST DIAGRAM

Project	Skyline Ranch
Excavation	B4(1995)
Depth	20'

Si	Geolabs - Westlake Village geology and soil engineering
	$\begin{array}{ll} \text { By } & \text { SD } \\ \text { Date } 10 / 20 / 95 \\ \text { wo. } & 8838 \end{array}$
	PLATE S4(1995)

SHEAR TEST DIAGRAM

Project	Skyline Ranch
Excavation	$\frac{\text { B4 }}{}$
Depth	

Tr	Geolabs - Westlake Village geology and soil engineering
A-658	PLATE S4(1995)

SHEAR TEST DIAGRAM

Project Skyline Ranch

B	Geolabs - Westlake Village ceology and soil engineering
	$\text { DATE } 10 / 20 / 95 \text { w. } \begin{gathered} \text { By } \\ \text { wD } \\ 8838 \\ \hline \end{gathered}$

SHEAR TEST DIAGRAM

Project Skyline Ranch

Excavation	
Depth	
	B8'(1995)

	Geolabs - Westlake Village

GEOLOGY AND SOIL ENGINEERING
Date $10 / 20 / 95^{\text {By }}$ w. $\frac{\text { SD }}{8838}$

SHEAR TEST DIAGRAM

SHEAR TEST DIAGRAM

Project	Skyline Ranch
Excavation	B10(1995)
Depth	60'

	Geolabs - Westlake Village geology and soil engineering
	$\begin{array}{lll} \text { Date } 10 / 25 / 95 & \text { w.o. } \frac{\text { SD }}{} 8838 \\ \hline \end{array}$
	PLATE S10(1995)

SHEAR TEST DIAGRAM

Project Skyline Ranch Exacavation B1
Depth $\quad 30$

Geolabs - Westlake Village GEOLOGY AND SOIL ENGINEERING
date $7 / 26 / 02$ w. $\frac{\text { wD }}{} \quad 8838$

SHEAR TEST DIAGRAM

Project	Skyline Ranch
Excavation	B2
Depth	19.5'

SHEAR TEST DIAGRAM

Project Skyline Ranch
Excavation $\frac{\text { B3 }}{\text { Depth }}$ 61.5'

Geolabs - Westlake Village GEOLOGY AND SOIL ENGINEERING
date $8 / 14 / 02$ w. $\frac{\text { SD }}{8838}$

SHEAR TEST DIAGRAM

Project Skyline Ranch
Excavation B4
Depth
30 Feet

Newshear0902.xls

SHEAR TEST DIAGRAM

Project Skyline Ranch

Exavation $\frac{B 5}{40}$
Depth

BY	Geolabs - Westlake Village ceology and soil engineering
	$\text { Date } \quad 8 / 14 / 02 \text { wo }_{\text {wo. }}^{\text {wo }} \frac{\text { SD }}{8838}$

Excavation: B 5 at 40 ft

SHEAR TEST DIAGRAM

Project	Skyline		Geolabs - Westlake Village geology and soil engineering
$\begin{aligned} & \text { Excavation } \quad \text { B6 } \\ & \text { Depth } \end{aligned}$			Date $8 / 27 / 02{ }^{\text {w. }}$ \% $\frac{\text { SD }}{}$
3.56			PLATE S6.20u

SHEAR TEST DIAGRAM

Project Skyline Ranch
Excavation
Depth
B6

SHEAR TEST DIAGRAM

Project Skyline Ranch
Excavation B10
Depth 30 Feet

SHEAR TEST DIAGRAM

Project Skyline Ranch
Excavation B11
Depth
60 Feet

\square	Geolabs - Westlake Village geology and soil engineering
	$1 / 12 / 04^{\text {wx }} \text { w. }-\frac{S D}{} \quad 8838$

Excavation: B11 at 60 ft

SHEAR TEST DIAGRAM

Project | Skyline Ranch |
| :--- |
| Excavation $\frac{\text { Boring } 14}{15 \text { Feet }}$ |
| Depth |

	Geolabs - Westlake Village geology and soil engineering
	PLATE S14.15

Excavation: B14 at 15 ft

Shear Template.xls

SHEAR TEST DIAGRAM

Project Skyline Ranch

Excavation $\frac{B 21}{60^{\prime}}$
Depth

2.63

SHEAR TEST DIAGRAM

Project Skyline Ranch

Excavation	B 23
Depth 45^{\prime}	

	Geolabs - Westlake Village geology and soil engineering
Crezex	$\begin{array}{ll} \text { Br } & \text { SD } \\ 1 / 12 / 04 & { }^{\text {svo }} \\ \text { wo. } & 8838 \end{array}$

SHEAR TEST DIAGRAM

Material: Saugus Fm. - Clayey gravelly SANDSTONE

Project Skyline Ranch
Excavation Boring 25
Depth
30 Feet

Geolabs - Westlake Village geology and soil engineering
DATE \qquad w. 8838

SHEAR TEST DIAGRAM

Material: Landslide Debris - Clayey fine-med. SANDSTONE

Project Skyline Ranch
Excavation Boring 27
Depth 15 Feet

BT	Geolabs - Westlake Village Geology and soil engineering
	DАте \quad日Y w.o. DS 8838

SHEAR TEST DIAGRAM

Project Skyline Ranch. TTM 060922 Excavation Boring 29 Depth 30 Feet

Geolabs - Westlake Village geology and soil engineering

SHEAR TEST DIAGRAM

Project Skyline Ranch. TTM 060922 Excavation Boring 29 Depth

Geolabs - Westlake Village geology and soil engineering

SCALE
Excavation: B29 at 90 ft

SHEARS
$1 \mathrm{~K}, 2 \mathrm{~K}, \& 3 \mathrm{~K}$ NORMAL LOADS
Undisturbed, Sat at 14.7%

SHEAR TEST DIAGRAM

Project Tr. 060922 Skyline Ranch Excavation B40
Depth \qquad

Geolabs - Westlake Village

DATE
DATE
geology and soil engineering

SHEAR TEST DIAGRAM

Project Tr. 060922 Skyline Ranch
Excavation $\frac{\text { B41 }}{10 \text { Feet }}$
Depth

5	Geolabs - Westlake Village amology and soll enginemring
	时

Excavation: B41 Depth: 10 ft

SHEAR TEST DIAGRAM

Project Tr. 060922 Skyline Ranch
Excavation $\frac{\text { B44 }}{50 \text { Feet }}$
Depth -

Geolabs - Westlake Village Geology and soil engineering
date scale w.o. $\frac{\text { DS }}{8838}$
PLATE S44.50u

SHEAR TEST DIAGRAM

Project Tr. 060922 Skyline Ranch Excavation $\frac{\text { B46 }}{30 \text { Feet }}$

Geolabs - Westlake Village GEOLOGY AND SOIL ENGINEERING

Depth

SHEAR TEST DIAGRAM

Project Tr. 060922 Skyline Ranch Excavation B46
Depth
80 Feet

Geolabs - Westlake Village geology and soil engineering

DATE
SCALE
нч $\frac{D S}{8838}$

SHEAR TEST DIAGRAM

Project Tr. 060922 Skyline Ranch Excavation B47
Depth \qquad

Geolabs - Westlake Village geology and soll engineering
Excavation: B47 Depth: 40 ft
Displacement Rate: $0.0100 \mathrm{in} / \mathrm{min}$

SHEAR TEST DIAGRAM

Project Tr. 060922 Skyline Ranch Excavation B47 Depth 100 Feet

2K, 4K, \& 6K NORMAL LOADS

SHEAR TEST DIAGRAM

Project Tr. 060922 Skyline RanchExcavation $\frac{\text { B48 }}{\text { Depth }} 51$		Geolabs - Westlake Village geology and soil enginerring
	过	
		$\underset{\text { Datt }}{\text { scaie }}$

SHEAR TEST DIAGRAM

Project Tr. 060922 Skyline Ranch Excavation B52
Depth
44 Feet

SHEAR TEST DIAGRAM

Project Skyline Ranch Tr. 060922
Excavation B52
Depth
61 Feet

Geolabs - Westlake Village geology and soil engineering

date
scale_ by
wo.

SHEAR TEST DIAGRAM

Project Tr. 060922 Skyline Ranch Excavation B54 Depth

Tisessex	Geolabs - Westlake Village geology and soil engineering
	$\begin{array}{ll} \text { By } & \text { DS } \\ \hline \text { w.o } & 8838 \end{array}$

SHEAR TEST DIAGRAM

Project Tr. 060922 Skyline Ranch Excavation \qquad

SHEARS
$1.5 \mathrm{~K}, 3.5 \mathrm{~K}, \& 5.5 \mathrm{~K}$ NOR 1.5K, 3.5K, \& 5.5K NORMAL LOADS Undisturbed, Sat at 18.2 \%

SHEAR TEST DIAGRAM

Project Tr. 060922 Skyline Ranch Excavation $\mathrm{B66}$ Depth

NT	Geolabs - Westlake Village
	$\begin{array}{r} \text { Bx } \\ \text { w.o } \quad 8838 \\ \hline \end{array}$

SHEAR TEST DIAGRAM

Project Tr. 060922 Skyline Ranch Excavation \qquad Depth 138 Feet

No	Geolabs - Westlake Village geology and soll enaineering
	$\begin{array}{lll} \hline \text { Date } \\ \text { scate_ } & \text { by } & \text { DS } \\ \hline \end{array}$

SHEAR TEST DIAGRAM

Project Tr. 060922 Skyline Ranch Excavation \qquad Depth 31 Feet

Geolabs - Westlake Village geology and soil engineering
date - by DS

$$
\begin{gathered}
\text { SHEARS } \\
1 \mathrm{~K}, 2 \mathrm{~K}, \& 3 \mathrm{~K} \text { NORMAL LOADS }
\end{gathered}
$$

$$
\text { Undisturbed, Sat at } 15.40 \%
$$

SHEAR TEST DIAGRAM

Project Pardee Homes - Skyline Ranch	Excavation	TP214
Depth	1.5 feet	

PLATE Stp214

SHEAR TEST DIAGRAM

Project Pardee Homes - Skyline Ranch

Excavation $\frac{\text { TP216 }}{}$
Depth 1.5 feet

| | Geolabs - Westlake Village
 GEOLOGY AND soIl EnGINEERING |
| :---: | :---: | :---: |
| DATE $07 / 20 / 07$ | wy Mario Linares |

SHEAR TEST DIAGRAM

Project Pardee Homes - Skyline Ranch Excavation TP219
Depth

Geolabs - Westlake Village GEOLOGY AND SOIL ENGINEERING

DATE $07 / 20 / 07$ BY Mario Linares
w.O 8838

PLATE Stp219

SHEAR TEST DIAGRAM

Project Skyline Ranch Excavation Boring 3
Depth \qquad
21 Feet

S	Geolabs - Westlake Village geology and soil engineering
$\pm \pm 3$	
A-745	
	PLATE \quad S3.21m

SHEAR TEST DIAGRAM

Project Skyline Ranch
Excavation B16
Depth 60 Feet

	Geolabs - Westlake Village geology and soil engineering
	DATE \quadBy w.
-747	PLATE $\mathrm{S16.60m}$

SHEAR TEST DIAGRAM

SHEAR TEST DIAGRAM

SHEAR TEST DIAGRAM

Material: Saugus Formation-CLAYSTONE Presoaked, Undisturbed

Project Skyline Ranch
Excavation B23
Depth

	Geolabs - Westlake Village geology and soil engineering
	$\text { re } \quad \begin{aligned} & \text { BY }-\frac{S D}{} / 14 / 04 \\ & \text { w. } 0 . \\ & 8838 \end{aligned}$

SHEAR TEST DIAGRAM

Project Skyline Ranch
Excavation Boring 26

	Geolabs - Westlake Village amoloay and soll minanmanca
	$\begin{aligned} & 05 \\ & 0.8858 \end{aligned}$

SHEAR TEST DIAGRAM

SHEAR TEST DIAGRAM

Project TTM 060922 Skyline Ranch Excavation Boring 28 Depth

Geolabs - Westlake Village
GEOLOGY AND SOIL ENGINEERING

SHEAR TEST DIAGRAM

Project TTM 60922 Skyline Ranch Excavation Boring 29
Depth

	Geolabs - Westlake Village geology and soil engineerina
Etes	$\begin{array}{ll} \hline \text { Bx } & \text { DS } \\ -w .0 & 8838 \\ \hline \end{array}$

SHEAR TEST DIAGRAM

Project Skyline Ranch, TTM 060922 Excavation Boring 29 Depth 50 Feet

Geolabs - Westlake Village GEOLOGY AND SOIL ENGINEERING

SHEAR TEST DIAGRAM

Project TTM 60922 Skyline Ranch Excavation Boring 38 Depth 80 Feet

SHEARS 1K, 2K, \& 3K NORMAL LOADS Undisturbed, Sat at ? \%

0
0
0
Displacement Rate: $0.0025 \mathrm{in} / \mathrm{min}$
Yno
Yno

SHEAR TEST DIAGRAM

Project Tr. 60922, Skyline Ranch
Excavation B39
Depth
89 Feet

N	Geolabs - Westlake Village geology and soil engineering
	$\begin{gathered} \text { By } \quad \text { DS } \\ \text { w. } 0.8838 \end{gathered}$

Displacement Rate: $0.002500 \mathrm{in} / \mathrm{min}$

SHEARS
 1K, 2K, \& 3K NORMAL LOADS Remolded, Sat at 23.8 \%

SHEAR TEST DIAGRAM

Project Tr. 060922 Skyline Ranch Excavation B 40 Depth

Geolabs - Westlake Village GEOLOGY AND SOIL ENGINEERING

Displacement Rate: $0.00250 \mathrm{in} / \mathrm{min}$

SHEARS 1K, 2K, \& 3 K NORMAL LOADS Remolded, Sat at $\mathbf{2 0 . 0} \%$

SHEAR TEST DIAGRAM

Displacement Rate: $0.00250 \mathrm{in} / \mathrm{min}$
Sample Description: Light reddish brown fine sandy silty clay

SHEAR TEST DIAGRAM

Project Tr. 60922, Skyline Ranch Excavation B47
Depth
20 Feet

Displacement Rate: $0.0025 \mathrm{in} / \mathrm{min}$

SHEAR TEST DIAGRAM

ject	Skyline Ranch
Excavation	B47
Depth	87.5'

| | Geolabs - Westlake Village
 GEOLOGY AND soil ENGINERING |
| :---: | :---: | :---: |
| | DATE |

Displacement Rate: $0,0025 \mathrm{in} / \mathrm{min}$

SHEARS

 Remolded, Sat at $\mathbf{3 0 . 0} \%$

SHEAR TEST DIAGRAM

Project	Skyline Ranch
Excavation	B48
	96^{\prime}
Depth	

	Geolabs - Westlake Village GEOLOGY AND soil ENGINEERING
	DATE

Displacement Rate： $0.0025 \mathrm{in} / \mathrm{min}$

S甘VヨHS
 1K，3K，\＆5K NORMAL LOADS

Undisturbed，Sat at $\mathbf{2 6 . 5}$ \％

SHEAR TEST DIAGRAM

Project	Skyline Ranch
Excavation	
Depth	

	Geolabs - Westlake Village GEOLOGY AND soil ENGINEERING
	DATE

SHEAR TEST DIAGRAM

SHEAR TEST DIAGRAM

Project	Skyline Ranch
Excavation	B49
	50^{\prime}
Depth	

分	Geolabs - Westlake Village geology and soll enginerring
	AJH
	8838

SHEAR TEST DIAGRAM

Project Tr. 060922 Skyline Ranch Excavation B50 Depth

Geolabs - Westlake Village GEOLOGY AND SOIL ENGINEERING

DATE $\begin{array}{cc}\text { wy } & \text { DS } \\ \text { w.o } & 8838\end{array}$

SHEAR TEST DIAGRAM

Project	Skyline Ranch
Excavation	B54
	56.5^{\prime}
Depth	

	Geolabs - Westlake Village GEOLOGY AND SoIL ENGINERING
	DATE

SHEARS
1K, 2K, \& 3K NORMAL LOADS
Remolded, Sat at 27.9 \%

SHEAR TEST DIAGRAM

Project	Skyline Ranch
Excavation	862
Depth	50^{\prime}

分	Geolabs - Westlake Village geology and soll enginerring
	AJH
	8838

Displacement Rate: $0.0025 \mathrm{in} / \mathrm{min}$

SHEARS 1K, 2K, \& 3K NORMAL LOADS Undisturbed, Sat at $\mathbf{2 6 . 3}$ \%

SHEAR TEST DIAGRAM

Project Tr. 060922 Skyline Ranch
Excavation $\frac{\text { B66 }}{30 \text { Feet }}$
Depth
5000.00
> 4500.00
4000.00
> 4000.00
3500.00

SHEAR TEST DIAGRAM

 SHEARS
$2 \mathrm{~K}, 4 \mathrm{~K}, \& 6 \mathrm{~K}$ NORMAL LOADS
Remolded, Sat at 20.9\%

SHEAR TEST DIAGRAM

Project Tr. 060922 Skyline Ranch Excavation \qquad
Depth

Geolabs - Westlake Village geology and soil engineering

SHEAR TEST DIAGRAM

SHEARS $1 \mathrm{~K}, 3 \mathrm{~K}, \& 5 \mathrm{~K}$ NORMAL LOADS
 Undisturbed, Sat at 16.0 \%

SHEAR TEST DIAGRAM

Project	Skyline Ranch
Excavation	TP168
Depth	3.5-5.5'

| Geolabs - Westlake Village |
| :---: | :---: |
| Geology and soil engineering |

Displacement Rate: $0.0025 \mathrm{in} / \mathrm{min}$

SHEAR TEST DIAGRAM

Project Skyline Ranch

Excavation	
Depth	B1 (1995)

| Geolabs - Westlake Village |
| :---: | :---: | :---: |
| Geology and soll engineering |

SHEAR TEST DIAGRAM

SHEAR TEST DIAGRAM

Project
Excavation Skyline Ranch

Depth \qquad B1(1995)
72

SHEAR TEST DIAGRAM

Project	Skyline Ranch
Excavation	B11(1995)
Depth	40'

S01	Geolabs - Westlake Village geology and soil engineering
-	$\text { Date } 1 / 2 / 96 \quad \text { wy } \frac{S D}{8838}$

SHEAR TEST DIAGRAM

Project Skyline Ranch
Excavation $\frac{B 3}{38}$

T	Geolabs - Westlake Village geology and soil engineering
$\cdots \cdots$	date $1 / 14 / 04$ wy $\frac{\text { wD }}{}$
A-811	
	PLATE S3.38r

SHEAR TEST DIAGRAM

Material: Med. brown clayey silty SAND (TQs) Remolded

Project
TTM 060922
Excavation Boring 10
Depth

Geolabs - Westlake Village GEOLOGY AND SOIL ENGINEERING

DATE

SHEAR TEST DIAGRAM

Project TTM 060922
Excavation Boring 19
Depth

SHEAR TEST DIAGRAM

SHEARS
$1 \mathrm{~K}, 2 \mathrm{~K}, \& 3 \mathrm{~K}$ NORMAL LOADS Remolded, Sat at 17.3 \%

APPENDIX D

Slope Stability Analysis

Index

1.0 Approach.. D-2
2.0 Design Shear Strength... D-2
3.0 Presentation of Analyses and Results...D-3

Tables

D-1
Design Shear Strength Parameters For Slope Stability Analyses
D-2
D-2
Summary of Slope Stability Analyses
D-3

Figures

Stability Analyses; gross; static and pseudostatic Surficial Stability Calculations

APPENDIX D

Slope Stability Analyses

1.0 Approach

- Slope stability analyses were conducted using the computer program Slope W. The Modified Bishop's Method was used to analyze rotational failure modes, and the Janbu and Spencer Method was used to analyze translational failure modes. A coefficient of horizontal acceleration of 0.15 g (FS of 1.1) was used to evaluate the pseudostatic stability analyses.
- After a review of the latest bulk grading plan and based on our supplemental investigation and review, twenty five cross-sections (1-1' through 3-3', 5-5', 7-7' through 15-15', 17-17' through 24-24', 28-28', 29-29', 32-32', and 34-34') were considered representative and critical with regards slope stability analysis.

Design Shear Strength

As discussed within the text of this report, direct shear testing was previously performed and shear strength values for the onsite soils were previously determined during previous site investigations and reviews for the subject site by GWV. The direct shear testing and shear strength values utilized were previously reviewed and accepted by the county of Los Angeles GMED. The previous test results are included for reference in this report. The previous direct shear testing was utilized to previously develop composite plots to determine the appropriate shear strength values to use for the on site soils. Composite plots for residual strengths were developed for the artificial fills, Saugus Formation bedrock and Mint Canyon Formation Bedrock for coarse grained and fine grained bedding conditions. The parameters used in the slope stability analysis are presented in Table D-1.

TABLE D-1
Design Shear Strength Parameters for Slope Stability Analyses

Material Type	Cohesion $(\mathbf{p s f})$	Angle of Internal Friction (degrees)
Engineered Fill	200	33
Alluvium/Colluvium	0	30
Landslide Debris	0	20
Landslide Slide Plane	150	9
Mint Canyon and Saugus Fm Along-Bedding Strength, Coarse-grained Lithologies	100	40
Saugus Formation Along-Bedding, Fine-grained Unsheared	150	25
Saugus Formation Along-Bedding, Fine-grained	150	17
Mint Canyon Formation Across-Bedding Strength.	200	11
Mint Canyon Formation Along-Bedding, Fine-grained Unsheared	150	40
Rormation Across-Bedding Strength	17	

TABLE D-2
Summary of Slope Stability Analyses

No	Cross- Section	Reference	Condition	Factor of Safety	Remarks

1 - Circular Mode of Failure Static

eport generated using Geostudio 2012. Coopright © 1991-2016 GEO-SLOPE International LIt

File Information

File Version: 8.15

Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 60
Date: 3/18/2016
Time: 7:21:35 PM
Tool Version: 8.15.5.11777
File Name: Section 1 SSA for Skyline Ranch Development project.gsz
Directory: P:\FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 1-1 results\Latest Update 3-18-16
Last Solved Date: 3/18/2016
Last Solved Time: 7:23:50 PM

Project Settings
Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
nit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure Static
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant

dvanced

Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Qs150 psf-17 ${ }^{\circ}$ bedding $3-10^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $17^{\circ} \mathrm{A}$-bedding 3-10
C-Anisotropic Strength Fn.: TQs 150psf A-bedding 3-10
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0
TQs 150 psf- 11° bedding 3-10 ${ }^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcif
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $11^{\circ} \mathrm{A}$-bedding 3-10 ${ }^{\circ}$
C-Anisotropic Strength Fn.: TQs 150 psf A-bedding 3-10
Phi-B: 0

Slip Surface Entry and Exit
Left Projection: Range
Left-Zone Left Coordinate: (211.0268, 1,971.6364) ft
Left-Zone Right Coordinate: $(303,1,993)$ ft
Left-Zone Increment: 50
Right Projection: Range
Right-Zone Left Coordinate: $(353,2,017) \mathrm{ft}$
Right-Zone Right Coordinate: $(517,2,035) \mathrm{ft}$
Right-Zone Increment: 50
Radius Increments: 8

Slip Surface Limits

1 - Circular Mode of Failure Static

Left Coordinate: ($-146,1,800.0439$) ft
Right Coordinate: $(680,1,800) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs 17° A-bedding 3-10 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: $(3,0.425)$
Data Point: $(10,0.425)$
Data Point: $(10.1,1)$
TQs 11° A-bedding 3-10
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: $(3,0.275)$
Data Point: $(10,0.275)$
Data Point: (10.1, 1)
TQs 150psf A-bedding 3-10
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: $(3,0.667)$
Data Point: $(10,0.667)$
Data Point: $(10.1,1)$

Points

	X (ft)	Y (ft)
Point 1	-145.2287	1,950.7886
Point 2	-111.3064	1,951.8013
Point 3	-22.9567	1,969.775
Point 4	41.3437	1,971.547
Point 5	68.1778	1,984.9641
Point 6	97.5433	1,970.5344
Point 7	178.0454	1,971.547
Point 8	232.4729	1,971.547
Point 9	259	1,983
Point 10	267	1,982
Point 11	291	1,993
Point 12	303	1,993
Point 13	322	2,006
Point 14	328	2,006
Point 15	343	2,017
Point 16	353	2,017
Point 17	364	2,022
Point 18	375	2,022
Point 19	398	2,035
Point 20	404	2,035
Point 21	426	2,044
Point 22	477	2,043
Point 23	492	2,040
Point 24	552	2,028
Point 25	680	1,800
Point 26	-146	1,800.0439
Point 27	677	1,992
Point 28	608	2,022.624
Point 29	636.787	2,019.9606
Point 30	676.6631	2,016.0286
Point 31	-145.6611	1,845.0183
Point 32	210.9608	1,971.6367
Point 33	232	1,952
Point 34	272	1,952
Point 35	401.1176	2,016.6763
Point 36	455.0038	2,043.5159
Point 37	463	2,043.2745

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs150 psf-17 bedding $3-10^{\circ}$	$1,26,31,27,30,29,28,24,23,22,37,36,35,34,33,32,7,6,5,4,3,2$	58,736
Region 2	TQs 150 psf- 11° bedding $3-10^{\circ}$	$27,31,26,25$	97,770
Region 3	Fill	$32,33,34,35,36,21,20,19,18,17,16,15,14,13,12,11,10,9,8$	$5,214.9$

Current Slip Surface

Slip Surface: 22,954
F of S: 2.10
Volume: $371.63793 \mathrm{ft}^{3}$
Weight: $44,596.551 \mathrm{lbs}$
Resisting Moment: 2,328,266.1 lbs-ft
Activating Moment: $1,107,249.6 \mathrm{lbs}-\mathrm{ft}$
F of S Rank (Analysis): 1 of 23,409 slip surfaces
Fof S Rank (Query): 1 of 150 slip surfaces
Exit: ($303,1,993$) ft
Entry: $(353,2,017) \mathrm{ft}$
Radius: 60.246339 ft
Center: $(304.85548,2,053.2178) \mathrm{ft}$
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{ft})$	PWPP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	303.86364	$1,992.9858$	0	74.55838	48.418778	200
Slice 2	305.59091	$1,992.9821$	0	212.91373	138.26779	200
Slice 3	307.31818	$1,993.028$	0	342.97346	222.72957	200
Slice 4	309.04545	$1,993.1235$	0	464.91976	301.92242	200
Slice 5	310.77273	$1,993.269$	0	578.90446	375.94495	200
Slice 6	312.5	$1,993.4647$	0	685.0512	444.87745	200
Slice 7	314.22727	$1,993.7112$	0	783.45705	508.78295	200
Slice 8	315.95455	$1,994.0091$	0	874.19372	567.70804	200
Slice 9	317.68182	$1,994.3592$	0	957.30844	621.68337	200
Slice 10	319.40909	$1,994.7625$	0	$1,032.8244$	670.72401	200
Slice						

11	321.13636	$1,995.2199$	0	$1,100.7409$	714.82947	200
Slice 12	322.75	$1,995.6957$	0	$1,101.3087$	715.19823	200
Slice 13	324.25	$1,996.184$	0	$1,036.8746$	673.35424	200
Slice 14	325.75	$1,996.7164$	0	968.45093	628.91939	200
Slice 15	327.25	$1,997.2941$	0	896.01174	581.87683	200
Slice 16	328.83333	$1,997.956$	0	879.68058	571.27125	200
Slice 17	330.5	$1,998.7097$	0	917.08595	595.56258	200
Slice 18	332.16667	$1,999.5256$	0	946.75549	614.8302	200
Slice 19	333.83333	$2,000.4068$	0	968.5074	628.95606	200
Slice 20	335.5	$2,001.3564$	0	982.12499	637.79942	200
Slice 21	337.16667	$2,002.3785$	0	987.35215	641.19398	200
Slice 22	338.83333	$2,003.4774$	0	983.88772	638.94416	200
Slice 23	340.5	$2,004.6583$	0	971.37841	630.82052	200
Slice 24	342.16667	$2,005.9275$	0	949.40982	616.55395	200
Slice 25	343.83333	$2,007.2922$	0	859.37479	558.08452	200
Slice 26	345.5	$2,008.7614$	0	703.44824	456.82463	200
Slice 27	347.16667	$2,010.3457$	0	540.31814	350.8867	200
Slice 28	348.83333	$2,012.0585$	0	369.67235	240.06803	200
Slice 29	350.5	$2,013.9168$	0	191.19188	124.16146	200
Slice 30	352.16667	$2,015.9423$	0	4.5775828	2.972717	200

Section 1 SSA for Skyline Ranch Development project.gsz

Section 1 SSA for Skyline Ranch Development project.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/18/2016 7:21:35 PM
Name: TQs 150 psf- 17° bedding 3-10 ${ }^{\circ}$

Model: Anisotropic Fn. Seismic Load
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $17^{\circ} \mathrm{A}$-bedding 3-10
C-Anisotropic Strength Fn.: TQs 150psf A-bedding 3-10 ${ }^{\circ}$
Name: Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Name: TQs $150 \mathrm{psf}-11^{\circ}$ bedding 3-10
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $11^{\circ} \mathrm{A}$-bedding $3-10^{\circ}$ C-Anisotropic Strength Fn.: TQs 150psf A-bedding 3-10 ${ }^{\circ}$ Horizontal: 0.15 Vertical: 0.0

Pseudostatic - Circular

Materials

\square TQs150 psf- 17° bedding 3-10 ${ }^{\circ}$ \square Fill
\square TQs 150 psf- 11° bedding 3-10
Key 40 Feet Wide by 20 feet Deep 2H:1V Backcut

[^16]
LGC Valley, Inc

GEOTECHNICAL CONSULTING
28532 Constellation Road, Valencia, CA 91355 Phone 661-702-8474, Fax 661-702-8475

Skyline Ranch

Development project, Tract 60922
Los Angeles CA

Distance (ft)

$$
\longrightarrow
$$

Project No: 153035-01 Engineer: BAS
Date:
March 2016

1 - Circular Mode of Failure

Report generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International

File Information

File Version: 8.15

Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 60
Date: 3/18/2016
Time: 7:21:35 PM
Tool Version: 8.15.5.11777
file Name: Section 1 SSA for Skyline Ranch Development project.gsz
Directory: P:\FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 1-1 results\Latest Update 3-18-16
Last Solved Date: 3/18/2016
Last Solved Time: 7:21:46 PM

Project Settings
Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
ressure(p) Units: psf
Strength Units: psf
nit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs150 psf- 17° bedding $3-10^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $17^{\circ} \mathrm{A}$-bedding 3-10
C-Anisotropic Strength Fn.: TQs 150 psf A-bedding 3-10º
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pc
Cohesion': 200 psf
Phi': 33°
Phi-B: 0
TQs 150 psf- 11° bedding 3-10 ${ }^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pc
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $11^{\circ} \mathrm{A}$-bedding 3-10 ${ }^{\circ}$
C-Anisotropic Strength Fn.: TQs 150 psf A-bedding 3-10
Phi-B: 0

Slip Surface Entry and Exit
Left Projection: Range
Left-Zone Left Coordinate: (211.0268, 1,971.6364) ft
Left-Zone Right Coordinate: $(303,1,993)$ ft
Left-Zone Increment: 50
Right Projection: Range
Right-Zone Left Coordinate: $(353,2,017) \mathrm{ft}$
Right-Zone Right Coordinate: $(517,2,035) \mathrm{ft}$
Right-Zone Increment: 50
Radius Increments: 8

Slip Surface Limits

Left Coordinate: ($-146,1,800.0439$ ft
Right Coordinate: $(680,1,800) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs 17° A-bedding 3-10
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(2.9,1)$
Data Point: $(3,0.425)$
Data Point: $(10,0.425)$
Data Point: $(10.1,1)$
TQs 11° A-bedding 3-10
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: (-90, 1)
Data Point: $(2.9,1)$
Data Point: $(3,0.275)$
Data Point: $(10,0.275)$
Data Point: (10.1, 1)
TQs 150psf A-bedding 3-10
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: $(3,0.667)$
Data Point: $(10,0.667)$
Data Point: $(10.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-145.2287	$1,950.7886$
Point 2	-111.3064	$1,951.8013$
Point 3	-22.9567	$1,969.775$
Point 4	41.3437	$1,971.547$
Point 5	68.1778	$1,984.9641$
Point 6	97.5433	$1,970.5344$
Point 7	178.0454	$1,971.547$
Point 8	232.4729	$1,971.547$
Point 9	259	1,983
Point 10	267	1,982
Point 11	291	1,993
Point 12	303	1,993
Point 13	322	2,006
Point 14	328	2,006
Point 15	343	2,017
Point 16	353	2,017
Point 17	364	2,022
Point 18	375	2,022
Point 19	398	2,035
Point 20	404	2,035
Point 21	426	2,044
Point 22	477	2,043
Point 23	492	2,040
Point 24	552	2,028
Point 25	680	1,800
Point 26	-146	$1,800.0439$
Point 27	677	1,992
Point 28	608	$2,022.624$
Point 29	636.787	$2,019.9606$
Point 30	676.6631	$2,016.0286$
Point 31	-145.6611	$1,845.0183$
Point 32	210.9608	$1,971.6367$
Point 33	232	1,952
Point 34	272	1,952
Point 35	401.1176	$2,016.6763$
Point 36	455.0038	$2,043.5159$
Point 37	463	$2,043.2745$

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs150 psf-17 bedding 3-10	$1,26,31,27,30,29,28,24,23,22,37,36,35,34,33,32,7,6,5,4,3,2$	58,736
Region 2	TQs 150 psf-11 bedding 3-10	$27,31,26,25$	97,770
Region 3	Fill	$32,33,34,35,36,21,20,19,18,17,16,15,14,13,12,11,10,9,8$	$5,214.9$

Current Slip Surface

Slip Surface: 5,277
Fof S: 1.51
Volume: $3,086.1029 \mathrm{ft}^{3}$
Weight: $370,332.35 \mathrm{lbs}$
Resisting Moment: 74,997,061 lbs-ft
Activating Moment: 49,709,909 lbs-ft
F of S Rank (Analysis): 1 of 23,409 slip surface
F of S Rank (Query): 1 of 150 slip surfaces
Exit: (232.32332, 1,971.5476) ft
Entry: (432.26416, 2,043.8954) ft
Entry: (432.26416,
Radius: 285.7636 ft
Center: $(242.04047,2,257.146) \mathrm{ft}$

Slip Slices
$\mathrm{X}(\mathrm{ft})$ $\mathrm{Y}(\mathrm{ft})$ PWP (psf) Base Normal Stress (psf) Frictional Strength (psf) Cohesive Strength (psf) Slice 1 232.39811 $1,971.5451$ 0 4.8038766 3.1196739 200 Slice 2 235.78879 $1,971.47$ 0 185.67664 120.57982 200 Slice 3 242.42056 $1,971.4019$ 0 532.32194 345.69391 200 Slice 4 249.05234 $1,971.4877$ 0 853.83964 554.48994 200 Slice 5 255.68411 $1,971.7276$ 0 $1,150.9264$ 747.42036 200 Slice 6 263 $1,972.1803$ 0 $1,190.9856$ 773.4351 200 Slice 7 270 $1,972.7694$ 0 $1,208.5872$ 784.8657 200 Slice 8 276 $1,973.4235$ 0 $1,434.5486$ 931.60676 200 Slice 9 282 $1,974.2062$ 0 $1,641.9022$ $1,066.2638$ 200 Slice 10 288 $1,975.1188$ 0 $1,830.9429$ $1,189.0282$ 200 Slice

11	294	$1,976.1625$	0	$1,849.0788$	$1,200.8058$	200
Slice 12	300	$1,977.3386$	0	$1,700.5592$	$1,104.356$	200
Slice 13	306.16667	$1,978.6893$	0	$1,771.4753$	$1,150.4095$	200
Slice 14	312.5	$1,980.2243$	0	$2,054.7249$	$1,334.354$	200
Slice 15	318.83333	$1,981.9135$	0	$2,315.7619$	$1,503.8734$	200
Slice 16	325	$1,983.7073$	0	$2,331.0314$	$1,513.7895$	200
Slice 17	331.75	$1,985.8575$	0	$2,366.9524$	$1,537.1169$	200
Slice 18	339.25	$1,988.4542$	0	$2,637.5113$	$1,712.8198$	200
Slice 19	345.5	$1,990.782$	0	$2,652.0503$	$1,722.2616$	200
Slice 20	350.5	$1,992.7787$	0	$2,424.7357$	$1,574.6418$	200
Slice 21	355.75	$1,994.9972$	0	$2,303.5164$	$1,495.9211$	200
Slice 22	361.25	$1,997.4524$	0	$2,284.3097$	$1,483.4481$	200
Slice 23	366.75	$2,000.0487$	0	$2,126.6283$	$1,381.0485$	200
Slice 24	372.25	$2,002.7904$	0	$1,833.9241$	$1,190.9642$	200
Slice 25	378.83333	$2,006.2885$	0	$1,679.5919$	$1,090.7397$	200
Slice 26	386.5	$2,010.6251$	0	$1,651.5099$	$1,072.5031$	200
Slice 27	394.16667	$2,015.2825$	0	$1,592.4049$	$1,034.1198$	200
Slice 28	401	$2,019.7019$	0	$1,356.7933$	881.11185	200
Slice 29	407.66667	$2,024.3187$	0	$1,047.3923$	680.1845	200
Slice 30	415	$2,029.7155$	0	809.05486	525.40637	200
Slice 31	422.33333	$2,035.4864$	0	543.86506	353.1901	200
Slice 32	429.13208	$2,041.1821$	0	158.28261	102.78993	200
	000					

2 - Translational Static

Report generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International Ltd.

File Information

File Version: 8.15

Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 60
Date: 3/18/2016
Time: 7:21:35 PM
Tool Version: 8.15.5.11777
File Name: Section 1 SSA for Skyline Ranch Development project.gsz
Directory: P: \FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 1-1 results\Latest Update 3-18-16
Last Solved Date: 3/18/2016
Last Solved Time: 7:26:40 PM

Project Settings
Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational Static
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: Yes
Critical Slip Surface Optimizations

Maximum Iterations: 2,000
Convergence Tolerance: 1e-007
Starting Points: 8
Ending Points: 16
Complete Passes per Insertion: 1

Tension Crack

Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs150 psf-17 ${ }^{\circ}$ bedding 3-10
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs 17° A-bedding 3-10
C-Anisotropic Strength Fn.: TQs 150 psf A-bedding 3-10
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
TQs 150 psf- 11° bedding 3-10 ${ }^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': $40{ }^{\circ}$
Phi-Anisotropic Strength Fn.: TQs 11° A-bedding 3-10 ${ }^{\circ}$
C-Anisotropic Strength Fn.: TQs 150psf A-bedding 3-10
Phi-B: 0°

Slip Surface Limits

Left Coordinate: (-146, 1,800.0439) ft
Right Coordinate: $(680,1,800) \mathrm{ft}$
Slip Surface Block

2-Translational Static

Left Grid

Upper Left: (172.7791, 1,959.785) ft
Lower Left: $(180.8055,1,835.8451) \mathrm{ft}$
Lower Right: (334.4512, 1,849.3658) ft
X Increments: 15
Y Increments: 15
Starting Angle: 135°
Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: (353.639, 1,999.7263) ft Lower Left: (348.7613, 1,881.1947) ft Lower Right: (555.0728, 1,905.9035) ft X Increments: 15
Y Increments: 15
Ending Angle: 65°
Ending Angle: 65

Seismic Coefficients

Horz Seismic Coef.:
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs 17° A-bedding 3-10
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(2.9,1)$
Data Point: $(3,0.425)$
Data Point: $(10,0.425)$
Data Point: $(10.1,1)$

TQs 11° A-bedding 3-10

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: ($3,0.275$

2-Translational Static

Data Point: (10, 0.275$)$
Data Point: (10.1, 1)
TQs 150psf A-bedding 3-10
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(2.9,1)$
Data Point: $(3,0.667)$
Data Point: $(10,0.667)$
Data Point: $(10.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-145.2287	$1,950.7886$
Point 2	-111.3064	$1,951.8013$
Point 3	-22.9567	$1,969.775$
Point 4	41.3437	$1,971.547$
Point 5	68.1778	$1,984.9641$
Point 6	97.5433	$1,970.5344$
Point 7	178.0454	$1,971.547$
Point 8	232.4729	$1,971.547$
Point 9	259	1,983
Point 10	267	1,982
Point 11	291	1,993
Point 12	303	1,993
Point 13	322	2,006
Point 14	328	2,006
Point 15	343	2,017
Point 16	353	2,017
Point 17	364	2,022
Point 18	375	2,022
Point 19	398	2,035
Point 20	404	2,035
Point 21	426	2,044
Point 22	477	2,043
Point 23	492	2,040
Point 24	552	2,028
Point 25	680	1,800
Point 26	-146	$1,800.0439$
Point 27	677	1,992

Point 28	608	$2,022.624$
Point 29	636.787	$2,019.9606$
Point 30	676.6631	$2,016.0286$
Point 31	-145.6611	$1,845.0183$
Point 32	210.9608	$1,971.6367$
Point 33	232	1,952
Point 34	272	1,952
Point 35	401.1176	$2,016.6763$
Point 36	455.0038	$2,043.5159$
Point 37	463	$2,043.2745$

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs150 psf-17 bedding 3-10	$1,26,31,27,30,29,28,24,23,22,37,36,35,34,33,32,7,6,5,4,3,2$	58,736
Region 2	TQs 150 psf-11 bedding 3-10	$27,31,26,25$	97,770
Region 3	Fill	$32,33,34,35,36,21,20,19,18,17,16,15,14,13,12,11,10,9,8$	$5,214.9$

Current Slip Surface

Slip Surface: 589,825
F of S: 1.82
Volume: 8,033.6946 ft^{3}
Weight: $964,043.36 \mathrm{lbs}$
Resisting Force: 408,149.68 lbs
Activating Force: $224,373.76 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 589,825 slip surfaces
F of S Rank (Query): 1 of 150 slip surfaces
Exit: (217.1762, 1,971.6108) ft
Entry: (443.07401, 2,043.715) ft
Radius: 121.28783 ft
Center: (312.86392, 2,061.7411) ft

Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	221.00038	$1,970.0268$	0	274.47961	178.24915	200
Slice 2	228.64873	$1,966.8587$	0	716.28741	465.16248	200
Slice 3	235.78879	$1,963.9012$	0	$1,332.3626$	865.2464	200
Slice						

4	242.42056	$1,961.1542$	0	$2,122.7053$	$1,378.5009$	200
Slice 5	249.05234	$1,958.4073$	0	$2,913.0479$	$1,891.7554$	200
Slice 6	255.68411	$1,955.6603$	0	$3,703.3905$	$2,405.0099$	200
Slice 7	261.76041	$1,953.1434$	0	$4,211.0296$	$2,734.6746$	200
Slice 8	265.27876	$1,951.6861$	0	$4,594.5443$	$3,855.2804$	225
Slice 9	266.51835	$1,951.454$	0	$3,556.8443$	$1,087.4364$	150.075
Slice 10	268.36498	$1,951.7679$	0	$3,586.1793$	$1,096.405$	150.075
Slice 11	271.44815	$1,952.2921$	0	$3,573.515$	$2,320.6678$	200
Slice 12	277.62475	$1,953.3422$	0	$3,897.6348$	$1,191.6266$	150.075
Slice 13	286.54158	$1,954.8582$	0	$4,197.5552$	$1,283.3214$	150.075
Slice 14	294	$1,956.1262$	0	$4,288.0144$	$1,310.9776$	150.075
Slice 15	300	$1,957.1463$	0	$4,169.0125$	$1,274.595$	150.075
Slice 16	306.16667	$1,958.1947$	0	$4,299.4673$	$1,314.4791$	150.075
Slice 17	312.5	$1,959.2715$	0	$4,679.379$	$1,430.6297$	150.075
Slice 18	318.83333	$1,960.3482$	0	$5,059.2906$	$1,546.7804$	150.075
Slice 19	325	$1,961.3966$	0	$5,189.7455$	$1,586.6644$	150.075
Slice 20	331.75	$1,962.5442$	0	$5,376.6821$	$1,643.8167$	150.075
Slice 21	339.25	$1,963.8193$	0	$5,869.5573$	$1,794.5038$	150.075
Slice 22	348	$1,965.3069$	0	$6,016.8266$	$1,839.5285$	150.075
Slice 23	358.5	$1,967.0921$	0	$6,100.2222$	$1,865.0251$	150.075
Slice 24	369.5	$1,968.9622$	0	$6,173.7008$	$1,887.4898$	150.075
Slice 25	379.65015	$1,970.6879$	0	$6,279.0077$	$1,919.6853$	150.075
Slice 26	388.95044	$1,972.269$	0	$6,707.7916$	$2,050.7777$	150.075
Slice 27	395.80029	$1,976.2011$	0	$4,053.6249$	$3,401.3952$	225
	259					

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/18/2016

2 - Translational Static
Page 7 of 7

Slice 28	399.5588	$1,981.5689$	0	$3,755.5039$	$3,151.2419$	225
Slice 29	402.5588	$1,985.8533$	0	$3,445.814$	$2,891.3813$	225
Slice 30	407.66667	$1,993.1481$	0	$3,026.9528$	$2,539.915$	225
Slice 31	415	$2,003.6212$	0	$2,486.7804$	$2,086.6565$	225
Slice 32	422.33333	$2,014.0943$	0	$1,946.608$	$1,633.398$	225
Slice 33	431.23558	$2,026.808$	0	$1,129.7361$	947.96114	225
Slice 34	439.77259	$2,039.0001$	0	274.70357	178.39458	200

Section 1 SSA for Skyline Ranch Development project.gsz

Section 1 SSA for Skyline Ranch Development project.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/18/2016 7:21:35 PM

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International Ltd.

File Information

File Version: 8.15

Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 60
Date: 3/18/2016
Time: 7:21:35 PM
Tool Version: 8.15.5.11777
File Name: Section 1 SSA for Skyline Ranch Development project.gsz
Directory: P: \FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 1-1 results\Latest Update 3-
18-16
Last Solved Date: 3/18/2016
Last Solved Time: 7:23:50 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: Yes
Critical Slip Surface Optimizations

Maximum Iterations: 2,000
Convergence Tolerance: 1e-007
Starting Points: 8
Ending Points: 16
Complete Passes per Insertion: 1

Tension Crack

Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs150 psf-17 ${ }^{\circ}$ bedding 3-10
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs 17° A-bedding 3-10
C-Anisotropic Strength Fn.: TQs 150 psf A-bedding 3-10
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
TQs 150 psf- 11° bedding 3-10 ${ }^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': $40{ }^{\circ}$
Phi-Anisotropic Strength Fn.: TQs 11° A-bedding 3-10 ${ }^{\circ}$
C-Anisotropic Strength Fn.: TQs 150 psf A-bedding 3-10
Phi-B: 0°

Slip Surface Limits

Left Coordinate: (-146, 1,800.0439) ft
Right Coordinate: $(680,1,800) \mathrm{ft}$
Slip Surface Block

2-Translational

Left Grid

Upper Left: (172.7791, 1,959.785) ft
Lower Left: $(180.8055,1,835.8451) \mathrm{ft}$
Lower Right: (334.4512, 1,849.3658) ft
X Increments: 15
Y Increments: 15
Starting Angle: 135°
Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: (353.639, 1,999.7263) ft Lower Left: (348.7613, 1,881.1947) ft Lower Right: (555.0728, 1,905.9035) ft X Increments: 15
Y Increments: 15
Ending Angle: 65°
Anding Angle. 65

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs 17° A-bedding 3-10
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(2.9,1)$
Data Point: $(3,0.425)$
Data Point: $(10,0.425)$
Data Point: $(10.1,1)$

Qs 11° A-bedding 3-10

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: ($3,0.275$

2 - Translational

Data Point: (10, 0.275$)$ Data Point: (10.1, 1)

TQs 150psf A-bedding 3-10
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(2.9,1)$
Data Point: $(3,0.667)$
Data Point: $(10,0.667)$
Data Point: $(10.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-145.2287	$1,950.7886$
Point 2	-111.3064	$1,951.8013$
Point 3	-22.9567	$1,969.775$
Point 4	41.3437	$1,971.547$
Point 5	68.1778	$1,984.9641$
Point 6	97.5433	$1,970.5344$
Point 7	178.0454	$1,971.547$
Point 8	232.4729	$1,971.547$
Point 9	259	1,983
Point 10	267	1,982
Point 11	291	1,993
Point 12	303	1,993
Point 13	322	2,006
Point 14	328	2,006
Point 15	343	2,017
Point 16	353	2,017
Point 17	364	2,022
Point 18	375	2,022
Point 19	398	2,035
Point 20	404	2,035
Point 21	426	2,044
Point 22	477	2,043
Point 23	492	2,040
Point 24	552	2,028
Point 25	680	1,800
Point 26	-146	$1,800.0439$
Point 27	677	1,992

Point 28	608	$2,022.624$
Point 29	636.787	$2,019.9606$
Point 30	676.6631	$2,016.0286$
Point 31	-145.6611	$1,845.0183$
Point 32	210.9608	$1,971.6367$
Point 33	232	1,952
Point 34	272	1,952
Point 35	401.1176	$2,016.6763$
Point 36	455.0038	$2,043.5159$
Point 37	463	$2,043.2745$

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs150 psf-17 bedding 3-10	$1,26,31,27,30,29,28,24,23,22,37,36,35,34,33,32,7,6,5,4,3,2$	58,736
Region 2	TQs 150 psf-11 bedding 3-10	$27,31,26,25$	97,770
Region 3	Fill	$32,33,34,35,36,21,20,19,18,17,16,15,14,13,12,11,10,9,8$	$5,214.9$

Current Slip Surface

Slip Surface: 589,825
Fof S: 1.15
Volume: $9,608.0564 \mathrm{ft}^{3}$
Weight: 1,152,966.8 lbs
Resisting Force: 445,071.18 lbs
Activating Force: $387,160.56 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 589,825 slip surfaces
F of S Rank (Query): 1 of 150 slip surfaces
Exit: (222.57809, 1,971.5883) ft
Entry: (462.00622, 2,043.3045) ft
Radius: 124.67095 ft
Center: (327.21648, 2,061.0703) ft

Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	227.52549	$1,969.0876$	0	538.25891	349.54942	200
Slice 2	235.8569	$1,964.8765$	0	$1,485.9458$	964.98447	200
Slice 3	242.46355	$1,962.1795$	0	$2,047.4326$	$1,329.6183$	200
Slice						

4	248.90885	$1,960.2063$	0	$2,736.9081$	$1,777.3689$	200
Slice 5	255.56575	$1,958.3889$	0	$3,261.221$	$2,117.8617$	200
Slice 6	263	$1,956.5904$	0	$3,647.5504$	$2,368.7469$	200
Slice 7	271.0835	$1,954.6349$	0	$4,109.7149$	$2,668.8801$	200
Slice 8	278.93486	$1,953.8491$	0	$3,971.1117$	$1,214.0907$	150.075
Slice 9	286.40281	$1,954.2498$	0	$4,328.6894$	$1,323.4132$	150.075
Slice 10	290.55145	$1,954.5027$	0	$4,436.6505$	$1,356.4202$	150.075
Slice 11	294	$1,954.9211$	0	$4,411.9093$	$1,348.856$	150.075
Slice 12	300	$1,955.649$	0	$4,327.2766$	$1,322.9812$	150.075
Slice 13	306.3637	$1,956.4211$	0	$4,505.0923$	$1,377.3449$	150.075
Slice 14	312.79555	$1,957.3661$	0	$4,833.5532$	$1,477.7655$	150.075
Slice 15	318.93185	$1,958.4398$	0	$5,191.9174$	$1,587.3285$	150.075
Slice 16	325	$1,959.5016$	0	$5,310.8968$	$1,623.7041$	150.075
Slice 17	329.7626	$1,960.335$	0	$5,363.5609$	$1,639.8051$	150.075
Slice 18	337.2626	$1,961.6505$	0	$5,842.5533$	$1,786.2478$	150.075
Slice 19	348	$1,963.5354$	0	$6,108.8792$	$1,867.6718$	150.075
Slice 20	355.7575	$1,964.8971$	0	$6,096.4554$	$1,863.8735$	150.075
Slice 21	361.2575	$1,965.8572$	0	$6,276.4255$	$1,918.8958$	150.075
Slice 22	365.8371	$1,966.652$	0	$6,328.2517$	$1,934.7407$	150.075
Slice 23	371.3371	$1,967.6155$	0	$6,213.5901$	$1,899.6851$	150.075
Slice 24	379.8241	$1,969.1092$	0	$6,354.962$	$1,942.9069$	150.075
Slice 25	389.4723	$1,970.8072$	0	$6,785.5288$	$2,074.5443$	150.075
Slice 26	396.1482	$1,971.9824$	0	$7,083.079$	$2,165.5146$	150.075
Slice 27	399.5588	$1,972.5833$	0	$7,134.1938$	$2,181.1419$	150.075
	0					

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/18/2016

2 - Translational
Page 7 of 7

Slice 28	402.5588	$1,973.1118$	0	$7,073.6011$	$2,162.6169$	150.075
Slice 29	407.85307	$1,974.0444$	0	$7,147.3875$	$2,185.1757$	150.075
Slice 30	415.55923	$1,975.402$	0	$7,353.1779$	$2,248.0921$	150.075
Slice 31	422.70615	$1,981.1723$	0	$3,331.9642$	$2,795.8499$	225
Slice 32	427.54145	$1,988.6466$	0	$2,984.3264$	$2,504.1472$	225
Slice 33	433.2698	$1,997.6163$	0	$2,446.5865$	$2,052.9298$	225
Slice 34	442.2522	$2,011.8137$	0	$1,634.576$	$1,371.5722$	225
Slice 35	451.02575	$2,025.6884$	0	858.03091	719.97342	225
Slice 36	455.5827	$2,032.8642$	0	451.85408	379.15059	225
Slice 37	459.08391	$2,038.5402$	0	121.0361	101.56135	225

file://P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/18/2016

Section 1 SSA for Skyline Ranch Development project.gsz

Section 1 SSA for Skyline Ranch Development project.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/18/2016 7:21:35 PM

Temp analysis

Report generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International Ltd.

File Information

File Version: 8.15

Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 60
Date: 3/18/2016
Time: 7:21:35 PM
Tool Version: 8.15.5.11777
File Name: Section 1 SSA for Skyline Ranch Development project.gsz
Directory: P: \FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 1-1 results\Latest Update 3-
18-16
Last Solved Date: 3/18/2016
Last Solved Time: 7:27:52 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

Temp analysis
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: Yes
Critical Slip Surface Optimizations

Maximum Iterations: 2,000
Convergence Tolerance: 1e-007
Starting Points: 8
Ending Points: 16
Complete Passes per Insertion: 1

Tension Crack

Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs150 psf-17 ${ }^{\circ}$ bedding 3-10
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn .: TQs $17^{\circ} \mathrm{A}$-bedding 3-10 ${ }^{\circ}$
C-Anisotropic Strength Fn.: TQs 150psf A-bedding 3-10
Phi-B: 0°
TQs 150 psf- 11° bedding $3-10^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs 11° A-bedding 3-10
C-Anisotropic Strength Fn.: TQs 150 psf A-bedding 3-10
Phi-B: 0°

Slip Surface Limits

Left Coordinate: ($-146,1,800.0439$) ft
Right Coordinate: $(680,1,800)$ ft

Slip Surface Block

Left Grid
Upper Left: (186.8493, 1,990.3033) ft
Lower Left: (194.8757, 1,866.3634) ft
Lower Right: (348.5214, 1,879.8841) ft
X Increments: 15
Y Increments: 15
Starting Angle: 135°

Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: (374.0506, 2,012.4093) ft
Lower Left: (369.1729, 1,893.8777) ft
Lower Right: (575.4844, 1,918.5865) ft
X Increments: 15
Y Increments: 15
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs 17° A-bedding 3-10

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: $(3,0.425)$
Data Point: $(10,0.425)$
Data Point: (10.1, 1)
TQs 11° A-bedding 3-10
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(2.9,1)$
Data Point: $(3,0.275)$
Data Point: $(10,0.275)$
Data Point: $(10.1,1)$
TQs 150psf A-bedding 3-10
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%

Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: $(3,0.667)$
Data Point: $(10,0.667)$
Data Point: $(10.1,1)$

Points

	$X(\mathrm{ft})$	$Y(\mathrm{ft})$
Point 1	-145.2287	$1,950.7886$
Point 2	-111.3064	$1,951.8013$
Point 3	-22.9567	$1,969.775$
Point 4	41.3437	$1,971.547$
Point 5	68.1778	$1,984.9641$
Point 6	97.5433	$1,970.5344$
Point 7	178.0454	$1,971.547$
Point 8	232.4729	$1,971.547$
Point 9	259	1,983
Point 10	267	1,982
Point 11	291	1,993
Point 12	303	1,993
Point 13	322	2,006
Point 14	328	2,006
Point 15	343	2,017
Point 16	353	2,017
Point 17	364	2,022
Point 18	375	2,022
Point 19	398	2,035
Point 20	404	2,035
Point 21	426	2,044
Point 22	477	2,043
Point 23	492	2,040
Point 24	552	2,028
Point 25	680	1,800
Point 26	-146	$1,800.0439$
Point 27	677	1,992
Point 28	608	$2,022.624$
Point 29	636.787	$2,019.9606$
Point 30	676.6631	$2,016.0286$
Point 31	-145.6611	$1,845.0183$
Point 32	210.9608	$1,971.6367$
Point 33	232	1,952

Point 34	272	1,952
Point 35	401.1176	$2,016.6763$
Point 36	455.0038	$2,043.5159$
Point 37	463	$2,043.2745$

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs150 psf-17 bedding 3-10	$1,26,31,27,30,29,28,24,23,22,37,36,35,34,33,32,7,6,5,4,3,2$	58,736
Region 2	TQs 150 psf-11 bedding 3-10	$27,31,26,25$	97,770
Region 3		$32,33,34,35,36,21,20,19,18,17,16,15,14,13,12,11,10,9,8$	$5,214.9$

Current Slip Surface

Slip Surface: 589,825
F of S: 1.27
Volume: $5,059.0396 \mathrm{ft}^{3}$
Weight: 607,084.75 Ibs
Resisting Force: $218,933.38 \mathrm{lbs}$
Activating Force: $172,505.5 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 589,825 slip surfaces
F of S Rank (Query): 1 of 150 slip surfaces
Exit: (275.89795, 1,953.9525) ft
Entry: (466.08324, 2,043.214) ft
Radius: 119.43656 ft
Center: (341.63839, 2,065.7323) ft
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	280.20112	$1,954.1799$	0	222.33282	67.973963	150.075
Slice 2	287.75215	$1,954.9383$	0	553.25236	169.14622	150.075
Slice 3	294	$1,955.9601$	0	796.64195	243.55789	150.075
Slice 4	300	$1,956.9412$	0	$1,030.3764$	315.01767	150.075
Slice 5	303.91375	$1,957.5813$	0	$1,182.8394$	361.63028	150.075
Slice 6	307.68958	$1,958.2219$	0	$1,323.8508$	404.7418	150.075
Slice	313.41375	$1,959.2044$	0	$1,541.074$	471.15359	150.075

7						
Slice 8	319.13792	$1,960.1869$	0	$1,758.2971$	537.56538	150.075
Slice 9	325	$1,961.1931$	0	$1,980.754$	605.57727	150.075
Slice 10	329.2863	$1,961.9288$	0	$2,143.4124$	655.30693	150.075
Slice 11	333.38405	$1,962.6438$	0	$2,294.8967$	701.62033	150.075
Slice 12	339.00695	$1,963.6324$	0	$2,505.3802$	765.97159	150.075
Slice 13	342.4092	$1,964.2307$	0	$2,632.4166$	804.81051	150.075
Slice 14	345.5	$1,964.7753$	0	$2,747.9594$	840.1355	150.075
Slice 15	350.5	$1,965.6564$	0	$2,934.8736$	897.28089	150.075
Slice 16	353.2898	$1,966.1479$	0	$3,039.1642$	929.16574	150.075
Slice 17	356.1847	$1,966.6397$	0	$3,155.4235$	964.70976	150.075
Slice 18	361.3949	$1,967.521$	0	$3,354.7501$	$1,025.65$	150.075
Slice 19	366.59758	$1,968.401$	0	$3,553.7889$	$1,086.5023$	150.075
Slice 20	371.79273	$1,969.2798$	0	$3,752.5398$	$1,147.2666$	150.075
Slice 21	374.69515	$1,969.7677$	0	$3,874.1769$	$1,184.4547$	150.075
Slice 22	377.1457	$1,970.1573$	0	$3,971.0284$	$1,214.0652$	150.075
Slice 23	382.11708	$1,970.992$	0	$4,145.5471$	$1,267.4209$	150.075
Slice 24	387.76842	$1,971.9792$	0	$4,357.8757$	$1,332.3363$	150.075
Slice 25	394.29705	$1,973.1246$	0	$4,601.0263$	$1,406.6749$	150.075
Slice 26	399.5588	$1,974.0508$	0	$4,797.8466$	$1,466.8489$	150.075
Slice 27	402.5588	$1,974.5788$	0	$4,909.5944$	$1,501.0136$	150.075
Slice 28	407.6021	$1,975.4666$	0	$5,096.5996$	$1,558.1869$	150.075
Slice 29	414.90315	$1,976.7497$	0	$5,368.2739$	$1,641.246$	150.075
Slice 30	422.30105	$1,978.0479$	0	$5,643.0781$	$1,725.2621$	150.075
	30					

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/18/2016

Slice 31	426.8846	$1,978.8523$	0	$5,813.3397$	$1,777.3163$	150.075
Slice 32	430.24115	$1,982.7815$	0	$2,760.7432$	$2,316.5386$	225
Slice 33	436.57968	$1,992.7561$	0	$2,288.3586$	$1,920.1608$	225
Slice 34	444.31282	$2,005.1572$	0	$1,789.5532$	$1,501.6134$	225
Slice 35	450.409	$2,015.1574$	0	$1,331.6835$	$1,117.4151$	225
Slice 36	453.8212	$2,021.0908$	0	$1,051.4295$	882.2541	225
Slice 37	459.0019	$2,030.4379$	0	564.68967	473.83089	225
Slice 38	464.54162	$2,040.4327$	0	8.4914039	7.1251339	225

4 - Circular Mode of Failure Static

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 91
Date: 3/19/2016
Time: 1:57:45 PM
Tool Version: 8.15.5.11777
File Name: Section 2-2 SSA for Skyline Ranch3to1.gsz
Directory: P:\FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 2-2 results\Latest Update 3-19-16\}
Last Solved Date: 3/19/2016
Last Solved Time: 1:59:52 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: p
Strength Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

4 - Circular Mode of Failure Static
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1
Driving Side Maximum Convex Angle: 5°
Optimize Critical Slip Surface Location: №
Tension Crack
Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs ($150 \mathrm{psf} / 17^{\circ}-\mathrm{A}-\mathrm{Bed} 6-11^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pc
Cohesion
Phi':
40°
Phi-Anisotropic Strength Fn.: 17° - A-Bed 6-11
C-Anisotropic Strength Fn.: 150 psf - A-Bed $6-1^{\circ}$ (TQs
Phi-B: 0°
Tmc ($100 \mathrm{psf} / \mathbf{2 5}^{\circ}-\mathrm{A}-\mathrm{Bed} 4-\mathbf{8}^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pc
Phi': 40°
Phi-Anisotropic Strength Fn.: 25° - A-Bed 4-8 C-Anisotropic Strength Fn.: 100 psf - A-Bed $4-8^{\circ}$ Phi-B: 0°

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Along Bedding Shear
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 150 psf
Phi': 11°
Phi-B: 0°
Tmc ($150 \mathrm{psf} / \mathbf{1 7}^{\circ}-\mathrm{A}-\mathrm{Bed} 4-8^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pc
Phi': 40
Phi-Anisotropic Strength Fn.: 150 psf - A-Bed 4-8
C-Anisotropic Strength Fn.: 17° - A-Bed 4-8 ${ }^{\circ}$
Phi-B: 0°

Slip Surface Entry and Exit
Left Projection: Range
Left-Zone Left Coordinate: ($31.8656,1,952.6222$) ft
Left-Zone Right Coordinate: $(252.5368,2,006.1221) \mathrm{ft}$
Left-Zone Increment: 20
Right Projection: Rang
Right-Zone Left Coordinate: $(304,2,031) \mathrm{ft}$
Right-Zone Right Coordinate: ($629.4414,2,096.335$) ft
Right-Zone Increment: 20

4-Circular Mode of Failure Static

Radius Increments: 20

Slip Surface Limits

Left Coordinate: $(-165,1,897) \mathrm{ft}$
Right Coordinate: $(770,2,100) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

25° - A-Bed 4-8 ${ }^{\circ}$

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.625)$
Data Point: $(8.1,1)$
100 psf - A-Bed 4-8 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: (3.9, 1
Data Point: $(4,0.5)$
Data Point: $(8,0.5)$
Data Point: (8.1, 1)
17° - A-Bed 4-8 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(8,0.425)$
Data Point: (8.1, 1)

150 psf - A-Bed $4-8^{\circ}$
Model: Spline Data Point Function
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Curve Fit to Data: 100%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: $(4,0.75)$
Data Point: ($8,0.75$)
Data Point: $(8.1,1)$
17° - A-Bed 6-11 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: ($6,0.425$)
Data Point: (11, 0.425)
Data Point: (11.1, 1)
150 psf - A-Bed 6-110 (TQs)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: (5.9, 1)
Data Point: ($6,0.667$)
Data Point: $(11,0.667)$
Data Point: $(11.1,1)$

Points

	$X(\mathrm{ft})$	$Y(\mathrm{ft})$
Point 1	-164	1,952
Point 2	-88	1,953
Point 3	16	1,952
Point 4	67	1,954
Point 5	119	1,956
Point 6	169	1,979
Point 7	222	1,998
Point 8	239	1,998
Point 9	294	2,031
Point 10	304	2,031

Point 11	355	2,057
Point 12	376	2,057
Point 13	428	2,083
Point 14	437	2,083
Point 15	493	2,110
Point 16	545	2,119
Point 17	666.7794	$2,082.2835$
Point 18	678	2,078
Point 19	691	2,075
Point 20	734	2,093
Point 21	770	2,100
Point 22	770	2,070
Point 23	769	2,033
Point 24	768.9132	$1,700.0035$
Point 25	-164	1,700
Point 26	-165	1,897
Point 27	123	1,926
Point 28	339	1,949
Point 29	516	1,968
Point 30	636	1,981
Point 31	769	1,995
Point 32	769	1,807
Point 33	-164	1,808
Point 34	-145.1146	1,807
Point 35	94.3981	$1,804.0495$
Point 36	767.2671	$1,804.0495$
Point 37	178	1,980
Point 38	769	1,935
Point 39	-164.3258	1,837
Point 40	770	2,085
Point 41	770	2,084
Point 42	769.5405	2,053
Point 43	769.5135	2,052
Point 44	769.0811	2,036
Point 45	769.0541	2,035
Point 46	89	$1,954.8462$
Point 47	197	1,926
Point 48	230.4185	$1,937.6441$
Point 49	410.1571	$1,996.9191$
Point 50	412.2316	$1,997.8289$
Point 51	462.5895	$2,014.3399$
Point 52	467.0781	$2,015.9473$
Point 53	544.2511	$2,041.6026$
Point 54	550.5628	$2,043.7746$
Point 55	566.1504	$2,048.8086$
Point 56	489.5416	$2,023.5144$
Point 57	579.8545	$2,111.4639$
Point 58	609.9957	$2,103.2729$
$-\quad-1$		

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/19/2016

	648.9076	$2,089.3897$

Regions			
	Material	Points	$\begin{gathered} \text { Area } \\ \left(\mathrm{ft}^{2}\right) \end{gathered}$
$\begin{aligned} & \text { Region } \\ & 1 \end{aligned}$	Tmc $(100$ psf/25 A-Bed 4- $\left.8^{\circ}\right)$	26,39,38,31,30,29,28,48,47,27	55,091
$\begin{aligned} & \text { Region } \\ & 2 \end{aligned}$	Tmc (150 psf $/ 17^{\circ}$ -A-Bed 4$8^{\circ}$)	33,34,35,36,32,38,39	76,059
Region 3	$\begin{aligned} & \text { TQs (150 } \\ & \text { psf/17 } \\ & \text { A-Bed 6- } \\ & \left.11^{\circ}\right) \\ & \hline \end{aligned}$	40,21,20,19,18,17,55,54	2,168.2
$\begin{aligned} & \text { Region } \\ & 4 \end{aligned}$	TQs (150 psf/ 17° -A-Bed 611 ${ }^{\circ}$)	43,51,50,44	4,432.1
Region 5	$\begin{array}{\|l\|} \hline \text { TQs }(150 \\ \text { psf/170 } \\ \text { A-Bed 6- } \\ \left.11^{\circ}\right) \\ \hline \end{array}$	22,41,53,56,52,42	5,946.6
$\begin{aligned} & \text { Region } \\ & 6 \end{aligned}$	Fill	46,27,47,48,49,50,51,52,56,53,54,55,17,59,58,57,16,15,14,13,12,11,10,9,8,7,37,6,5	34,644
$\begin{aligned} & \text { Region } \\ & 7 \end{aligned}$	Along Bedding Shear	45,44,50,49	301.67
$\begin{aligned} & \text { Region } \\ & 8 \end{aligned}$	Along Bedding Shear	43,42,52,51	312.89
$\begin{aligned} & \text { Region } \\ & 9 \end{aligned}$	Along Bedding Shear	41,40,54,53	221.08
$\begin{aligned} & \text { Region } \\ & 10 \end{aligned}$	$\begin{aligned} & \hline \text { TQs (150 } \\ & \text { psf/170 - } \\ & \text { A-Bed 6- } \\ & \left.11^{\circ}\right) \\ & \hline \end{aligned}$	4,3,2,1,26,27,46	11,437
$\begin{aligned} & \text { Region } \\ & 11 \end{aligned}$	$\begin{aligned} & \text { TQs (150 } \\ & \text { psf/17 } \\ & \text { A-Bed 6- } \\ & \left.11^{\circ}\right) \\ & \hline \end{aligned}$	28,29,30,31,23,45,49,48	18,001

Current Slip Surface

Slip Surface: 7,946
Fof $\mathrm{S}: 1.832$
Volume: $543.16781 \mathrm{ft}^{3}$
Weight: $65,180.137 \mathrm{lbs}$

Resisting Moment: 4,799,852.3 lbs-ft
Activating Moment: $2,619,923.8 \mathrm{lbs}-\mathrm{ft}$
F of S Rank (Analysis): 1 of 9,261 slip surface
F of S Rank (Query): 1 of 150 slip surfaces
Exit: (239.1067, 1,998.064) ft
Entry: $(304,2,031) \mathrm{ft}$
Center: $(234.60159,2,087.3375) \mathrm{ft}$

Slip Slices						
	X (ft)	Y (ft)	$\begin{aligned} & \text { PWP } \\ & \text { (psf) } \end{aligned}$	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	240.20456	1,998.133	0	62.539406	40.613565	200
Slice 2	242.40029	1,998.2981	0	193.51301	125.66882	200
Slice 3	244.59603	1,998.5178	0	315.94516	205.17719	200
Slice 4	246.79176	1,998.7925	0	429.97298	279.22772	200
Slice 5	248.98749	1,999.1227	0	535.71219	347.89556	200
Slice 6	251.18322	1,999.509	0	633.2582	411.24268	200
Slice 7	253.37896	1,999.9521	0	722.68698	469.31841	200
Slice 8	255.57469	2,000.4531	0	804.0557	522.15988	200
Slice 9	257.77042	2,001.0127	0	877.40319	569.79229	200
$\begin{aligned} & \text { Slice } \\ & 10 \end{aligned}$	259.96615	2,001.6323	0	942.75018	612.22913	200
$\begin{aligned} & \hline \text { Slice } \\ & 11 \end{aligned}$	262.16188	2,002.3131	0	1,000.0994	649.47215	200
Slice 12	264.35762	2,003.0566	0	1,049.4355	681.51136	200
$\begin{aligned} & \text { Slice } \\ & 13 \end{aligned}$	266.55335	2,003.8644	0	1,090.7245	708.32477	200
$\begin{aligned} & \hline \text { Slice } \\ & 14 \end{aligned}$	268.74908	2,004.7385	0	1,123.9137	729.87809	200
$\begin{aligned} & \text { Slice } \\ & 15 \end{aligned}$	270.94481	2,005.681	0	1,148.9306	746.12423	200
$\begin{aligned} & \hline \text { Slice } \\ & 16 \\ & \hline \end{aligned}$	273.14054	2,006.6943	0	1,165.6819	757.00269	200
$\begin{aligned} & \text { Slice } \\ & 17 \end{aligned}$	275.33628	2,007.7811	0	1,174.0526	762.4387	200
$\begin{aligned} & \text { Slice } \\ & 18 \end{aligned}$	277.53201	2,008.9445	0	1,173.9042	762.34231	200
$\begin{aligned} & \text { Slice } \\ & 19 \end{aligned}$	279.72774	2,010.1879	0	1,165.0727	756.60709	200
$\begin{aligned} & \text { Slice } \\ & 20 \end{aligned}$	281.92347	2,011.5152	0	1,147.3667	745.10867	200
$\begin{aligned} & \hline \text { Slice } \\ & 21 \\ & \hline \end{aligned}$	284.11921	2,012.9311	0	1,120.5643	727.70297	200
$\begin{aligned} & \text { Slice } \\ & 22 \end{aligned}$	286.31494	2,014.4405	0	1,084.41	704.22409	200
$\begin{aligned} & \text { Slice } \\ & 23 \end{aligned}$	288.51067	2,016.0496	0	1,038.6108	674.48171	200
$\begin{aligned} & \hline \text { Slice } \\ & 24 \\ & \hline \end{aligned}$	290.7064	2,017.7651	0	982.83131	638.25812	200
Slice						

25	292.90213	$2,019.5953$	0	916.68871	595.30461	200
Slice 26	295	$2,021.457$	0	789.31563	512.58756	200
Slice 27	297	$2,023.3489$	0	603.66807	392.02663	200
Slice 28	299	$2,025.3632$	0	411.83945	267.45167	200
Slice 29	301	$2,027.5122$	0	213.72464	138.7944	200
Slice 30	303	$2,029.811$	0	9.2567889	6.011429	200

Section 2-2 SSA for Skyline Ranch3to1.gsz
Section 2-2 SSA for Skyline Ranch3to1.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/19/2016 1:57:45 PM
 Name: TQs (150 pst/170 - A-Bed 6-11 ${ }^{\circ}$)
Model: Anisotropic Mode: Anisotropic
Unit Weight
Chonesiont: 222 post
Phil: 40 pst
 Name: Tmc (100 pst/25 - A-Bed $4-8^{\circ}$) Model: Anistotropic Fr
Unit Weight: 120 pf
Cohesion:: 200 pst Cohenion:
Phi:
40

Keyway 75 ' wide by 30 ' deep 3H:1V Backcut
1.321

Seismic Load Horizontal: 0.15 Vertical: 0.00

Materials

\square TQs (150 psf/ $\left.17^{\circ}-\mathrm{A}-\operatorname{Bed} 6-11^{\circ}\right)$
$\square \operatorname{Tmc}\left(100 \mathrm{psf} / 25^{\circ}-\right.$ A-Bed 4-8$\left.{ }^{\circ}\right)$

\square Fill

\square Along Bedding Shear
Tmc (150 pst/ $17^{\circ}-\mathrm{A}-\mathrm{Bed} 4-8^{\circ}$)

1 - Circular Mode of Failure Seismic

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 91
Date: 3/19/2016
Time: 1:57:45 PM
Tool Version: 8.15.5.11777
File Name: Section 2-2 SSA for Skyline Ranch3to1.gsz
Directory: P:\FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 2-2 results\Latest Update 3-19-16\}
Last Solved Date: 3/19/2016
Last Solved Time: 2:00:20 PM

Project Settings
Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: p
Strength Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1-Circular Mode of Failure Seismic Kind: SLOPE/W
Parent: 4-Circular Mode of Failure Static
Method: Bishop
Settings
PWP Conditions Source: (none)
Initial Slip Surface Source: Parent Analysis
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Critical Slip Surfaces from Other
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30

F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs (150 psf/ $17^{\circ}-$ A-Bed 6-11 ${ }^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 17° - A-Bed 6-11
C-Anisotropic Strength Fn.: 150 psf - A-Bed 6-11 (TQs)
Phi-B: 0°
Tmc ($\mathbf{1 0 0} \mathrm{psf} / \mathbf{2 5}^{\circ}$ - A-Bed 4-8 ${ }^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 25° - A-Bed $4-8^{\circ}$
C-Anisotropic Strength Fn.: 100 psf - A-Bed 4-8 ${ }^{\circ}$
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°.
Phi-B: 0°
Along Bedding Shear
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 150 psf
Phi': 11°.
Phi-B: 0°
Tmc ($150 \mathrm{psf} / 17^{\circ}-\mathrm{A}-\mathrm{Bed} 4-8^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pc
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 150 psf - A-Bed 4-8
C-Anisotropic Strength Fn.: 17° - A-Bed 4-8 ${ }^{\circ}$
Phi-B: 0°

Slip Surface Limits

Left Coordinate: (-165, 1,897) ft
Right Coordinate: $(770,2,100) \mathrm{ft}$

Seismic Coefficients

1 - Circular Mode of Failure Seismic

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

25° - A-Bed 4-8 ${ }^{\circ}$

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: $(4,0.625)$
Data Point: $(8,0.625)$
Data Point: (8.1, 1)
100 psf - A-Bed 4-8 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: $(-90,1)$ Data Point: $(3.9,1)$ Data Point: $(4,0.5)$ Data Point: $(8,0.5)$ Data Point: (8.1,
17° - A-Bed $4-8^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: $(-90,1)$ Data Point: $(3.9,1)$ Data Point: $(4,0.425)$ Data Point: $(8,0.425)$ Data Point: $(8.1,1)$
150 psf - A-Bed 4-8 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment
Intercept: 1
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: $(-90,1)$ Data Point: $(4,0.75)$

1 - Circular Mode of Failure Seismic

Data Point: $(8,0.75)$

Data Point: (8.1, 1)
17° - A-Bed 6-11
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100% Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: $(6,0.425)$
Data Point: ($11,0.425$)
Data Point: $(11.1,1)$
150 psf - A-Bed 6-11 ${ }^{\circ}$ (TQs)
Model: Spline Data Point Function
Function: Modifier Factor
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment
Stercept: 1
Data Points: Inclination (${ }^{\circ}$)
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: ($6,0.667$)
Data Point: $(11.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-164	1,952
Point 2	-88	1,953
Point 3	16	1,952
Point 4	67	1,954
Point 5	119	1,956
Point 6	169	1,979
Point 7	222	1,998
Point 8	239	1,998
Point 9	294	2,031
Point 10	304	2,031
Point 11	355	2,057
Point 12	376	2,057
Point 13	428	2,083
Point 14	437	2,083
Point 15	493	2,110
Point 16	545	2,119
Point 17	666.7794	$2,082.2835$
Point 18	678	2,078
Point 19	691	2,075
Point 20	734	2,093

1 - Circular Mode of Failure Seismic

Point 21	770	2,100
Point 22	770	2,070
Point 23	769	2,033
Point 24	768.9132	$1,700.0035$
Point 25	-164	1,700
Point 26	-165	1,897
Point 27	123	1,926
Point 28	339	1,949
Point 29	516	1,968
Point 30	636	1,981
Point 31	769	1,995
Point 32	769	1,807
Point 33	-164	1,808
Point 34	-145.1146	1,807
Point 35	94.3981	$1,804.0495$
Point 36	767.2671	$1,804.0495$
Point 37	178	1,980
Point 38	769	1,935
Point 39	-164.3258	1,837
Point 40	770	2,085
Point 41	770	2,084
Point 42	769.5405	2,053
Point 43	769.5135	2,052
Point 44	769.0811	2,036
Point 45	769.0541	2,035
Point 46	89	$1,954.8462$
Point 47	197	1,926
Point 48	230.4185	$1,937.6441$
Point 49	410.1571	$1,996.9191$
Point 50	412.2316	$1,997.8289$
Point 51	462.5895	$2,014.3399$
Point 52	467.0781	$2,015.9473$
Point 53	544.2511	$2,041.6026$
Point 54	550.5628	$2,043.7746$
Point 55	566.1504	$2,048.8086$
Point 56	489.5416	$2,023.5144$
Point 57	579.8545	$2,111.4639$
Point 58	609.9957	$2,103.2729$
Point 59	648.9076	$2,089.3897$

Regions

	Material		Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Tmc $(100$ psf $/ 25^{\circ}-$ A-Bed 4- $\left.8^{\circ}\right)$	$26,39,38,31,30,29,28,48,47,27$		55,091

1 - Circular Mode of Failure Seismic
Page 6 of 8

$\begin{aligned} & \text { Region } \\ & 2 \end{aligned}$	Tmc (150 psf/ 17° - A-Bed 4- 8°)	33,34,35,36,32,38,39	76,059
$\begin{aligned} & \text { Region } \\ & 3 \end{aligned}$	TQs (150 psf/ 17° -A-Bed 6$11^{\circ}$)	40,21,20,19,18,17,55,54	2,168.2
$\begin{aligned} & \text { Region } \\ & 4 \end{aligned}$	TQs (150 psf/ 17°. 11°)	43,51,50,44	4,432.1
$\begin{aligned} & \text { Region } \\ & 5 \end{aligned}$	TQs (150 psf/ 17° -A-Bed 6 11 ${ }^{\circ}$)	22,41,53,56,52,42	5,946.6
Region 6	Fill	46,27,47,48,49,50,51,52,56,53,54,55,17,59,58,57,16,15,14,13,12,11,10,9,8,7,37,6,5	34,644
$\begin{aligned} & \text { Region } \\ & 7 \end{aligned}$	Along Bedding Shear	45,44,50,49	301.67
$\begin{aligned} & \text { Region } \\ & 8 \end{aligned}$	Along Bedding Shear	43,42,52,51	312.89
$\begin{aligned} & \text { Region } \\ & 9 \end{aligned}$	Along Bedding Shear	41,40,54,53	221.08
$\begin{aligned} & \text { Region } \\ & 10 \end{aligned}$	TQs (150 psf/ 17° 11告)	4,3,2,1,26,27,46	11,437
$\begin{aligned} & \text { Region } \\ & 11 \end{aligned}$	TQs (150 psf/170. A-Bed 6- 11°)	28,29,30,31,23,45,49,48	18,001

Current Slip Surface

Slip Surface: 2
F of S : 1.321
Volume: $1,851.0584 \mathrm{ft}$
Weight: 222,127.01 lbs
Resisting Moment: $28,600,673 \mathrm{lbs}-\mathrm{ft}$
Activating Moment: $21,649,163$ lbs-1
F of S Rank (Anals): 1 of 10 slip surface
F of S Rank (Query): 1 of 10 slip surfaces
Exit: (239.21672, 1,998.13) ft
Entry: ($367.32804,2,0$
Radius: 184.08184 ft
Center: (232.26902, 2,182.0807) ft

Slip Slices

			(psf)	(psf)	(psf)	(psf)
Slice 1	241.32377	1,998.2338	0	128.70966	83.585032	200
Slice 2	245.53787	1,998.4899	0	387.30497	251.51879	200
Slice 3	249.75196	1,998.8432	0	629.12239	408.55685	200
Slice 4	253.96606	1,999.2943	0	854.57794	554.9694	200
Slice 5	258.18016	1,999.844	0	1,064.0426	690.99734	200
Slice 6	262.39426	2,000.4932	0	1,257.8436	816.85318	200
Slice 7	266.60836	2,001.2428	0	1,436.2692	932.72414	200
Slice 8	270.82246	2,002.0943	0	1,599.5702	1,038.7731	200
Slice 9	275.03656	2,003.049	0	1,747.9625	1,135.1401	200
$\begin{aligned} & \hline \text { Slice } \\ & 10 \\ & \hline \end{aligned}$	279.25065	2,004.1085	0	1,881.6283	1,221.9437	200
$\begin{aligned} & \hline \text { Slice } \\ & 11 \\ & \hline \end{aligned}$	283.46475	2,005.2749	0	2,000.7189	1,299.282	200
$\begin{aligned} & \text { Slice } \\ & 12 \end{aligned}$	287.67885	2,006.5501	0	2,105.3534	1,367.2325	200
$\begin{aligned} & \hline \text { Slice } \\ & 13 \end{aligned}$	291.89295	2,007.9367	0	2,195.6224	1,425.8539	200
$\begin{aligned} & \hline \text { Slice } \\ & 14 \\ & \hline \end{aligned}$	296.5	2,009.589	0	2,125.1111	1,380.0633	200
$\begin{aligned} & \hline \text { Slice } \\ & 15 \end{aligned}$	301.5	2,011.5348	0	1,896.9811	1,231.9139	200
$\begin{aligned} & \hline \text { Slice } \\ & 16 \end{aligned}$	306.125	2,013.4805	0	1,783.2109	1,158.0307	200
$\begin{aligned} & \hline \hline \text { Slice } \\ & 17 \end{aligned}$	310.375	2,015.4072	0	1,781.1482	1,156.6911	200
$\begin{aligned} & \hline \text { Slice } \\ & 18 \\ & \hline \end{aligned}$	314.625	2,017.4661	0	1,765.4727	1,146.5114	200
$\begin{aligned} & \hline \text { Slice } \\ & 19 \end{aligned}$	318.875	2,019.6623	0	1,736.1197	1,127.4493	200
$\begin{aligned} & \text { Slice } \\ & 20 \end{aligned}$	323.125	2,022.0015	0	1,692.9992	1,099.4465	200
$\begin{aligned} & \hline \text { Slice } \\ & 21 \\ & \hline \end{aligned}$	327.375	2,024.4901	0	1,635.9933	1,062.4265	200
$\begin{aligned} & \hline \text { Slice } \\ & 22 \end{aligned}$	331.625	2,027.1351	0	1,564.9579	1,016.2955	200
$\begin{aligned} & \text { Slice } \\ & 23 \\ & \hline \end{aligned}$	335.875	2,029.9449	0	1,479.7193	960.94094	200
Slice	340.125	2,032.9287	0	1,380.076	896.23183	200
$\begin{aligned} & \hline \text { Slice } \\ & 25 \\ & \hline \end{aligned}$	344.375	2,036.0972	0	1,265.7974	822.01843	200
$\begin{aligned} & \hline \text { Slice } \\ & 26 \end{aligned}$	348.625	2,039.4627	0	1,136.6235	738.13195	200
$\begin{aligned} & \hline \text { Slice } \\ & 27 \\ & \hline \end{aligned}$	352.875	2,043.0397	0	992.26701	644.38573	200
$\begin{aligned} & \text { Slice } \\ & 28 \end{aligned}$	357.05467	2,046.7779	0	748.80095	486.27702	200
$\begin{aligned} & \text { Slice } \\ & 29 \end{aligned}$	361.16402	2,050.6885	0	411.38932	267.15935	200
Slice	365.27337	2,054.8521	0	66.049525	42.893063	200

[^17]
Section 2-2 SSA for Skyline Ranch3to1.gsz

Section 2-2 SSA for Skyline Ranch3to1.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/19/2016 1:57:45 PM

LGC Valley, Inc
GEOTECHNICAL CONSULTING
28532 Constellation Road, Valencia, CA 9135 Phone 661-702-8474, Fax 661-702-8475

Development project, Tract 60922
 Los Angeles CA

Project No:	153035-01
Engineer:	BAS
Date:	March $\mathbf{2 0 1 6}$

Project No: 153035-01
Date: March 2016

3 - Translational Static

eport generated using Geostudio 2012. Copyright © 1 1991-2016 GEO-SLOPE International Ltd.

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 91
Date: 3/19/2016
Time: 1:57:45 PM
Tool Version: 8.15.5.11777
File Name: Section 2-2 SSA for Skyline Ranch3to1.gsz
Directory: P:\FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 2-2 results\Latest Update 3-19-16
Last Solved Date: 3/19/2016
Last Solved Time: 1:59:57 PM

Project Settings
Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: p
Strength Units: psf
of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

3 - Translational Static
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: Yes
Critical Slip Surface Optimizations
Maximum Iterations: 2,000
Convergence Tolerance: 1e-007
Starting Points: 8
Ending Points: 16
Complete Passes per Insertion: 1
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs (150 psf/ $17^{\circ}-\mathrm{A}-\mathrm{Bed} 6-11^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pc
Cohesion': 225 psf
Phi': 40
Phi-Anisotropic Strength Fn.: 17° - A-Bed 6-11
C-Anisotropic Strength Fn.: 150 psf - A-Bed 6-11 (TQs)
Phi-B: 0
Tmc ($100 \mathrm{psf} / 25^{\circ}-\mathrm{A}-$ Bed $4-8^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 25° - A-Bed 4-8 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 100 psf-A-Bed 4-8
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33

Along Bedding Shear
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 150 psf
Phi': 11°
Phi-B: 0°
Tmc ($150 \mathrm{psf} / 17^{\circ}-\mathrm{A}-$ Bed $4-8^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pc
Cohesion': 200 psf
Phi': 40
Phi-Anisotropic Strength Fn.: 150 psf - A-Bed 4-8 C-Anisotropic Strength Fn.: 17° - A-Bed 4-8
Phi-B. 0°

Slip Surface Limits
Left Coordinate: $(-165,1,897) \mathrm{ft}$

3-Translational Static

Right Coordinate: $(770,2,100) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: $(125.0302,2,023.3206) f t$
Lower Left: $(129.0839,1,862.0217) \mathrm{ft}$
Lower Right: (349.907, 1,892.6963) ft
Y Increments: 15
Starting Angle: 135°
Ending Angle: 180°
Ending Angle: 180°
Right Grid
Upper Left: $(355.4686,2,054.561) \mathrm{ft}$
Lower Left: ($376.786,1,896.4962$) ft
Lower Right: (586.6277, 1,913.5323) ft
X Increments: 15
Yincrements: 15
Ending Angle: 65
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

25° - A-Bed 4-8 ${ }^{\circ}$

Model. Spline Data Point Function
Function: Modifier Factor vs. Inclinatio
Curve Fit to Data: 100%
Sercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: (-90, 1) Data Point: $(3.9,1)$
Data Point: $(4,0.625)$
Data Point: ($8,0.625$)
Data Point: $(8.1,1)$
100 psf - A-Bed 4-8
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%

Y-Intercept: 1

-Intercept: 1
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: $(4,0.5)$

3 - Translational Static

Data Point: ($8,0.5$

Data Point: (8.1, 1)
17° - A-Bed 4-8 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segmen
tercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: $(4,0.425)$
Data Point: $(8,0.425)$
Data Point: (8.1, 1)
150 psf - A-Bed 4-8 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%

Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.75)$
Data Point: (8.1, 1)
17° - A-Bed 6-11 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclinatio
Curve Fit to Data: 100%

Segment Curvature: 0%

Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: ($6,0.425$)
Data Point: $(11,0.425)$
Data Point: $(11.1,1)$
150 psf - A-Bed 6-11 (TQs)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
a Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: $(6,0.667)$
Data Point: (11.1, 1)
Points

	$\mathrm{X}(\mathrm{ft})$			$\mathrm{Y}(\mathrm{ft})$
Point 1	-164	1,952		
Point 2	-88	1,953		
Point 3	16	1,952		
Point 4	67	1,954		
Point 5	119	1,956		
Point 6	169	1,979		
Point 7	222	1,998		
Point 8	239	1,998		
Point 9	294	2,031		
Point 10	304	2,031		
Point 11	355	2,057		
Point 12	376	2,057		
Point 13	428	2,083		
Point 14	437	2,083		
Point 15	493	2,110		
Point 16	545	2,119		
Point 17	666.7794	$2,082.2835$		
Point 18	678	2,078		
Point 19	691	2,075		
Point 20	734	2,093		
Point 21	770	2,100		
Point 22	770	2,070		
Point 23	769	2,033		
Point 24	768.9132	$1,700.0035$		
Point 25	-164	1,700		
Point 26	-165	1,897		
Point 27	123	1,926		
Point 28	339	1,949		
Point 29	516	1,968		
Point 30	636	1,981		
Point 31	769	1,995		
Point 32	769	1,807		
Point 33	-164	1,808		
Point 34	-145.1146	1,807		
Point 35	94.3981	$1,804.0495$		
Point 36	767.2671	$1,804.0495$		
Point 37	178	1,980		
Point 38	769	1,935		
Point 39	-164.3258	1,837		
Point 40	770	2,085		
Point 41	770	2,084		
Point 42	769.5405	2,053		
Point 43	769.5135	2,052		
Point 44	769.0811	2,036		

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/19/2016

Point 45	769.0541	2,035
Point 46	89	$1,954.8462$
Point 47	197	1,926
Point 48	230.4185	$1,937.6441$
Point 49	410.1571	$1,996.9191$
Point 50	412.2316	$1,997.8289$
Point 51	462.5895	$2,014.3399$
Point 52	467.0781	$2,015.9473$
Point 53	544.2511	$2,041.6026$
Point 54	550.5628	$2,043.7746$
Point 55	566.1504	$2,048.8086$
Point 56	489.5416	$2,023.5144$
Point 57	579.8545	$2,111.4639$
Point 58	609.9957	$2,103.2729$
Point 59	648.9076	$2,089.3897$

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
$\begin{aligned} & \text { Region } \\ & 1 \end{aligned}$	Tmc (100 psf $/ 25^{\circ}$ -A-Bed 4$8^{\circ}$)	26,39,38,31,30,29,28,48,47,27	55,091
$\begin{aligned} & \text { Region } \\ & 2 \end{aligned}$	Tmc (150 psf/ 17° - A-Bed 4- 8°)	33,34,35,36,32,38,39	76,059
$\begin{aligned} & \text { Region } \\ & 3 \end{aligned}$	TQs (150 psf/ 17° -A-Bed 6$11^{\circ}$)	40,21,20,19,18,17,55,54	2,168.2
$\begin{aligned} & \text { Region } \\ & 4 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { TQs }(150 \\ \text { psf/170 } \\ \text { A-Bed 6- } \\ \left.11^{\circ}\right) \\ \hline \end{array}$	43,51,50,44	4,432.1
$\begin{aligned} & \text { Region } \\ & 5 \end{aligned}$	TQs (150 psf/ 17° -A-Bed 611 ${ }^{\circ}$)	22,41,53,56,52,42	5,946.6
$\begin{aligned} & \hline \text { Region } \\ & 6 \\ & \hline \end{aligned}$	Fill	46,27,47,48,49,50,51,52,56,53,54,55,17,59,58,57,16,15,14,13,12,11,10,9,8,7,37,6,5	34,644
Region 7	Along Bedding Shear	45,44,50,49	301.67
$\begin{aligned} & \text { Region } \\ & 8 \end{aligned}$	Along Bedding Shear	43,42,52,51	312.89
Region	Along Bedding	41,40,54,53	221.08

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/19/2016

9	Shear		
Region 10	TQs $(150$ psf/17 - A-Bed 6- $\left.11^{\circ}\right)$	$4,3,2,1,26,27,46$	11,437
Region 11	TQs $(150$ psf/170		
A-Bed $6-$ $\left.11^{\circ}\right)$	$28,29,30,31,23,45,49,48$	18,001	

Current Slip Surface

Slip Surface: 589,825
F of S : 1.531
Weime: $24,302.696 \mathrm{ft}^{3}$
Weight: $2,916,323.5 \mathrm{lbs}$
Resisting Force: $1,276,401.8 \mathrm{lbs}$
Activating Force: $833,720.78 \mathrm{lbs}$
Fof S Rank (Analysis): 1 of 589,825 slip surfaces
F of S Rank (Query): 1 of 150 slip surfaces
Exit: $(118.50469,1,955.9809) \mathrm{ft}$
Entry: (535.60985, 2,117.3748) ft
Entry: (535.60985, 2,17
Radius: 239.92928 ft
Center: (310.4629, 2,152.4703) ft
Slip Slices

Slices
X (ft) Y (ft) PWP (psf) Base Normal Stress (psf) Frictional Strength (psf) Cohesive Strength (psf) Slice 1 118.75234 $1,955.8812$ 0 79.006332 51.307312 200 Slice 2 122.93465 $1,954.1958$ 0 585.88929 380.48096 200 Slice 3 135.2265 $1,951.4429$ 0 $1,552.3394$ $1,008.101$ 200 Slice 4 149.937777 $1,950.3077$ 0 $2,385.1008$ $1,548.9026$ 200 Slice 5 162.64593 $1,950.3718$ 0 $3,077.4165$ $1,998.4976$ 200 Slice 6 172.1009 $1,950.4195$ 0 $3,462.9574$ $2,248.8708$ 200 Slice 7 176.6009 $1,950.4119$ 0 $3,559.1833$ $2,311.3607$ 200 Slice 8 186.93385 $1,950.2395$ 0 $4,040.4897$ $2,623.9247$ 200 Slice 9 202.40078 $1,950.18$ 0 $4,746.9814$ $3,082.7258$ 200 Slice 10 215.46693 $1,950.3591$ 0 $5,363.3454$ $3,482.9972$ 200 Slice 11 224.52565 $1,950.4833$ 0 $5,667.3964$ $3,680.4503$ 200 Slice 12 233.02565 $1,950.2899$ 0 $5,824.1048$ $3,782.2179$ 200 Slice 13 245.51421 $1,949.8132$ 0 $6,358.9534$ $4,129.5526$ 200 Slice 14 258.58301 $1,949.3144$ 0 $7,376.1692$ $4,790.1403$ 200 Slice 15 272.3532 $1,950.398$ 0 $7,808.5001$ $2,387.298$ 150.075 Slice 16 286.7844 $1,953.0657$ 0 $8,501.9262$ $2,599.2997$ 150.075 Slice 297.1771 $1,954.9869$ 0 $8,780.662$ $2,684.5178$ 150.075

17						
Slice 18	302.1771	$1,955.9102$	0	$8,674.7067$	$2,652.124$	150.075
Slice 19	312.2465	$1,957.7664$	0	$8,946.4951$	$2,735.218$	150.075
Slice 20	329.11975	$1,960.9288$	0	$9,564.5257$	$2,924.169$	150.075
Slice 21	346.37325	$1,964.2133$	0	$10,201.76$	$3,118.9911$	150.075
Slice 22	356.6918	$1,966.1776$	0	$10,483.14$	$3,205.0174$	150.075
Slice 23	367.1918	$1,968.1923$	0	$10,246.52$	$3,132.6755$	150.075
Slice 24	384.53927	$1,971.5257$	0	$10,354.724$	$3,165.7567$	150.075
Slice 25	401.61782	$1,974.8075$	0	$10,962.394$	$3,351.5403$	150.075
Slice 26	411.19435	$1,976.6478$	0	$11,303.136$	$3,455.7155$	150.075
Slice 27	414.8498	$1,977.3502$	0	$11,433.2$	$3,495.4802$	150.075
Slice 28	422.734	$1,984.3333$	0	$6,785.5505$	$5,693.7529$	225
Slice 29	429.38355	$1,992.5158$	0	$6,387.2073$	$5,359.5033$	225
Slice 30	433.31329	$1,996.9323$	0	$6,430.3184$	$5,395.6778$	225
Slice 31	436.22971	$2,000.0409$	0	$8,680.9026$	$1,687.3965$	150
Slice 32	436.79997	$2,000.6487$	0	$6,148.3956$	$5,159.1165$	225
Slice 33	440.44695	$2,004.536$	0	$5,979.5817$	$5,017.4648$	225
Slice 34	451.28935	$2,016.0929$	0	$6,010.2067$	$3,903.0739$	200
Slice 35	465.39438	$2,031.196$	0	$5,306.5622$	$3,446.1218$	200
Slice 36	478.81353	$2,045.6365$	0	$4,649.0419$	$3,019.1231$	200
Slice 37	489.26155	$2,057.7149$	0	$3,801.5812$	$2,468.7757$	200
Slice 38	499.0757	$2,070.4684$	0	$3,034.7025$	$1,970.7589$	200
Slice 39	511.2271	$2,086.2591$	0	$1,974.367$	$1,282.1689$	200
Slice 40	526.45632	$2,105.7646$	0	675.869	438.91446	200

Section 2-2 SSA for Skyline Ranch3to1.gsz

Section 2-2 SSA for Skyline Ranch3to1.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/19/2016 1:57:45 PM

2 - Translational Seismic

Report generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International Ltd.

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 91
Date: 3/19/2016
Time: 1:57:45 PM
Tool Version: 8.15.5.11777
File Name: Section 2-2 SSA for Skyline Ranch3to1.gsz
Directory: P:\FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 2-2 results\Latest Update 3-19-16\}
Last Solved Date: 3/19/2016
Last Solved Time: 2:00:22 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational Seismic
Kind: SLOPE/W
Parent: 3 - Translational Static
Method: Sp
Settings
Settings
PWP Conditions Source: (none)
Initial Slip Surface Source: Parent Analysis
Slip Surface
Direction of movement: Right to Left
Slip Surface Option: Critical Slip Surfaces from Other
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Optimize Critical Slip Surface Location: Yes
Critical Slip Surface Optimizations
Maximum Iterations: 2,000
Convergence Tolerance: 1e-007
Starting Points: 8
Ending Points: 16
Complete Passes per Insertion: 1

Tension Crack
Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
Minimum Slip Surface Depth: 0.1 ft
Search Method: Root Finder
Tolerable difference between starting and converged F of $\mathrm{S}: 3$
Maximum iterations to calculate converged lambda: 20
Max Absolute Lambda: 2

Materials

TQs ($150 \mathrm{psf} / \mathbf{1 7}^{\circ}-\mathrm{A}-\mathrm{Bed} \mathbf{6 - 1 1 ^ { \circ }}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 17° - A-Bed 6-11 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 150 psf-A-Bed $6-11^{\circ}$ (TQs)
Phi-B: 0°
Phi-B: 0°
Tmc (100 psf/25 ${ }^{\circ}$ - A-Bed 4-8 ${ }^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion':
Phi': 40°
Phi-Anisotropic Strength Fn.: 25° - A-Bed 4-8
Phi-Anisotropic Strength Fn.: $25^{\circ}-$ A-Bed $4-8^{\circ}$
C-Anisotropic Strength Fn.: 100 psf - A-Bed $4-8^{\circ}$
Chi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Along Bedding Shear
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 150 psf
Phi': $11{ }^{\circ}$
Phi-B: 0°
Tmc ($150 \mathrm{psf} / 17^{\circ}-\mathrm{A}-\mathrm{Bed} 4-8^{\circ}$)
Model: Anisotropic Fn
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 150 psf - A-Bed 4-8
C-Anisotropic Strength Fn.: 17° - A-Bed 4-8

2-Translational Seismic

Phi-B: 0°

Slip Surface Limits

Left Coordinate: (-165, 1,897) ft
Right Coordinate: $(770,2,100) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0.1
Vert Seismic Coef.: 0

Anisotropic Strength Functions

$25^{\circ}-$ A-Bed $4-8^{\circ}$

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: $(-90,1)$
Data Point: ($(3.9,1)$
Data Point: ($4,0.625$)
Data Point: $(8.1,1)$
100 psf - A-Bed 4-8 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: $(4,0.5)$
Data Point: $(8.1,1)$
17° - A-Bed 4-8 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%

Segment

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(8,0.425)$
Data Point: $(8,0.425)$
Data Point: $(8.1,1)$

150 psf - A-Bed 4-8 ${ }^{\circ}$
Model: Spline Data Point Function
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: (4, 0.75)
Data Point: $(8,0.75)$
Data Point: $(8.1,1)$
17° - A-Bed 6-11 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: ($-90,1$)
Data Point: (6, 0.425)
Data Point: $(6,0.425)$
Data Point: $(11,1,1)$
150 psf - A-Bed 6-11º (TQs)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{(}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: ($6,0.667$)
Data Point: $(11,0.667)$
Data Point: $(11.1,1)$

Points

	$X(\mathrm{ft})$	$Y(\mathrm{ft})$
Point 1	-164	1,952
Point 2	-88	1,953
Point 3	16	1,952
Point 4	67	1,954
Point 5	119	1,956
Point 6	169	1,979
Point 7	222	1,998
Point 8	239	1,998
Point 9	294	2,031
Point 10	304	2,031

2-Translational Seismic

Point 11	355	2,057
Point 12	376	2,057
Point 13	428	2,083
Point 14	437	2,083
Point 15	493	2,110
Point 16	545	2,119
Point 17	666.7794	$2,082.2835$
Point 18	678	2,078
Point 19	691	2,075
Point 20	734	2,093
Point 21	770	2,100
Point 22	770	2,070
Point 23	769	2,033
Point 24	768.9132	$1,700.0035$
Point 25	-164	1,700
Point 26	-165	1,897
Point 27	123	1,926
Point 28	339	1,949
Point 29	516	1,968
Point 30	636	1,981
Point 31	769	1,995
Point 32	769	1,807
Point 33	-164	1,808
Point 34	-145.1146	1,807
Point 35	94.3981	$1,804.0495$
Point 36	767.2671	$1,804.0495$
Point 37	178	1,980
Point 38	769	1,935
Point 39	-164.3258	1,837
Point 40	770	2,085
Point 41	770	2,084
Point 42	769.5405	2,053
Point 43	769.5135	2,052
Point 44	769.0811	2,036
Point 45	769.0541	2,035
Point 46	89	$1,954.8462$
Point 47	197	1,926
Point 48	230.4185	$1,937.6441$
Point 49	410.1571	$1,996.9191$
Point 50	412.2316	$1,997.8289$
Point 51	462.5895	$2,014.3399$
Point 52	467.0781	$2,015.9473$
Point 53	544.2511	$2,041.6026$
Point 54	550.5628	$2,043.7746$
Point 55	566.1504	$2,048.8086$
Point 56	489.5416	$2,023.5144$
Point 57	579.8545	$2,111.4639$
Point 58	609.9957	$2,103.2729$
$-\quad-1$		

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/19/2016

	648.9076	$2,089.3897$

Regions			
	Material	Points	$\begin{gathered} \text { Area } \\ \left(\mathrm{ft}^{2}\right) \\ \hline \end{gathered}$
Region 1	Tmc (100 psf/ 25° - A-Bed 4- 8°)	26,39,38,31,30,29,28,48,47,27	55,091
Region 2	Tmc (150 psf/ 17° - A-Bed 4- 8°)	33,34,35,36,32,38,39	76,059
Region 3	$\begin{aligned} & \text { TQs (150 } \\ & \text { psf/17 } \\ & \text { A-Bed 6- } \\ & \left.11^{\circ}\right) \\ & \hline \end{aligned}$	40,21,20,19,18,17,55,54	2,168.2
Region 4	$\begin{aligned} & \text { TQs (150 } \\ & \text { psf/170 } \\ & \text { A-Bed 6- } \\ & \left.11^{\circ}\right) \end{aligned}$	43,51,50,44	4,432.1
Region 5	TQs (150 psf/ 17° -A-Bed 611)	22,41,53,56,52,42	5,946.6
$\begin{aligned} & \text { Region } \\ & 6 \end{aligned}$	Fill	46,27,47,48,49,50,51,52,56,53,54,55,17,59,58,57,16,15,14,13,12,11,10,9,8,7,37,6,5	34,644
Region 7	Along Bedding Shear	45,44,50,49	301.67
Region 8	Along Bedding Shear	43,42,52,51	312.89
Region 9	Along Bedding Shear	41,40,54,53	221.08
$\begin{aligned} & \text { Region } \\ & 10 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { TQs (150 } \\ \text { psf/170 } \\ \text { A-Bed 6- } \\ \left.11^{\circ}\right) \\ \hline \end{array}$	4,3,2,1,26,27,46	11,437
$\begin{aligned} & \text { Region } \\ & 11 \end{aligned}$	$\begin{aligned} & \text { TQs (150 } \\ & \text { psf/17 }- \\ & \text { A-Bed 6- } \\ & \left.11^{\circ}\right) \\ & \hline \end{aligned}$	28,29,30,31,23,45,49,48	18,001

Current Slip Surface

Slip Surface: 3
Fof $\mathrm{S}: 1.169$
Volume: $24,302.696 \mathrm{ft}^{3}$
Weight: $2,916,323.5 \mathrm{lbs}$

Resisting Moment: 2.8664325e+008 lbs-ft Activating Moment: $2.461686 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$ Resisting Force: $1,289,478.8 \mathrm{lbs}$
Activating Force: $1,099,408.3 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 3 slip surfaces
F of S Rank (Query): 1 of 3 slip surfaces
Exit: (118.50469, 1,955.9809) ft
Extry: (535.60985, 2,117.3748) f
Radius: 239.92928 ft
Center: $(310.4629,2,152.4703) \mathrm{ft}$
Slip Slices

	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	118.75234	$1,955.8811$	0	406.7871	264.17063	200
Slice 2	122.93465	$1,954.1958$	0	$1,456.1212$	945.61619	200
Slice 3	135.2265	$1,951.4429$	0	$2,392.984$	$1,554.022$	200
Slice 4	149.93777	$1,950.3077$	0	$3,088.6657$	$2,005.8029$	200
Slice 5	162.64593	$1,950.3718$	0	$3,954.1748$	$2,567.8711$	200
Slice 6	172.1009	$1,950.4195$	0	$4,436.1651$	$2,880.8793$	200
Slice 7	176.6009	$1,950.4119$	0	$4,652.8257$	$3,021.5804$	200
Slice 8	186.93385	$1,950.2395$	0	$5,266.9634$	$3,420.406$	200
Slice 9	202.40078	$1,950.18$	0	$5,992.5673$	$3,891.6187$	200
Slice 10	215.46693	$1,950.3591$	0	$6,757.0076$	$4,388.052$	200
Slice 11	224.52565	$1,950.4833$	0	$7,134.1034$	$4,632.9409$	200
Slice 12	233.02565	$1,950.2899$	0	$7,703.9564$	$5,003.0078$	200
Slice 13	245.51421	$1,949.8132$	0	$8,400.7856$	$5,455.5339$	200
Slice 14	258.58301	$1,949.3144$	0	$9,726.0687$	$6,316.1829$	200
Slice 15	272.3532	$1,950.398$	0	$7,483.0193$	$2,287.7886$	150.075
Slice 16	286.7844	$1,953.0657$	0	$8,142.8478$	$2,489.5184$	150.075
Slice 17	297.1771	$1,954.9869$	0	$8,408.0784$	$2,570.6075$	150.075
Slice 18	302.1771	$1,955.9102$	0	$8,309.5904$	$2,540.4967$	150.075
Slice 19	312.2465	$1,957.7664$	0	$8,568.2817$	$2,619.5866$	150.075
Slice	329.11975	$1,960.9288$	0	$9,126.865$	$2,790.3627$	150.075
20						

24						
Slice 25	401.61782	$1,974.8075$	0	$10,443.095$	$3,192.7747$	150.075
Slice 26	411.19435	$1,976.6478$	0	$10,766.07$	$3,291.5179$	150.075
Slice 27	414.8498	$1,977.3502$	0	$10,889.354$	$3,329.2095$	150.075
Slice 28	422.734	$1,984.3333$	0	$4,983.9929$	$4,182.0666$	225
Slice 29	429.38355	$1,992.5158$	0	$4,692.0303$	$3,937.0809$	225
Slice 30	433.31329	$1,996.9323$	0	$4,922.4232$	$4,130.4035$	225
Slice 31	436.22971	$2,000.0409$	0	$5,824.6994$	$1,132.2069$	150
Slice 32	436.79997	$2,000.6487$	0	$4,707.3255$	$3,949.9151$	225
Slice 33	440.44695	$2,004.536$	0	$4,578.5221$	$3,841.8362$	225
Slice 34	451.28935	$2,016.0929$	0	$4,445.4702$	$2,886.9221$	200
Slice 35	465.39438	$2,031.196$	0	$3,916.2068$	$2,543.2145$	200
Slice 36	478.81353	$2,045.6365$	0	$3,432.8164$	$2,229.297$	200
Slice 37	489.26155	$2,057.7149$	0	$2,663.6924$	$1,729.8221$	200
Slice 38	499.0757	$2,070.4684$	0	$2,128.0008$	$1,381.9399$	200
Slice 39	511.2271	$2,086.2591$	0	$1,387.3195$	900.93583	200
Slice 40	526.45632	$2,105.7646$	0	484.18537	314.43365	200

Section 2-2 SSA for Skyline Ranch3to1.gsz
Section 2-2 SSA for Skyline Ranch3to1.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/19/2016 2:13:34 PM
Keyway 75' wide by 30' deep
3H:1V Backcut

Section 2-2
Materials
\square TQs (150 psf $/ 17^{\circ}-\mathrm{A}-\operatorname{Bed} 6-11^{\circ}$)
\square Tmc ($100 \mathrm{psf} / 25^{\circ}$ - A-Bed 4-8 ${ }^{\circ}$)
Along Bedding Shear
Tmc (150 psf/17 ${ }^{\circ}$ - A-Bed 4-8 ${ }^{\circ}$)
$0^{1.388}$

Name: $\operatorname{Tmc}\left(100\right.$ pst/ 25° - A-Bed $\left.4-8^{\circ}\right)$
Moode : Ansortopic er
Unit Weight: 220 pet

$\stackrel{\rightharpoonup}{\partial}$

Tmc (150 psf/17 $\left.-\mathrm{A}-\mathrm{Bed} 4-8^{\circ}\right)$

Distance (ft)

Project No: 153035-01
Engineer: BAS
Date: March 2016

5 - Translational Temporary

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 94
Date: 3/19/2016
Time: 2:13:34 PM
Tool Version: 8.15.5.11777
File Name: Section 2-2 SSA for Skyline Ranch3to1.gsz
Directory: P:\FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 2-2 results\Latest Update 3-19-16
Last Solved Date: 3/19/2016
Last Solved Time: 2:15:32 PM

Project Settings
Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: p
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

5 - Translational Temporary
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: Yes
Critical Slip Surface Optimizations
Maximum Iterations: 2,000
Convergence Tolerance: 1e-007
Starting Points: 8
Ending Points: 16
Complete Passes per Insertion: 1 Tension Crack

Tension Crack Option: (none) F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.0
Minimum Slip Surface Depth: 0.1 ft

Materials

```
TQs (150 psf/17 }\mp@subsup{}{}{\circ}\mathrm{ - A-Bed 6-11 )
    Model: Anisotropic Fn
    Unit Weight:120 pcf
    Cohesion': 225 psf
    Phi': 40 }\mp@subsup{}{}{\circ
    Phi-Anisotropic Strength Fn.: 170}- A-Bed 6-11* *
    C-Anisotropic Strength Fn.: }150\mathrm{ psf - A-Bed 6-110}\mp@subsup{}{}{\circ}(TQs
```

 Phi-B: 0
 Tmc ($\left.100 \mathrm{psf} / 25^{\circ}-\mathrm{A}-\mathrm{Bed} 4-8^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 25° - A-Bed 4-8 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 100 psf - A-Bed $4-8^{\circ}$
Phi-B: 0°
Along Bedding Shear
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 150 psf
Phi': 11
Phi-B: 0°
Tmc ($150 \mathrm{psf} / \mathbf{1 7}^{\circ}$ - A-Bed 4-8 ${ }^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pc
Phi': 40°
Phi-Anisotropic Strength Fn.: 150 psf - A-Bed 4-8
C-Anisotropic Strength Fn.: 17° - A-Bed 4-8
Phi-B: 0
Slip Surface Limits
Left Coordinate: (-165, 1,897) ft
Right Coordinate: $(770,2,100)$ ft

Slip Surface Block
Left Grid
Upper Left: (375.131, 2,080.4026) ft

Lower Left: (391.5828, 1,949.63) ft
Lower Right: (574.0478, 1,976.1582) ft
X Increments: 15
Y Increments: 15
Starting Angle: $135{ }^{\circ}$
Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: $(574.5182,2,103.0179) \mathrm{ft}$ Lower Left: (592.2047, 1,972.2456) ft Lower Right: (759.7473, 1,982.8533) ft
X Increments: 15
Y Increments: 15
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

25° - A-Bed $4-8^{\circ}$

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Facto
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: ($4,0.625$)
Data Point: $(8,0.625)$
Data Point: $(8.1,1)$
100 psf - A-Bed 4-8 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: $(4,0.5)$
Data Point: $(8,0.5)$
Data Point: $(8,0.5)$
Data Point: $(8.1,1)$
17° - A-Bed 4-8 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%

Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: ($4,0.425$)
Data Point: $(8,0.42)$
Data Point: $(8.1,1)$
150 psf - A-Bed 4-8
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclinatio
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: $(4,0.75)$
Data Point: $(8,0.75)$
Data Point: (8.1, 1
17° - A-Bed 6-11 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: (5.9, 1)
Data Point: $(6,0.425)$
Data Point: $(11,0.425)$
Data Point: $(11.1,1)$
150 psf - A-Bed 6-11 ${ }^{\circ}$ (TQs)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclinatio
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: (-90, 1)
Data Point: (6, 0.667)
Data Point: (11, 0.667)
Data Point: (11.1, 1)

Points

	$X(\mathrm{ft})$	$Y(\mathrm{ft})$
Point 1	-164	1,952
Point 2	-88	1,953
Point 3	16	1,952

Point 4	67	1,954
Point 5	119	1,956
Point 6	169	1,979
Point 7	222	1,998
Point 8	239	1,998
Point 9	294	2,031
Point 10	304	2,031
Point 11	355	2,057
Point 12	376	2,057
Point 13	428	2,083
Point 14	437	2,083
Point 15	493	2,110
Point 16	545	2,119
Point 17	666.7794	$2,082.2835$
Point 18	678	2,078
Point 19	691	2,075
Point 20	734	2,093
Point 21	770	2,100
Point 22	770	2,070
Point 23	769	2,033
Point 24	768.9132	$1,700.0035$
Point 25	-164	1,700
Point 26	-165	1,897
Point 27	123	1,926
Point 28	339	1,949
Point 29	516	1,968
Point 30	636	1,981
Point 31	769	1,995
Point 32	769	1,807
Point 33	-164	1,808
Point 34	-145.1146	1,807
Point 35	94.3981	$1,804.0495$
Point 36	767.2671	$1,804.0495$
Point 37	178	1,980
Point 38	769	1,935
Point 39	-164.3258	1,837
Point 40	770	2,085
Point 41	770	2,084
Point 42	769.5405	2,053
Point 43	769.5135	2,052
Point 44	769.0811	2,036
Point 45	769.0541	2,035
Point 46	89	$1,954.8462$
Point 47	197	1,926
Point 48	230.4185	$1,937.6441$
Point 49	410.1571	$1,996.9191$
Point 50	412.2316	$1,997.8289$
Point 51	462.5895	$2,014.3399$
		1

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/19/2016

	467.0781	$2,015.9473$
Point 53	544.2511	$2,041.6026$
Point 54	550.5628	$2,043.7746$
Point 55	566.1504	$2,048.8086$
Point 56	489.5416	$2,023.5144$
Point 57	579.8545	$2,111.4639$
Point 58	609.9957	$2,103.2729$
Point 59	648.9076	$2,089.3897$

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/19/2016
\qquad
Current Slip Surface
Slip Surface: 589,825
F of S: 1.388
Volume: $4,095.293 \mathrm{ft}^{3}$
Weight: $491,435.16 \mathrm{lbs}$
Resisting Force: $143,521.09 \mathrm{lbs}$
Activating Force: $103,406.68 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 589,825 slip surfaces
F of S Rank (Query): 1 of 150 slip surfaces
Entry: (617 00763, 2,065.7266) ft
Radius: 10408933 ft -66)
Radius: 104.08933 ft
Center: ($503.9407,2,084.4457$) ft

Slip Slices
X (ft) Y (ft) PWP (psf) Base Normal Stress (psf) Frictional Strength (psf) Cohesive Strength (psf) Slice 1 417.32814 $1,998.8137$ 0 155.68729 130.63715 225 Slice 2 419.01703 $1,998.3293$ 0 247.78936 48.165373 150 Slice 3 423.79475 $1,998.553$ 0 353.54758 68.722687 150 Slice 4 432.0779 $1,999.3171$ 0 584.77313 113.66838 150 Slice 5 436.5779 $1,999.7374$ 0 707.29512 137.48424 150 Slice 6 440.44925 $2,000.1417$ 0 809.60325 157.37093 150 Slice 7 447.60312 $2,000.9009$ 0 996.42984 193.68634 150 Slice 8 455.01238 $2,001.6989$ 0 $1,189.2822$ 231.17303 150 Slice 9 460.65325 $2,002.3022$ 0 $1,337.2345$ 259.93205 150 Slice 10 464.8338 $2,002.7434$ 0 $1,455.1793$ 282.8582 150 Slice 11 470.22625 $2,003.3125$ 0 $1,608.3354$ 312.62874 150 Slice 12 477.4162 $2,004.072$ 0 $1,804.8717$ 350.83152 150 Slice 13 485.4998 $2,004.9265$ 0 $2,025.8265$ 393.78078 150 Slice 14 491.2708 $2,005.5366$ 0 $2,182.2935$ 424.19488 150 Slice 15 494.20165 $2,005.8465$ 0 $2,260.242$ 439.34655 150 Slice 16 499.07477 $2,006.3616$ 0 $2,389.8465$ 464.5391 150 Slice 17 506.4177 $2,007.1379$ 0 $2,585.1379$ 502.4999 150 Slice 18 513.76063 $2,007.9142$ 0 $2,780.4293$ 540.46071 150 Slice 19 520.39385 $2,008.6166$ 0 $2,956.5112$ 574.68757 150 Slice 20 526.31735 $2,009.2451$ 0 $3,113.7724$ 605.25605 150 Slice

21	532.2352	$2,009.8737$	0	$3,270.6692$	635.75368	150
Slice 22	539.7212	$2,010.6708$	0	$3,468.9172$	674.28921	150
Slice 23	544.62555	$2,011.1936$	0	$3,599.4283$	699.65799	150
Slice 24	547.7814	$2,011.53$	0	$3,688.0625$	716.88672	150
Slice 25	554.07528	$2,012.2008$	0	$3,856.0364$	749.53755	150
Slice 26	561.10023	$2,012.9496$	0	$4,035.7494$	784.47021	150
Slice 27	565.38155	$2,013.4063$	0	$4,144.964$	805.69939	150
Slice 28	570.0094	$2,013.9014$	0	$4,267.5554$	829.52874	150
Slice 29	576.86145	$2,014.869$	0	$4,367.2022$	848.89811	150
Slice 30	581.77095	$2,015.779$	0	$4,451.7981$	865.3419	150
Slice 31	586.32661	$2,019.7328$	0	$2,235.1996$	$1,875.5552$	225
Slice 32	591.59119	$2,026.9111$	0	$1,877.8913$	$1,575.7379$	225
Slice 33	594.63212	$2,031.0574$	0	$2,620.6467$	509.40211	150
Slice 34	595.53539	$2,032.289$	0	$1,610.1971$	$1,351.1158$	225
Slice 35	599.51625	$2,038.0847$	0	$1,262.453$	$1,059.3238$	225
Slice 36	606.50255	$2,048.3462$	0	757.45992	635.58434	225
Slice 37	610.18033	$2,053.7481$	0	491.6179	412.51639	225
Slice 38	610.7515	$2,054.587$	0	770.44213	149.75878	150
Slice 39	611.52332	$2,055.7207$	0	394.54208	331.06012	225
Slice 40	614.45811	$2,061.0066$	0	78.002255	65.451663	225

Section 3 SSA A for Skyline Ranch Development project.gsz

Section 3 SSA A for Skyline Ranch Development project.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/19/2016 4:54:49 PM

1 - Circular Mode of Failure

eport generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International Ltd.

```
File Information
    File Version: 8.15
    Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
    Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
    Last Edited By: Alexander Bykovtsec
    Revision Number: 8
    Date: 3/19/2016
    Tool Version: 8.15.5.11777
    File Name: Section 3 SSA A for Skyline Ranch Development project.gsz
    Directory: P:\FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 3-3 results\Latest update 3-19-16\
    Last Solved Date: 3/19/2016
    Last Solved Time: 4:55:45 PM
```


Project Settings

Length(L) Units: Feet
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness:

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs (150 psf 17° A-Bed 5-17 ${ }^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 ps
Phi': 40°
Phi-Anisotropic Strength Fn.: 17 degres A-Bed 5-17
C-Anisotropic Strength Fn.: 150 psf A-Bed 4-8웅
Phi-B: 0
TQs (150 psf $11^{\circ} \mathrm{A}$-Bed $13-17^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pc
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 11 degres A-Bed 13-17
Phi-Anisotropic Strength fn.: 11 degres A-bed $13-17^{\circ}$
C-Anisotropic Strength Fn.: 150 psf A-Bed 13-17
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-b. 0
Tmc (150 psf 17° A-Bed $4-8^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pc
Cohesion': 200 psf
Phi': 40
Phi-Anisotropic Strength Fn.: 17 degres A-Bed 4-8ㅇ (Tmc)
C-Anisotropic Strength Fn.: 150 psf A-Bed 4-8 ${ }^{\circ}$ (Tmc)
Phi-B: 0°

Slip Surface Entry and Exit
Left Projection: Range
Left-Zone Left Coordinate: $(96.0789,1,960.6335)$ ft
Left-Zone Right Coordinate: $(239,2,016.8421) \mathrm{ft}$
Left-Zone Increment: 20
Right Projection: Range
Right-Zone Left Coordinate: $(278.8077,2,035)$ ft
Right-Zone Right Coordinate: $(711.9752,2,122.4976) \mathrm{ft}$
Right-Zone Increment: 20
Radius Increments: 20
Slip Surface Limits
Left Coordinate: (-200, 1,891) ft
Right Coordinate: $(810.0186,2,043.084) \mathrm{ft}$

1 - Circular Mode of Failure

Seismic Coefficients
Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

17 degres A-Bed 5-17 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%

tercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(4.9,1)$
Data Point: $(5,0.425)$
Data Point: $(17,0.425)$
Data Point: $(17.1,1)$
150 psf A-Bed 4-8 ${ }^{\circ}$ (Tmc)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
tegment 1
Data Points: Inclination (${ }^{\circ}$)
Data Point: $(-90,1)$
Data Point: (3.9, 1)
Data Point: $(4,0.75)$
Data Point: ($8,0.75$)
Data Point: $(8.1,1)$
11 degres A-Bed 13-17 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$, Modifier Factor
Data Point: (-90, 1)
Data Point: $(12.9,1)$
Data Point: $(13,0.275)$
Data Point: $(17,0.275)$
Data Point: (17.1, 1)
150 psf A-Bed 13-17 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: (-90, 1)

1 - Circular Mode of Failure

Data Point: $(12.9,1)$
Data Point: $(13,0.667)$
Data Point: $(17,0.667)$
Data Point: $(17.1,1)$
17 degres A-Bed 4-8º (Tmc)
Model: Spline Data Point Functio
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.425)$
Data Point: $(8.1,1)$

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-199	1,945
Point 2	-60	1,952
Point 3	-8	1,953
Point 4	50	1,956
Point 5	91	1,958
Point 6	145	1,986
Point 7	155	1,986
Point 8	206	2,010
Point 9	224	2,010
Point 10	281	2,036
Point 11	291	2,036
Point 12	347	2,057
Point 13	356	2,059
Point 14	408	2,083
Point 15	420	2,083
Point 16	454	2,097
Point 17	482	2,096
Point 18	810	2,134
Point 19	810	2,130
Point 20	810	1,998
Point 21	810	1,801
Point 22	-200	1,891
Point 23	499	1,965
Point 24	-200	1,800
Point 25	89.9947	$1,921.9873$
Point 26	490.0406	$2,009.3202$
Point 27	810.0186	$2,043.084$
Point 28	113	$1,969.4074$
Point 29	60	$1,956.4878$
Point 30	91	1,928

Point 31	191	1,928
Point 32	149.5	1,928
Point 33	198.129	$1,930.307$
Point 34	398.5487	$1,997.0656$
Point 35	532	2,096
Point 36	582.4244	$2,110.0118$
Point 37	632.8615	$2,116.9809$
Point 38	674.6211	$2,119.9729$
Point 39	749	2,125
Point 40	759	2,129
Point 41	810	2,151

Current Slip Surface
 Slip Surface: 194

Fof S : 2.06
Volume: $10,364.018 \mathrm{ft}^{3}$
Weight: $1,243,682.1 \mathrm{lbs}$
Resisting Moment: $5.37939 \mathrm{e}+008 \mathrm{lbs}$-ft
Activating Moment: $2.6067294 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
F of S Rank (Analysis): 1 of 9,261 slip surfaces
Fxit: (96.078899, 1,960.6335) ft
Entry: (468.13688, 2,096.4951) ft
Radius: 631.47933 ft
Center: (76.432745, 2,591.8071) ft
Slip Slices

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	104.53945	$1,961.0105$	0	470.29476	305.41299	200

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/19/2016

Slice 2	118.33333	$1,961.7421$	0	$1,219.7448$	792.11152	200
Slice 3	129	$1,962.5424$	0	$1,764.9248$	$1,146.1555$	200
Slice 4	139.66667	$1,963.5247$	0	$2,283.2049$	$1,482.7306$	200
Slice 5	150	$1,964.648$	0	$2,460.1684$	$1,597.652$	200
Slice 6	161.375	$1,966.0999$	0	$2,622.9322$	$1,703.3521$	200
Slice 7	174.125	$1,967.9636$	0	$3,077.6916$	$1,998.6763$	200
Slice 8	186.875	$1,970.0944$	0	$3,496.2271$	$2,270.4764$	200
Slice 9	199.625	$1,972.495$	0	$3,878.7919$	$2,518.9169$	200
Slice 10	215	$1,975.7875$	0	$3,814.0161$	$2,476.851$	200
Slice 11	229.7	$1,979.2382$	0	$3,689.0343$	$2,395.6869$	200
Slice 12	241.1	$1,982.204$	0	$3,913.0786$	$2,541.183$	200
Slice 13	252.5	$1,985.3987$	0	$4,109.0028$	$2,668.4176$	200
Slice 14	263.9	$1,988.8258$	0	$4,276.8074$	$2,777.3912$	200
Slice 15	275.3	$1,992.4893$	0	$4,416.4619$	$2,868.0839$	200
Slice 16	286	$1,996.1398$	0	$4,276.2159$	$2,777.007$	200
Slice 17	296.6	$1,999.9822$	0	$4,062.9669$	$2,638.5216$	200
Slice 18	307.8	$2,004.2707$	0	$4,026.887$	$2,615.091$	200
Slice 19	319	$2,008.8059$	0	$3,964.4719$	$2,574.5581$	200
Slice 20	330.2	$2,013.5936$	0	$3,875.5695$	$2,516.8242$	200
Slice 21	341.4	$2,018.6401$	0	$3,759.9991$	$2,441.772$	200
Slice 22	351.5	$2,023.4066$	0	$3,562.3993$	$2,313.4491$	200
Slice 23	362.5	$2,028.8875$	0	$3,383.727$	$2,197.418$	200
Slice 24	375.5	$2,035.6863$	0	$3,272.3663$	$2,125.0995$	200
Slice 25	388.5	$2,042.877$	0	$3,121.797$	$2,027.3187$	200
Slice 26	401.5	$2,050.4755$	0	$2,931.4212$	$1,903.6872$	200
Slice 27	414	$2,058.1742$	0	$2,433.8469$	$1,580.5586$	200
Slice 28	425.66667	$2,065.7315$	0	$1,892.9113$	$1,229.271$	200
Slice 29	437	$2,073.4349$	0	$1,575.8757$	$1,023.3856$	200
Slice 30	448.33333	$2,081.5063$	0	$1,227.4638$	797.12432	200
Slice 31	461.06844	$2,091.0656$	0	489.3096	317.76137	200

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/19/2016

Section 3 SSA A for Skyline Ranch Development project.gsz

Section 3 SSA A for Skyline Ranch Development project.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/19/2016 4:54:49 PM

1 - Circular Mode of Failure Seismic

Report generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International Ltd.

```
File Information
    File Version: 8.15
    Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
    Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
    Last Edited By: Alexander Bykovtsec
    Revision Number: 8
    Date: 3/19/2016
    Tool Version: 8.15.5.11777
    File Name: Section 3 SSA A for Skyline Ranch Development project.gsz
    Directory: P:\FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 3-3 results\Latest update 3-19-16\
    Last Solved Date: 3/19/2016
    Last Solved Time: 5:02:01 PM
```


Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pc
View: 2D
Element Thickness:

Analysis Settings

1 - Circular Mode of Failure Seismic
Kind: SLOPE/W
Parent: 1 - Circular Mode of Failure
Method: Bishop
Settings
PWP Conditions Source: (none)
Initial Slip Surface Source: Parent Analysis
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Critical Slip Surfaces from Other
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1
Diving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01

Minimum Slip Surface Depth: 0.1 ft

Materials
TQs (150 psf 17° A-Bed $5-17^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pc
Cohesion': 225 p
Phi': 40°
Phi-Anisotropic Strength Fn.: 17 degres A-Bed 5-17
Phi-B: 0
TQs (150 psf 11° A-Bed $13-17^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40
Phi-Anisotropic Strength Fn.: 11 degres A-Bed 13-17
C-Anisotropic Strength Fn.: 150 psf A-Bed 13-170
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Tmc (150 psf 17° A-Bed $4-8^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40
Phi-Anisotropic Strength Fn.: 17 degres A-Bed 4-80 (Tma)
C-Anisotropic Strength Fn.: 150 psf A-Bed 4-8 ${ }^{\circ}$ (Tmc)
Phi-B: 0°

Slip Surface Limits
Left Coordinate: $(-200,1,891) \mathrm{ft}$
Right Coordinate: ($810.0186,2,043.084$) ft

Seismic Coefficients
Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

17 degres A-Bed 5-17 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Dants: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: (5, 0.425)
Data Point: (17, 0.425)
Data Point: $(17.1,1)$
150 psf A-Bed 4-8 ${ }^{\circ}$ (Tmc)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment
Data Points: Inclination (${ }^{\circ}$
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: ($4,0.75$)
Data Point: $(8,0.75)$
11 degres A-Bed 13-17 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$, Modifier Factor
Data Point: (-90, 1)
Data Point: $(12.9,1)$
Data Point: $(13,0.275)$
Data Point: $(13,0.275)$
Data Point: $(17,0.275)$
Data Point: $(17.1,1)$
150 psf A-Bed 13-17
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
-Intercept: 1
Data Points: Inclination (
Data Point: $(-90,1)$
Data Point: $(13,0.667)$
Data Point: ($13,0.667$)
Data Point: $(17.1,1)$
17 degres A-Bed 4-8 ${ }^{\circ}$ (Tmc)
Model: Spline Data Point Functio
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: (-90, 1)

```
Data Point: \((3.9,1)\)
Data Point: ( \(4,0.425\) )
Data Point: ( \(8,0.425\) )
Data Point: (8.1, 1)
```


Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-199	1,945
Point 2	-60	1,952
Point 3	-8	1,953
Point 4	50	1,956
Point 5	91	1,958
Point 6	145	1,986
Point 7	155	1,986
Point 8	206	2,010
Point 9	224	2,010
Point 10	281	2,036
Point 11	291	2,036
Point 12	347	2,007
Point 13	356	2,059
Point 14	408	2,083
Point 15	420	2,083
Point 16	454	2,097
Point 17	482	2,096
Point 18	810	2,134
Point 19	810	2,130
Point 20	810	1,998
Point 21	810	1,801
Point 22	-200	1,891
Point 23	499	1,965
Point 24	-200	1,800
Point 25	89.9947	$1,921.9873$
Point 26	490.0406	$2,009.3202$
Point 27	810.0186	$2,043.084$
Point 28	113	$1,969.4074$
Point 29	60	$1,956.4878$
Point 30	91	1,928
Point 31	191	1,928
Point 32	149.5	1,928
Point 33	198.129	$1,930.307$
Point 34	398.5487	$1,997.0656$
Point 35	532	2,096
Point 36	582.4244	$2,110.0118$
Point 37	6328615	$2,116.9809$
Point 38	674.6211	$2,119.9729$
Point 39	749	2,125
Point 40	759	2,129
Point 41	810	2,151

Regions			
	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
$\begin{aligned} & \text { Region } \\ & 1 \end{aligned}$	TQs (150 psf 17° A-Bed 517")	18,34,26,27,19	18,289
$\begin{aligned} & \text { Region } \\ & 2 \end{aligned}$	Tmc (150 psf 17° A-Bed 4$8^{\circ}$)	20,23,33,31,32,22,24,21	$1.4487 \mathrm{e}+005$
$\begin{aligned} & \text { Region } \\ & 3 \end{aligned}$	Fill	29,30,32,31,33,34,18,41,40,39,38,37,36,35,17,16,15,14,13,12,11,10,9,8,7,6,28,5	40,344
$\begin{aligned} & \text { Region } \\ & 4 \end{aligned}$	TQs (150 psf 11° A-Bed $13-17^{\circ}$)	26,34,33,23,20,27	22,901
$\begin{aligned} & \text { Region } \\ & 5 \end{aligned}$	TQs (150 psf 11° A-Bed $13-17^{\circ}$)	4,3,2,1,22,32,30,29	12,840

Current Slip Surface
Slip Surface: 1
F of $S: 1.40$

Volume: $10,364.018 \mathrm{ft}^{3}$
Weight: $1,243,682.1 \mathrm{lbs}$
Resisting Moment: 5.1344587e+008 lbs-ft
Activating Moment: $3.674462 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
F of S Rank (Analysis): 1 of 1 slip surfaces
F of S Rank (Query): 1 of 1 slip surfaces
Entry (46813688 2,096.4951) ft
Radius: 631.47933 ft
Center: $(76.432745,2,591.8071) \mathrm{ft}$

Slip Slices

X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)	
Slice 1	104.53945	$1,961.0105$	0	465.2146	302.1139	200
Slice 2	118.33333	$1,961.7421$	0	$1,205.0082$	782.54146	200
Slice 3	129	$1,962.5424$	0	$1,739.9983$	$1,129.9681$	200
Slice 4	139.66667	$1,963.5247$	0	$2,245.9495$	$1,458.5367$	200
Slice 5	150	$1,964.648$	0	$2,414.1218$	$1,567.749$	200
Slice 6	161.375	$1,966.0999$	0	$2,566.9636$	$1,667.0056$	200
Slice 7	174.125	$1,967.9636$	0	$3,003.7843$	$1,950.6803$	200
Slice 8	186.875	$1,970.0944$	0	$3,402.8733$	$2,209.8518$	200
Slice 9	199.625	$1,972.495$	0	$3,764.7843$	$2,444.8795$	200
Slice 10	215	$1,975.7875$	0	$3,688.4764$	$2,395.3246$	200
Slice 11	229.7	$1,979.2382$	0	$3,555.0502$	$2,308.6766$	200

Slice 12	241.1	$1,982.204$	0	$3,761.5749$	$2,442.7953$	200
Slice 13	252.5	$1,985.3987$	0	$3,940.0069$	$2,558.6704$	200
Slice 14	263.9	$1,988.8258$	0	$4,090.5374$	$2,656.4261$	200
Slice 15	275.3	$1,992.4893$	0	$4,213.324$	$2,736.1646$	200
Slice 16	286	$1,996.1398$	0	$4,068.8967$	$2,642.3724$	200
Slice 17	296.6	$1,999.9822$	0	$3,855.6149$	$2,503.8656$	200
Slice 18	307.8	$2,004.2707$	0	$3,811.0677$	$2,474.9363$	200
Slice 19	319	$2,008.8059$	0	$3,741.6749$	$2,429.8721$	200
Slice 20	330.2	$2,013.5936$	0	$3,647.4692$	$2,368.6942$	200
Slice 21	341.4	$2,018.6401$	0	$3,528.4607$	$2,291.4092$	200
Slice 22	351.5	$2,023.4066$	0	$3,333.6839$	$2,164.9196$	200
Slice 23	362.5	$2,028.8875$	0	$3,156.7226$	$2,049.9996$	200
Slice 24	375.5	$2,035.6863$	0	$3,041.9503$	$1,975.4656$	200
Slice 25	388.5	$2,042.877$	0	$2,891.0912$	$1,877.4966$	200
Slice 26	401.5	$2,050.4755$	0	$2,703.9297$	$1,755.9525$	200
Slice 27	414	$2,058.1742$	0	$2,233.3438$	$1,450.3504$	200
Slice 28	425.66667	$2,065.7315$	0	$1,725.884$	$1,120.8022$	200
Slice 29	437	$2,073.4349$	0	$1,427.7424$	927.18675	200
Slice 30	448.33333	$2,081.5063$	0	$1,102.4191$	715.91934	200
Slice 31	461.06844	$2,091.0656$	0	421.7951	273.91694	200

Section 3 SSA A for Skyline Ranch Development project.gsz

2 - Translational

$\stackrel{\text { Report generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International Ltd. }}{\text { It }}$

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 8
Date. 3/19/2016
Time: 4:54:49 PM
Tool Version: 8.15.5.11777
File Name: Section 3 SSA A for Skyline Ranch Development project.gsz
Directory: P:\FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 3-3 results\Latest update 3-19-16\
Last Solved Date: 3/19/2016
Last Solved Time: 4:58:31 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Spencer
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Search Method: Root Finder
Tolerable difference between starting and converged F of $\mathrm{S}: 3$
Maximum iterations to calculate converged lambda: 20
Max Absolute Lambda: 2

Materials
TQs (150 psf $17^{\circ} \mathrm{A}$-Bed $5-17^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pc
Phi': 40
Phi-Anisotropic Strength Fn.: 17 degres A-Bed 5-17 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 150 psf A-Bed 4-80 ${ }^{\circ}$ (Tmc)
Phi-B: 0°
TQs (150 psf 11° A-Bed $\left.13-17^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pc
Cohesion':
Phi-Anisotropic Strength Fn.: 11 degres A-Bed 13-170
C-Anisotropic Strength Fn.: 150 psf A-Bed 13-17
Phi-B: 0°

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': $33^{\circ}{ }^{\circ}$
Phi-B: 0°
Tmc (150 psf 17° A-Bed $4-8^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pc
: 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 17 degres A-Bed 4-8 ${ }^{\circ}$ (Tmc)
C-Anisotropic Strength Fn.: 150 psf A-Bed 4-80 (Tmc)
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-200,1,891) \mathrm{ft}$
Right Coordinate: $(810.0186,2,043.084) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: ($60.7191,1,971.3745$) ft
Lower Left: ($80.0568,1,871.0374$) ft
X Increments: 10
Y Increments: 10

2-Translational

Starting Angle: 135°
Ending Angle: 180°
Angle Increments: 2
Upper Left: (379.9024, 2,062.6097) ft
Lower Left: (377.6595, 1,898.3154) ft
Lower Right: (657.6469, 1,932.9766) ft
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients
Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

17 degres A-Bed 5-17 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to
Curve Fit to Data: 100%
Segment
Intercept: 1
Y-Intercept. 1 Intination (${ }^{\circ}$ Modifier Factor
Data Point: ($-90,1$)
Data Point: $(4.9,1)$
Data Point: (5, 0.425)
Data Point: $(17,0.425)$
Data Point: (17.1, 1)
150 psf A-Bed 4-8 ${ }^{\circ}$ (Tmc)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: (4, 0.75)
Data Point: ($8,0.75$)
Data Point: ($(8.1,1)$
11 degres A-Bed 13-17 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(12.9,1)$

2 - Translational

> Data Point: $(13,0.275)$
> Data Point: $(17,0.275)$
> Data Point: $(17.1,1)$

150 psf A-Bed 13-17
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(12.9,1)$
Data Point: $(13,0.667)$
Data Point: (17 1 1)
17 degres A-Bed 4-8ㅇ ${ }^{\circ}$ (Tmc)
Model: Spline Data Point Function
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segept:1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.425)$
Data Point: ($8,0.425$)
Data Point: (8.1, 1)

Points
Oints

	$X(\mathrm{ft})$	$Y(\mathrm{ft})$
Point 1	-199	1,945
Poont 2	-60	1,952
Point 3	-8	1,953
Point 4	50	1,956
Point 5	91	1,958
Point 6	145	1,986
Point 7	155	1,986
Point 8	206	2,010
Point 9	224	2,010
Point 10	281	2,036
Point 11	291	2,036
Point 12	347	2,057
Point 13	356	2,059
Point 14	408	2,083
Point 15	420	2,083
Point 16	454	2,097
Point 17	482	2,096
Point 18	810	2,134
Point 19	810	2,130
Point 20	810	1,998

Point 21	810	1,801
Point 22	-200	1,891
Point 23	499	1,965
Point 24	-200	1,800
Point 25	89.9947	$1,921.9873$
Point 26	490.0406	$2,009.3202$
Point 27	810.0186	$2,043.084$
Point 28	113	$1,969.4074$
Point 29	60	$1,956.4878$
Point 30	91	1,928
Point 31	191	1,928
Point 32	149.5	1,928
Point 33	198.129	$1,930.307$
Point 34	398.5487	$1,997.0656$
Point 35	532	2,096
Point 36	582.4244	$2,110.0118$
Point 37	632.8615	$2,116.9809$
Point 38	674.6211	$2,119.9729$
Point 39	749	2,125
Point 40	759	2,129
Point 41	810	2,151

Regions			
	Material	Points	Area (ft^{2})
Region	TQs (150 psf 17° A-Bed 517잉	18,34,26,27,19	18,289
$\begin{aligned} & \text { Region } \\ & 2 \end{aligned}$	Tmc (150 psf 17° A-Bed 4$8^{\circ}$)	20,23,33,31,32,22,24,21	$1.4487 \mathrm{e}+005$
$\begin{aligned} & \text { Region } \\ & 3 \\ & \hline \end{aligned}$	Fill	29,30,32,31,33,34,18,41,40,39,38,37,36,35,17,16,15,14,13,12,11,10,9,8,7,6,28,5	40,344
Region 4	TQs (150 psf 11° A-Bed \qquad	26,34,33,23,20,27	22,901
$\begin{aligned} & \text { Region } \\ & 5 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { TQs }(150 \\ \text { psf } 11^{\circ} \\ \text { A-Bed } \\ \left.13-17^{\circ}\right) \\ \hline \end{array}$	4,3,2,1,22,32,30,29	12,840

Current Slip Surface

Slip Surface: 65,924
F of S: 1.60
Weight: $4,691.303 \mathrm{ft}^{3}$
Resisting Moment: $3.4365662 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
Activating Moment: $2.1520809 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/19/2016
Resisting Force: $1,409,139.8 \mathrm{lbs}$
Activating force: $88,137.8511,5$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 10 slip surfaces
Exit: $(118.84895,1,972.4402) \mathrm{ft}$
Entry: ($642.58224,2,117.6774$) ft
Radius: 256.67241 ft
Center: $(350.50865,2,153.9867) \mathrm{ft}$

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/19/2016

2 - Translational
Page 7 of 7

Slice 26	500.53045	$2,003.5202$	0	$10,556.016$	$2,051.8816$	150.075
Slice 27	521.51015	$2,008.4885$	0	$9,988.6981$	$1,941.6062$	150.075
Slice 28	542.56809	$2,013.4753$	0	$9,754.5912$	$1,896.1005$	150.075
Slice 29	564.0663	$2,018.5664$	0	$9,824.1554$	$3,003.5457$	225
Slice 30	578.71041	$2,026.4589$	0	$5,050.9362$	$4,238.2387$	225
Slice 31	594.52014	$2,049.0376$	0	$3,812.5537$	$3,199.1124$	225
Slice 32	613.17728	$2,075.6827$	0	$2,514.9824$	$1,633.2487$	200
Slice 33	626.30009	$2,094.4241$	0	$1,373.0777$	891.68705	200
Slice 34	637.72187	$2,110.736$	0	357.38028	232.08547	200

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/19/2016

Section 3 SSA A for Skyline Ranch Development project.gsz

Section 3 SSA A for Skyline Ranch Development project.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/19/2016 4:54:49 PM

2 - Translational Seismic

keport tenerated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International Ltd.

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 8
Date: 3/19/2016
Time: 4:54:49 PM
Tool Version: 8.15.5.11777
File Name: Section 3 SSA A for Skyline Ranch Development project.gsz
Directory: P:\IFINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 3-3 results\Latest update 3-19-16\
Last Solved Date: 3/19/2016
Last Solved Time: 5:02:01 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational Seismic
Kind: SLOPE/W
Parent: 2 -Translational
Method: Spencer
Settings
PWP Conditions Source: (none)
Initial Slip Surface Source: Parent Analysis
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Critical Slip Surfaces from Other
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01

Minimum Slip Surface Depth: 0.1 ft

Minimum Slip Surface Depth:
Search Method: Root Finder
Tolerable difference between starting and converged F of $\mathrm{S}: 3$
Maximum iterations to calculate converged lambda: 20
Max Absolute Lambda: 2

Materials
TQs (150 psf $17^{\circ} \mathrm{A}$-Bed $5-17^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pc
Phi': 40
Phi-Anisotropic Strength Fn.: 17 degres A-Bed 5-17 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 150 psf A-Bed $4-8^{\circ}$ (Tmc)
Phi-B: 0°
TQs (150 psf 11° A-Bed $13-17^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Phi': 40°
Phi-Anisotropic Strength Fn.: 11 degres A-Bed 13-17
C-Anisotropic Strength Fn.: 150 psf A-Bed $13-17^{\circ}$
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Tmc (150 psf 17° A-Bed $4-8^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pc
Cohesion
Phi-Anisotropic Strength Fn.: 17 degres A-Bed $4-8^{\circ}(\mathrm{Tmc}$
C-Anisotropic Strength Fn.: 150 psf A-Bed $4-8^{\circ}$ (Tmc)
Phi-B: 0°

Slip Surface Limits
Left Coordinate: $(-200,1,891)$ ft
Right Coordinate: ($810.0186,2,043.084$) ft

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

2-Translational Seismic

17 degres A-Bed 5-17 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(4.9,1)$
Data Point: ($5,0.425$)
Data Point: ($17,0.425$ Data Point: $(17.1,1)$

150 psf A-Bed 4-8 ${ }^{\circ}$ (Tmc)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: $(4,0.75)$
Data Point: $(8,0.75)$
Data Point: $(8.1,1)$
11 degres A-Bed 13-17
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: ($-90,1$)
Data Point: $(12.9,1)$
Data Point: ($13,0.275$)
Data Point: $(17,0.275)$
Data Point: $(17.1,1)$
150 psf A-Bed 13-17 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment
Intercept: 1
Data Points: Inclination (${ }^{\circ}$)
Data Point: $(-90,1)$
Data Point: $(12.9,1)$
Data Point: $(13,0.667$
Data Point: ($17,0.667$)
Data Point: $(17.1,1)$
17 degres A-Bed $4-8^{\circ}$ (Tmc)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%

Segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: $(4,0.425)$
Data Point: (8.1, 1)
Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-199	1,945
Point 2	-60	1,952
Point 3	-8	1,953
Point 4	50	1,956
Point 5	91	1,958
Point 6	145	1,986
Point 7	155	1,986
Point 8	206	2,010
Point 9	224	2,010
Point 10	281	2,036
Point 11	291	2,036
Point 12	347	2,057
Point 13	356	2,059
Point 14	408	2,083
Point 15	420	2,083
Point 16	454	2,097
Point 17	482	2,096
Point 18	810	2,134
Point 19	810	2,130
Point 20	810	1,998
Point 21	810	1,801
Point 22	-200	1,891
Point 23	499	1,965
Point 24	-200	1,800
Point 25	89.9947	$1,921.9873$
Point 26	490.0406	$2,009.3202$
Point 27	810.0186	$2,043.084$
Point 28	113	$1,969.4074$
Point 29	60	$1,956.4878$
Point 30	91	1,928
Point 31	191	1,928
Point 32	149.5	1,928
Point 33	198.129	$1,930.307$
Point 34	398.5487	$1,997.0656$
Point 35	532	2,096
Point 36	582.4244	$2,110.0118$
Point 37	632.8615	$2,116.9809$
Point 38	674.6211	$2,119.9729$

Regions

	Material	Points	Area (ft^{2})
$\begin{aligned} & \text { Region } \\ & 1 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { TQs }(150 \\ \text { psf } 17^{\circ} \\ \text { A-Bed 5- } \\ \hline \end{array}$ $\left.17^{\circ}\right)$	18,34,26,27,19	18,289
$\begin{aligned} & \text { Region } \\ & 2 \end{aligned}$	Tmc (150 psf 17° A-Bed 4$8^{\circ}$)	20,23,33,31,32,22,24,21	$1.4487 \mathrm{e}+005$
$\begin{aligned} & \text { Region } \\ & 3 \\ & \hline \end{aligned}$	Fill	29,30,32,31,33,34,18,41,40,39,38,37,36,35,17,16,15,14,13,12,11,10,9,8,7,6,28,5	40,344
$\begin{aligned} & \text { Region } \\ & 4 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { TQs }(150 \\ \text { psf } 11^{\circ} \\ \text { A-Bed } \\ \left.13-17^{\circ}\right) \\ \hline \end{array}$	26,34,33,23,20,27	22,901
$\begin{aligned} & \text { Region } \\ & 5 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { TQs }(150 \\ \text { psf } 11^{\circ} \\ \text { A-Bed } \\ \left.13-17^{\circ}\right) \\ \hline \end{array}$	4,3,2,1,22,32,30,29	12,840

Current Slip Surface

Slip Surface: 1
Slip Surface: 1
F of S: 1.11
Volume: $39,094.946 \mathrm{ft}^{3}$
Weight: $4,691,393.5 \mathrm{lbs}$
Resisting Moment: $3.7213436 e+008 \mathrm{lbs}-\mathrm{ft}$
Activating Moment: 3.3508753e+008 lbs-ft
Resisting Force: $1,517,288.4 \mathrm{lbs}$
Activating Force: $1,378,623.5 \mathrm{lbs}$
Fof S Rank (Analysis): 1 of 1 slip surfaces
F of S Rank (Query): 1 of 1 slip surfaces
Exit: $(118.84895,1,972.4402)$ ft
Entry: $(642.552244,2,117.6774)$ ft
Radius. 256.67241
Slip Slices
Slip Slices

	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	131.92447	$1,967.0241$	0	$3,345.9507$	$2,172.8858$	200
Slice 2	150	$1,959.537$	0	$6,925.0032$	$4,497.1497$	200
Slice 3	163.5	$1,953.9451$	0	$9,331.2413$	$6,059.779$	200
Slice 4	180.5	$1,946.9035$	0	$13,104.612$	$8,510.2344$	200
Slice 5	197.5	$1,939.8619$	0	$16,877.98$	$10,960.689$	200
Slice 6	207.97385	$1,935.5234$	0	$18,969.771$	$12,319.113$	200
Slice 7	212.34756	$1,935.2742$	0	$8,298.0992$	$5,388.8487$	200

file://P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/19/2016

Slice 8	219.37371	$1,936.9381$	0	$7,907.8903$	$1,537.1382$	150.075
Slice 9	233.5	$1,940.2834$	0	$8,014.7195$	$1,557.9036$	150.075
Slice 10	252.5	$1,944.7829$	0	$8,465.2959$	$1,645.4868$	150.075
Slice 11	271.5	$1,949.2824$	0	$8,915.8719$	$1,733.0699$	150.075
Slice 12	286	$1,952.7162$	0	$9,013.132$	$1,751.9754$	150.075
Slice 13	300.33333	$1,956.1105$	0	$9,024.556$	$1,754.196$	150.075
Slice 14	319	$1,960.5311$	0	$9,303.459$	$1,808.4092$	150.075
Slice 15	337.66667	$1,964.9516$	0	$9,582.3625$	$1,862.6226$	150.075
Slice 16	351.5	$1,968.2275$	0	$9,714.7138$	$1,888.3491$	150.075
Slice 17	366.63718	$1,971.8122$	0	$9,966.0777$	$1,937.2093$	150.075
Slice 18	387.91152	$1,976.8503$	0	$10,483.006$	$2,037.69$	150.075
Slice 19	403.27435	$1,980.4885$	0	$10,856.296$	$2,110.2501$	150.075
Slice 20	414	$1,983.0285$	0	$10,817.487$	$2,102.7064$	150.075
Slice 21	428.5	$1,986.4623$	0	$10,824.643$	$2,104.0974$	150.075
Slice 22	445.5	$1,990.4881$	0	$11,146.222$	$2,166.6061$	150.075
Slice 23	461	$1,994.1588$	0	$11,100.742$	$2,157.7656$	150.075
Slice 24	475	$1,997.4742$	0	$10,688.201$	$2,077.5758$	150.075
Slice 25	486.0203	$2,000.084$	0	$10,378.989$	$2,017.4711$	150.075
Slice 26	500.53045	$2,003.5202$	0	$10,007.448$	$1,945.2508$	150.075
Slice 27	521.51015	$2,008.4885$	0	$9,470.2506$	$1,840.8302$	150.075
Slice 28	542.56809	$2,013.4753$	0	$9,248.5731$	$1,797.7405$	150.075
Slice 29	564.0663	$2,018.5664$	0	$9,405.108$	$2,875.4301$	225
Slice 30	578.71041	$2,026.4589$	0	$4,061.2097$	$3,407.7595$	225
Slice 31	594.52014	$2,049.0376$	0	$3,059.0368$	$2,566.8367$	225
Slice 32	613.17728	$2,075.6827$	0	$2,032.5286$	$1,319.9395$	200
Slice 33	626.30009	$2,094.4241$	0	$1,098.302$	713.24566	200
Slice 34	637.72187	$2,110.736$	0	267.32964	173.6059	200

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/19/2016

1 - Circular Mode of Failure

Report generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International

File Information

File Version: 8.15

Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 82
Date: 3/21/2016
Time: 1:35:28 PM
Tool Version: 8.15.5.11777
File Name: Section 5-5 Static Final with key SSA for Skyline Ranch.gsz
Directory: P:\FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 5-5 results\Latest Update 3-19-16
Last Solved Date: 3/21/2016
Last Solved Time: 1:37:19 PM

Project Settings
Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
nit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant

dvance

Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs (150 psf 11° A-Bed 4-8 ${ }^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pc
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs (150 psf 11° A-Bed $4-8^{\circ}$)
C-Anisotropic Strength Fn.: 150 psf 11° A-Bed $4-8^{\circ}$
Phi-B: 0°
TQs (100 psf 25° A-Bed 6-7 ${ }^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pc
ohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs (100 psf 25° A-Bed 6-7)
C-Anisotropic Strength Fn.: ($100 \mathrm{psf} 25^{\circ} \mathrm{A}-\mathrm{Bed} 6-7^{\circ}$)
Phi-B: 0°
Tmc (150 psf $17^{\circ} \mathrm{A}-$ Bed $4-8^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc (150 psf $17^{\circ} \mathrm{A}$-Bed 4-8
C-Anisotropic Strength Fn.: 150 psf $17^{\circ} \mathrm{A}$-Bed $4-8^{\circ}$
Phi-B: 0°
TQs (100 psf 25° A-Bed 1-13 ${ }^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs(100 psf 25° A-Bed 1-13 ${ }^{\circ}$)
C-Anisotropic Strength Fn.: ($100 \mathrm{psf} 25^{\circ}$ A-Bed $1-13^{\circ}$
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pc
Cohesion': 200 psf

1-Circular Mode of Failure

Phi': 33°
Phi-B: 0°

Slip Surface Entry and Exit

Left Projection: Range
Left-Zone Left Coordinate: $(38,2,101) \mathrm{ft}$
Left-Zone Right Coordinate: ($118,2,125.1481$) ft
Left-Zone Increment: 50
Right Projection: Range
Right-Zone Left Coordinate: (127, 2,130.4815) ft
Right-Zone Right Coordinate: (249.7424, 2,171.4472) ft
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: (-200, 2,099) ft
Right Coordinate: $(687,2,139) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc (150 psf 17° A-Bed $4-8^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \% Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: $(4,0.425)$
Data Point: ($8,0.425$)
Data Point: (8.1, 1)

150 psf 17° A-Bed 4-8

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: (-90, 1)

1 - Circular Mode of Failure

Data Point: $(3.9,1)$
Data Point: $(4,0.75)$
Data Point: $(8,0.75)$
Data Point: $(8.1,1)$
TQs (150 psf 11° A-Bed 4-8 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \% Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: $(4,0.275)$
Data Point: $(8,0.275)$
Data Point: $(8.1,1)$

150 psf 11° A-Bed $4-8^{\circ}$

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.667)$
Data Point: $(8,0.667)$
Data Point: $(8.1,1)$
TQs (100 psf $25^{\circ} \mathrm{A}$-Bed $6-\mathbf{7}^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: $(6,0.625)$
Data Point: $(7,0.625)$
Data Point: $(7.1,1)$
(100 psf 25° A-Bed $6-\mathbf{7}^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1

1 - Circular Mode of Failure

Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: $(6,0.444)$
Data Point: ($7,0.444$
Data Point: (7.1, 1
(100 psf 25° A-Bed $1-13^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(0.9,1)$
Data Point: $(1,0.444)$
Data Point: $(13,0.444)$
Data Point: $(13.1,1)$
TQs(100 psf 25° A-Bed $1-13^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: (0.9, 1)
Data Point: $(1,0.625)$
Data Point: $(13,0.625)$
Data Point: (13.1, 1)

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-200	2,099
Point 2	-115	2,101
Point 3	-28	2,101
Point 4	42	2,101
Point 5	78	2,101
Point 6	138	2,137
Point 7	150	2,137
Point 8	210	2,169
Point 9	232	2,169
Point 10	261	2,173
Point 11	290	2,180
Point 12	329	2,189

1 - Circular Mode of Failure

Point 13	347	2,193
Point 14	412	2,198
Point 15	444	2,194
Point 16	472	2,188
Point 17	502	2,176
Point 18	523	2,171
Point 19	556	2,160
Point 20	572	2,157
Point 21	645	2,145
Point 22	687	2,139
Point 23	685	2,041
Point 24	685	1,800
Point 25	-200	1,801
Point 26	-200	1,994
Point 27	111	2,121
Point 28	687	2,133
Point 29	109	2,120
Point 30	-200	2,033
Point 31	199	2,076
Point 32	687	2,128
Point 33	88	2,101
Point 34	121	2,101
Point 35	272	2,177
Point 36	163	2,122
Point 37	165	2,123
Point 38	687	2,134
Point 39	73	2,101
Point 40	78	2,096
Point 41	111	2,096

Regions

	Material	Points	Area (ft^{2})
Region 1	Tmc (150 psf 17° A-Bed 4$8^{\circ}$)	23,24,25,26	$1.9205 \mathrm{e}+005$
$\begin{aligned} & \text { Region } \\ & 2 \end{aligned}$	TQs (100 psf 25° A-Bed 6$7^{\circ}$)	1,30,31,32,28,36,34,41,40,39,4,3,2	32,105
$\begin{aligned} & \text { Region } \\ & 3 \end{aligned}$	TQs (100 psf 25° A-Bed 113 ${ }^{\circ}$)	22,21,20,19,18,17,16,15,14,13,12,11,35,37,38	21,235
$\begin{aligned} & \text { Region } \\ & 4 \end{aligned}$	TQs (150 psf 11° A-Bed 4$8^{\circ}$)	30,26,23,32,31	55,865
Region 5	Fill	5,33,34,36,37,35,10,9,8,7,6,27,29	3,254.5
$\begin{aligned} & \text { Region } \\ & 6 \\ & \hline \end{aligned}$		36,28,38,37	512

Region 7	Fill	$39,40,41,34,33,5$	202.5

Current Slip Surface

Slip Surface: 60,201
Fof $\mathrm{S}: 1.77$
Volume: $573.74016 \mathrm{ft}^{3}$
Weight: $68,848.819 \mathrm{lbs}$
Resisting Moment: $4,609,078.4 \mathrm{lbs}-\mathrm{ft}$
Activating Moment: $2,604,068.2$ lbs-ft
Fof S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 300 slip surfaces
Exit: $(78.004122,2,101.0025) \mathrm{ft}$
Entry: $(143.79119,2,137) \mathrm{ft}$
Radius: 81.751002 ft
Center: $(76.026676,2,182.7296) \mathrm{ft}$

Slip Slices
X (ft) $\mathrm{Y}(\mathrm{ft})$ PWP (psf) Base Normal Stress (psf) Frictional Strength (psf) Cohesive Strength (psf) Slice 1 79.111118 $2,101.0443$ 0 71.160582 46.212222 200 Slice 2 81.325109 $2,101.158$ 0 213.19928 138.45323 200 Slice 3 83.539101 $2,101.3321$ 0 345.46092 224.34494 200 Slice 4 85.753092 $2,101.5669$ 0 468.14495 304.01689 200 Slice 5 87.967083 $2,101.863$ 0 581.41951 377.57824 200 Slice 6 90.181074 $2,102.2211$ 0 685.42338 445.11915 200 Slice 7 92.395066 $2,102.642$ 0 780.26764 506.71173 200 Slice 8 94.609057 $2,103.1267$ 0 866.03685 562.41091 200 Slice 9 96.823048 $2,103.6763$ 0 942.78987 612.2549 200 Slice 10 99.037039 $2,104.2923$ 0 $1,010.5604$ 656.26563 200 Slice 11 101.25103 $2,104.9761$ 0 $1,069.3573$ 694.44877 200 Slice 12 103.46502 $2,105.7297$ 0 $1,119.1642$ 726.79374 200 Slice 13 105.67901 $2,106.5551$ 0 $1,159.9392$ 753.27334 200 Slice

14	107.893	$2,107.4547$	0	$1,191.6141$	773.84327	200
Slice 15	110	$2,108.3802$	0	$1,201.8071$	780.46265	200
Slice 16	112.125	$2,109.3909$	0	$1,201.1479$	780.03459	200
Slice 17	114.375	$2,110.5423$	0	$1,201.3795$	780.185	200
Slice 18	116.625	$2,111.7837$	0	$1,191.7637$	773.9404	200
Slice 19	118.875	$2,113.12$	0	$1,172.0707$	761.15162	200
Slice 20	121.125	$2,114.5567$	0	$1,142.0285$	741.64195	200
Slice 21	123.375	$2,116.1004$	0	$1,101.3173$	715.20382	200
Slice 22	125.625	$2,117.7586$	0	$1,049.5638$	681.59472	200
Slice 23	127.875	$2,119.5405$	0	986.33329	640.53233	200
Slice 24	130.125	$2,121.4569$	0	911.1203	591.68844	200
Slice 25	132.375	$2,123.5208$	0	823.33774	534.68178	200
Slice 26	134.625	$2,125.7484$	0	722.30347	469.06936	200
Slice 27	136.875	$2,128.1598$	0	607.22521	394.33666	200
Slice 28	138.9652	$2,130.5791$	0	440.0239	285.75486	200
Slice 29	140.89559	$2,133.003$	0	225.06637	146.15981	200
Slice 30	142.82599	$2,135.6311$	0	2.8704439	1.8640881	200

1 - Circular Mode of Failure

Report generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International

File Information

File Version: 8.15

Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 80
Date: 3/21/2016
Time: 1:24:10 PM
ool Version: 8.15.5.11777
File Name: Section 5-5 Seismic Final with key SSA for Skyline Ranch.gsz
Directory: P:\FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 5-5 results\Latest Update 3-19-16
ast Solved Date: 3/21/2016
Last Solved Time: 1:31:31 PM

Project Settings
Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
nit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant

dvance

Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs (150 psf 11° A-Bed 4-8 ${ }^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pc
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs (150 psf 11° A-Bed $4-8^{\circ}$)
C-Anisotropic Strength Fn.: 150 psf 11° A-Bed $4-8^{\circ}$
Phi-B: 0°
TQs (100 psf 25° A-Bed 6-7 ${ }^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pc
ohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs (100 psf 25° A-Bed 6-7)
C-Anisotropic Strength Fn.: ($100 \mathrm{psf} 25^{\circ} \mathrm{A}-\mathrm{Bed} 6-7^{\circ}$)
Phi-B: 0°
Tmc (150 psf $17^{\circ} \mathrm{A}$-Bed $4-8^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc (150 psf $17^{\circ} \mathrm{A}$-Bed 4-8
C-Anisotropic Strength Fn.: 150 psf $17^{\circ} \mathrm{A}$-Bed $4-8^{\circ}$
Phi-B: 0°
TQs (100 psf 25° A-Bed 1-13 ${ }^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs(100 psf 25° A-Bed 1-13 ${ }^{\circ}$)
C-Anisotropic Strength Fn.: ($100 \mathrm{psf} 25^{\circ}$ A-Bed $1-13^{\circ}$)
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pc
Cohesion': 200 psf

1 - Circular Mode of Failure
Page 3 of 8

Phi': 33°
Phi-B: 0°

Slip Surface Entry and Exit

Left Projection: Range
Left-Zone Left Coordinate: $(38,2,101) \mathrm{ft}$
Left-Zone Right Coordinate: ($118,2,125.1481$) ft
Left-Zone Increment: 50
Right Projection: Range
Right-Zone Left Coordinate: (127, 2,130.4815) ft
Right-Zone Right Coordinate: (249.7424, 2,171.4472) ft
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: (-200, 2,099) ft
Right Coordinate: $(687,2,139) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc (150 psf 17° A-Bed 4-8 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \% Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: $(4,0.425)$
Data Point: ($8,0.425$)
Data Point: (8.1, 1)

150 psf 17° A-Bed 4-8

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: (-90, 1)

1 - Circular Mode of Failure

Data Point: $(3.9,1)$
Data Point: $(4,0.75)$
Data Point: $(8,0.75)$
Data Point: $(8.1,1)$
TQs (150 psf $11^{\circ} \mathrm{A}$-Bed $4-8^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \% Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: $(4,0.275)$
Data Point: $(8,0.275)$
Data Point: $(8.1,1)$

150 psf 11° A-Bed $4-8^{\circ}$

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.667)$
Data Point: $(8,0.667)$
Data Point: (8.1, 1)
TQs (100 psf $25^{\circ} \mathrm{A}$-Bed $6-\mathbf{7}^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: $(6,0.625)$
Data Point: $(7,0.625$
Data Point: $(7.1,1)$
(100 psf 25° A-Bed $6-\mathbf{7}^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1

1 - Circular Mode of Failure

Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: $(6,0.444)$
Data Point: ($7,0.444$
Data Point: (7.1, 1
(100 psf 25° A-Bed $1-13^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(0.9,1)$
Data Point: $(1,0.444)$
Data Point: $(13,0.444)$
Data Point: $(13.1,1)$
TQs(100 psf 25° A-Bed $1-13^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: (0.9, 1)
Data Point: $(1,0.625)$
Data Point: $(13,0.625)$
Data Point: (13.1, 1)

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-200	2,099
Point 2	-115	2,101
Point 3	-28	2,101
Point 4	42	2,101
Point 5	78	2,101
Point 6	138	2,137
Point 7	150	2,137
Point 8	210	2,169
Point 9	232	2,169
Point 10	261	2,173
Point 11	290	2,180
Point 12	329	2,189

1 - Circular Mode of Failure

Point 13	347	2,193
Point 14	412	2,198
Point 15	444	2,194
Point 16	472	2,188
Point 17	502	2,176
Point 18	523	2,171
Point 19	556	2,160
Point 20	572	2,157
Point 21	645	2,145
Point 22	687	2,139
Point 23	685	2,041
Point 24	685	1,800
Point 25	-200	1,801
Point 26	-200	1,994
Point 27	111	2,121
Point 28	687	2,133
Point 29	109	2,120
Point 30	-200	2,033
Point 31	199	2,076
Point 32	687	2,128
Point 33	88	2,101
Point 34	121	2,101
Point 35	272	2,177
Point 36	163	2,122
Point 37	165	2,123
Point 38	687	2,134
Point 39	73	2,101
Point 40	78	2,096
Point 41	111	2,096

Regions

	Material	Points	Area (ft^{2})
Region 1	Tmc (150 psf 17° A-Bed 4$8^{\circ}$)	23,24,25,26	$1.9205 \mathrm{e}+005$
$\begin{aligned} & \text { Region } \\ & 2 \end{aligned}$	TQs (100 psf 25° A-Bed 6$7^{\circ}$)	1,30,31,32,28,36,34,41,40,39,4,3,2	32,105
$\begin{aligned} & \text { Region } \\ & 3 \end{aligned}$	TQs (100 psf 25° A-Bed 113 ${ }^{\circ}$)	22,21,20,19,18,17,16,15,14,13,12,11,35,37,38	21,235
$\begin{aligned} & \text { Region } \\ & 4 \end{aligned}$	TQs (150 psf 11° A-Bed 4$8^{\circ}$)	30,26,23,32,31	55,865
Region 5	Fill	5,33,34,36,37,35,10,9,8,7,6,27,29	3,254.5
$\begin{aligned} & \text { Region } \\ & 6 \\ & \hline \end{aligned}$		36,28,38,37	512

Region 7	Fill	$39,40,41,34,33,5$	202.5

Current Slip Surface

Slip Surface: 61,877
Fof S: 1.28
Volume: $2,166.4005 \mathrm{ft}^{3}$
olume: 2,166.4005 ft
Neight: 259,968.07 lbs
esisting Moment: 41,153,120 lbs-ft
Activating Moment: $32,138,520 \mathrm{lbs}-\mathrm{ft}$
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 300 slip surfaces
Exit: (78.015509, 2,101.0095) ft
Entry: $(223.37103,2,169) \mathrm{ft}$
Radius: 229.37058 ft
Center: $(59.650312,2,329.6437) \mathrm{ft}$

Slip Slices
X (ft) $\mathrm{Y}(\mathrm{ft})$ PWP (psf) Base Normal Stress (psf) Frictional Strength (psf) Cohesive Strength (psf) Slice 1 80.59755 $2,101.2463$ 0 140.6808 91.35918 200 Slice 2 85.761632 $2,101.779$ 0 434.36064 282.0771 200 Slice 3 90.925714 $2,102.4303$ 0 708.29406 459.97154 200 Slice 4 96.089796 $2,103.2012$ 0 962.91445 625.32396 200 Slice 5 101.25388 $2,104.093$ 0 $1,198.6059$ 778.38377 200 Slice 6 106.41796 $2,105.1071$ 0 $1,415.7065$ 919.37055 200 Slice 7 110 $2,105.8699$ 0 $1,544.8146$ $1,003.2144$ 200 Slice 8 113.25 $2,106.6356$ 0 $1,646.2184$ $1,069.0667$ 200 Slice 9 117.75 $2,107.7656$ 0 $1,790.2954$ $1,162.6314$ 200 Slice 10 122.25 $2,108.9931$ 0 $1,921.0518$ $1,247.5456$ 200 Slice 11 126.75 $2,110.3198$ 0 $2,038.6021$ $1,323.8837$ 200 Slice 12 131.25 $2,111.7475$ 0 $2,143.0405$ $1,391.7068$ 200 Slice 13 135.75 $2,113.2782$ 0 $2,234.4417$ $1,451.0634$ 200 Slice

14	141	$2,115.2077$	0	$2,144.5972$	$1,392.7177$	200
Slice 15	147	$2,117.5815$	0	$1,875.4445$	$1,217.9279$	200
Slice 16	152.5	$2,119.924$	0	$1,748.6825$	$1,135.6077$	200
Slice 17	157.5	$2,122.2102$	0	$1,761.2162$	$1,143.7472$	200
Slice 18	162.5	$2,124.6437$	0	$1,758.4998$	$1,141.9831$	200
Slice 19	167.5	$2,127.23$	0	$1,740.4854$	$1,130.2845$	200
Slice 20	172.5	$2,129.975$	0	$1,707.0996$	$1,108.6034$	200
Slice 21	177.5	$2,132.8854$	0	$1,658.2426$	$1,076.8754$	200
Slice 22	182.5	$2,135.9686$	0	$1,593.7887$	$1,035.0185$	200
Slice 23	187.5	$2,139.2329$	0	$1,513.5852$	982.93375	200
Slice 24	192.5	$2,142.688$	0	$1,417.453$	920.50477	200
Slice 25	197.5	$2,146.3446$	0	$1,305.1861$	847.59774	200
Slice 26	202.5	$2,150.2151$	0	$1,176.552$	764.0618	200
Slice 27	207.5	$2,154.3136$	0	$1,031.2934$	669.72979	200
Slice 28	212.2285	$2,158.4074$	0	780.62226	506.94202	200
Slice 29	216.68551	$2,162.4867$	0	430.69626	279.69742	200
Slice 30	221.14252	$2,166.7901$	0	73.766475	47.904509	200

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International Ltd.

File Information

File Version: 8.15

Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 82
Date: 3/21/2016
Time: 1:35:28 PM
Tool Version: 8.15.5.11777
File Name: Section 5-5 Static Final with key SSA for Skyline Ranch.gsz
Directory: P: \FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 5-5 results\Latest Update 3-
19-16
Last Solved Date: 3/21/2016
Last Solved Time: 1:36:03 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant Advanced

Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs (150 psf 11° A-Bed 4-8 ${ }^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': $40{ }^{\circ}$
Phi-Anisotropic Strength Fn.: TQs (150 psf 11° A-Bed 4-8 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 150 psf 11° A-Bed $4-8^{\circ}$
Phi-B: 0°
TQs (100 psf 25° A-Bed 6-7 ${ }^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs ($100 \mathrm{psf} 25^{\circ} \mathrm{A}$-Bed $6-7^{\circ}$)
C-Anisotropic Strength Fn.: ($100 \mathrm{psf} 25^{\circ} \mathrm{A}$-Bed 6-7${ }^{\circ}$)
Phi-B: 0°

Shear Layer

Model: Mohr-Coulomb
Unit Weight: 120 pc
Cohesion': 150 psf
Phi': 11°
Phi-B: 0°
Tmc (150 psf 17° A-Bed 4-8 ${ }^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc ($150 \mathrm{psf} 17^{\circ} \mathrm{A}$-Bed $4-8^{\circ}$)
C-Anisotropic Strength Fn.: 150 psf $17^{\circ} \mathrm{A}$-Bed $4-8^{\circ}$
Phi-B: 0°
TQs (100 psf 25° A-Bed 1-13 ${ }^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°

2-Translational

C-Anisotropic Strength Fn.: (100 psf 25° A-Bed 1-13 $)$
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-200,2,099) \mathrm{ft}$
Right Coordinate: $(687,2,139) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: $(132.724,2,155.9869) \mathrm{ft}$
Lower Left: (147.2387, 2,075.9597) ft
Lower Right: (218.8751, 2,089.9995) ft
X Increments: 10
Y Increments: 10
Starting Angle: 135°
Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: (261.4184, 2,199.03) ft
Lower Left: ($279.2153,2,088.405$) ft Lower Right: (351.5514, 2,099.3522) ft
X Increments: 10
Y Increments: 10
Starting Angle: 45
Ending Angle: $65{ }^{\circ}$
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

[^18]Curve Fit to Data: 100%

Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.425)$
Data Point: $(8,0.425)$
Data Point: $(8.1,1)$
150 psf 17° A-Bed 4-8
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: ($-90,1$)
Data Point: $(3.9,1)$
Data Point: $(4,0.75)$
Data Point: $(8,0.75)$
Data Point: (8.1, 1)
TQs (150 psf $11^{\circ} \mathrm{A}$-Bed $4-8^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: $(4,0.275)$
Data Point: ($8,0.275$)
Data Point: (8.1, 1)

150 psf 11° A-Bed 4-8

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$, Modifier Factor Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.667)$
Data Point: $(8,0.667)$
Data Point: $(8.1,1)$
TQs (100 psf 25° A-Bed 6-7 ${ }^{\circ}$)
Model: Spline Data Point Function

Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: $(6,0.625)$
Data Point: (7, 0.625
Data Point: $(7.1,1)$
(100 psf 25° A-Bed $6-7^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: $(6,0.444)$
Data Point: $(6,0.444)$
Data Point: $(7,0.444)$
Data Point: (7.1, 1)
(100 psf 25° A-Bed 1-13 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: (-90, 1)
Data Point: $(0.9,1)$
Data Point: (1, 0.444)
Data Point: $(13,0.444)$
Data Point: $(13.1,1)$
TQs(100 psf 25° A-Bed 1-13 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: $(-90,1)$
Data Point: $(0.9,1)$
Data Point: $(1,0.625)$
Data Point: $(13,0.625)$
Data Point: $(13.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-200	2,099
Point 2	-115	2,101
Point 3	-28	2,101
Point 4	42	2,101
Point 5	78	2,101
Point 6	138	2,137
Point 7	150	2,137
Point 8	210	2,169
Point 9	232	2,169
Point 10	261	2,173
Point 11	290	2,180
Point 12	329	2,189
Point 13	347	2,193
Point 14	412	2,198
Point 15	444	2,194
Point 16	472	2,188
Point 17	502	2,176
Point 18	523	2,171
Point 19	556	2,160
Point 20	572	2,157
Point 21	645	2,145
Point 22	687	2,139
Point 23	685	2,041
Point 24	685	1,800
Point 25	-200	1,801
Point 26	-200	1,994
Point 27	111	2,121
Point 28	687	2,133
Point 29	109	2,120
Point 30	-200	2,033
Point 31	199	2,076
Point 32	687	2,128
Point 33	88	2,101
Point 34	121	2,101
Point 35	272	2,177
Point 36	163	2,122
Point 37	165	2,123
Point 38	687	2,134
Point 39	73	2,101
Point 40	78	2,096

Point 41	111	2,096

Regions

	Material	Points	Area (ft^{2})
$\begin{aligned} & \hline \text { Region } \\ & 1 \end{aligned}$	Tmc (150 psf 17° A-Bed 4$8^{\circ}$)	23,24,25,26	$1.9205 \mathrm{e}+005$
$\begin{aligned} & \text { Region } \\ & 2 \end{aligned}$	TQs (100 psf 25° A-Bed 6$7^{\circ}$)	1,30,31,32,28,36,34,41,40,39,4,3,2	32,105
$\begin{aligned} & \text { Region } \\ & 3 \end{aligned}$	TQs (100 psf 25° A-Bed 1$13^{\circ}$)	22,21,20,19,18,17,16,15,14,13,12,11,35,37,38	21,235
$\begin{aligned} & \text { Region } \\ & 4 \end{aligned}$	TQs (150 psf 11° A-Bed 4$8^{\circ}$)	30,26,23,32,31	55,865
Region 5	Fill	5,33,34,36,37,35,10,9,8,7,6,27,29	3,254.5
$\begin{aligned} & \text { Region } \\ & 6 \\ & \hline \end{aligned}$	Shear Layer	36,28,38,37	512
$\begin{aligned} & \text { Region } \\ & 7 \end{aligned}$	Fill	39,40,41,34,33,5	202.5

Current Slip Surface

Slip Surface: 66,399
F of S: 1.94
Volume: 1,752.2519 ft ${ }^{3}$
Weight: $210,270.23 \mathrm{lbs}$
Resisting Force: $130,112.76 \mathrm{lbs}$
Activating Force: $67,221.054 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 300 slip surfaces
Exit: (114.36353, 2,122.9932) ft
Entry: $(227.60406,2,169) \mathrm{ft}$
Radius: 67.44354 ft
Center: (156.96523, 2,180.5017) ft
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	116.33323	$2,122.9932$	0	140.068	90.961223	200
Slice 2	120.27264	$2,122.9932$	0	420.204	272.88367	200
Slice 3	124.21206	$2,122.9932$	0	700.34	454.80611	200
Slice 4	128.15147	$2,122.9932$	0	980.476	636.72856	200
Slice 5	132.09088	$2,122.9932$	0	$1,260.612$	818.651	200

Slice 6	136.03029	$2,122.9932$	0	$1,540.748$	$1,000.5735$	200
Slice 7	140	$2,122.9932$	0	$1,680.816$	$1,091.5347$	200
Slice 8	144	$2,122.9932$	0	$1,680.816$	$1,091.5347$	200
Slice 9	148	$2,122.9932$	0	$1,680.816$	$1,091.5347$	200
Slice 10	151.8733	$2,122.9932$	0	$1,800.7072$	$1,169.3929$	200
Slice 11	155.6199	$2,122.9932$	0	$2,040.4896$	$1,325.1094$	200
Slice 12	159.3665	$2,122.9932$	0	$2,280.272$	$1,480.826$	200
Slice 13	163.1131	$2,122.9932$	0	$2,520.0544$	$1,636.5425$	200
Slice 14	166.79313	$2,122.9932$	0	$2,755.576$	535.62971	150
Slice 15	170.39978	$2,122.9932$	0	$2,986.4016$	580.49767	150
Slice 16	173.99963	$2,122.9932$	0	$3,216.792$	625.28102	150
Slice 17	175.93471	$2,123.1132$	0	$2,990.4133$	581.27746	150
Slice 18	177.81519	$2,124.7833$	0	$2,268.662$	$1,903.6334$	225
Slice 19	181.30582	$2,127.8832$	0	$2,161.3979$	$1,813.6282$	225
Slice 20	184.79645	$2,130.9832$	0	$2,054.1338$	$1,723.6229$	225
Slice 21	188.28708	$2,134.0832$	0	$1,946.8697$	$1,633.6176$	225
Slice 22	192.02915	$2,137.4065$	0	$1,963.6416$	$1,275.2038$	200
Slice 23	196.02267	$2,140.953$	0	$1,832.6896$	$1,190.1626$	200
Slice 24	200.01619	$2,144.4996$	0	$1,701.7376$	$1,105.1213$	200
Slice 25	204.00972	$2,148.0462$	0	$1,570.7856$	$1,020.0801$	200
Slice 26	208.00324	$2,151.5928$	0	$1,439.8337$	935.03891	200
Slice 27	211.76041	$2,154.9295$	0	$1,229.8472$	798.67214	200
Slice 28	215.28122	$2,158.0563$	0	940.82641	610.97982	200
Slice 29	218.80203	$2,161.1831$	0	651.80558	423.28749	200

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/21/2016

2 - Translatio						Page 9 of 9
$\begin{aligned} & \text { Slice } \\ & 33 \end{aligned}$	222.32284	2,164.3098	0	362.78475	235.59517	200
$\begin{aligned} & \text { Slice } \\ & 31 \end{aligned}$	225.84366	2,167.4366	0	73.763924	47.902853	200

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International Ltd.

File Information

File Version: 8.15

Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 80
Date: 3/21/2016
Time: 1:24:10 PM
Tool Version: 8.15.5.11777
File Name: Section 5-5 Seismic Final with key SSA for Skyline Ranch.gsz
Directory: P:\FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 5-5 results\Latest Update 3-
19-16
Last Solved Date: 3/21/2016
Last Solved Time: 1:26:45 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant Advanced

Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs (150 psf 11° A-Bed 4-8 ${ }^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': $40{ }^{\circ}$
Phi-Anisotropic Strength Fn.: TQs (150 psf 11° A-Bed 4-8 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 150 psf 11° A-Bed $4-8^{\circ}$
Phi-B: 0°
TQs (100 psf 25° A-Bed 6-7 ${ }^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs ($100 \mathrm{psf} 25^{\circ} \mathrm{A}$-Bed $6-7^{\circ}$)
C-Anisotropic Strength Fn.: ($100 \mathrm{psf} 25^{\circ} \mathrm{A}$-Bed 6-7${ }^{\circ}$)
Phi-B: 0°

Shear Layer

Model: Mohr-Coulomb
Unit Weight: 120 pc
Cohesion': 150 psf
Phi': 11°
Phi-B: 0°
Tmc (150 psf 17° A-Bed 4-8 ${ }^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc ($150 \mathrm{psf} 17^{\circ} \mathrm{A}$-Bed $4-8^{\circ}$)
C-Anisotropic Strength Fn.: 150 psf $17^{\circ} \mathrm{A}$-Bed $4-8^{\circ}$
Phi-B: 0°
TQs (100 psf 25° A-Bed 1-13 ${ }^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°

2-Translational

C-Anisotropic Strength Fn.: (100 psf 25° A-Bed 1-13 $)$
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-200,2,099) \mathrm{ft}$
Right Coordinate: $(687,2,139) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: (132.724, 2,155.9869) ft
Lower Left: (147.2387, 2,075.9597) ft
Lower Right: (218.8751, 2,089.9995) ft
X Increments: 10
Y Increments: 10
Starting Angle: 135°
Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: $(261.4184,2,199.03) \mathrm{ft}$
Lower Left: ($279.2153,2,088.405$) ft Lower Right: (351.5514, 2,099.3522) ft
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: $65{ }^{\circ}$
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

[^19]Curve Fit to Data: 100%

Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: $(4,0.425)$
Data Point: $(8,0.425)$
Data Point: $(8.1,1)$
150 psf 17° A-Bed 4-8
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: $(4,0.75)$
Data Point: $(4,0.75)$
Data Point: ($8.1,1$)
TQs (150 psf $11^{\circ} \mathrm{A}$-Bed $4-8^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: (4, 0.275)
Data Point: ($8,0.275$)
Data Point: (8.1, 1)

150 psf 11° A-Bed 4-8

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.667)$
Data Point: $(8,0.667)$
Data Point: $(8.1,1)$
TQs (100 psf 25° A-Bed 6-7 ${ }^{\circ}$)
Model: Spline Data Point Function

Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: $(6,0.625)$
Data Point: (7, 0.625
Data Point: $(7.1,1)$
(100 psf 25° A-Bed $6-7^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: $(6,0.444$
Data Point: $(6,0.444)$
Data Point: $(7,0.444)$
Data Point: (7.1, 1)
(100 psf 25° A-Bed 1-13 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: (-90, 1)
Data Point: $(0.9,1)$
Data Point: (1, 0.444)
Data Point: $(13,0.444)$
Data Point: $(13.1,1)$
TQs(100 psf 25° A-Bed 1-13 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: $(-90,1)$
Data Point: $(0.9,1)$
Data Point: $(1,0.625)$
Data Point: $(13,0.625)$
Data Point: $(13.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-200	2,099
Point 2	-115	2,101
Point 3	-28	2,101
Point 4	42	2,101
Point 5	78	2,101
Point 6	138	2,137
Point 7	150	2,137
Point 8	210	2,169
Point 9	232	2,169
Point 10	261	2,173
Point 11	290	2,180
Point 12	329	2,189
Point 13	347	2,193
Point 14	412	2,198
Point 15	444	2,194
Point 16	472	2,188
Point 17	502	2,176
Point 18	523	2,171
Point 19	556	2,160
Point 20	572	2,157
Point 21	645	2,145
Point 22	687	2,139
Point 23	685	2,041
Point 24	685	1,800
Point 25	-200	1,801
Point 26	-200	1,994
Point 27	111	2,121
Point 28	687	2,133
Point 29	109	2,120
Point 30	-200	2,033
Point 31	199	2,076
Point 32	687	2,128
Point 33	88	2,101
Point 34	121	2,101
Point 35	272	2,177
Point 36	163	2,122
Point 37	165	2,123
Point 38	687	2,134
Point 39	73	2,101
Point 40	78	2,096

Point 41	111	2,096

Regions

	Material	Points	Area (ft^{2})
$\begin{aligned} & \text { Region } \\ & 1 \end{aligned}$	Tmc (150 psf 17° A-Bed 4$8^{\circ}$)	23,24,25,26	$1.9205 \mathrm{e}+005$
$\begin{aligned} & \text { Region } \\ & 2 \end{aligned}$	TQs (100 psf 25° A-Bed 6$7^{\circ}$)	1,30,31,32,28,36,34,41,40,39,4,3,2	32,105
$\begin{aligned} & \text { Region } \\ & 3 \end{aligned}$	TQs (100 psf 25° A-Bed 1$13^{\circ}$)	22,21,20,19,18,17,16,15,14,13,12,11,35,37,38	21,235
$\begin{aligned} & \text { Region } \\ & 4 \end{aligned}$	TQs (150 psf 11° A-Bed 4$8^{\circ}$)	30,26,23,32,31	55,865
$\begin{aligned} & \text { Region } \\ & 5 \end{aligned}$	Fill	5,33,34,36,37,35,10,9,8,7,6,27,29	3,254.5
$\begin{aligned} & \text { Region } \\ & 6 \end{aligned}$	Shear Layer	36,28,38,37	512
$\begin{aligned} & \text { Region } \\ & 7 \end{aligned}$	Fill	39,40,41,34,33,5	202.5

Current Slip Surface

Slip Surface: 66,176
Fof S: 1.11
Volume: 7,646.2846 ft ${ }^{3}$
Weight: $917,554.15 \mathrm{lbs}$
Resisting Force: 278,153.03 lbs
Activating Force: $250,094.99 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 300 slip surfaces
Exit: $(114.36353,2,122.9932) \mathrm{ft}$
Entry: $(342.59158,2,192.0204) \mathrm{ft}$
Radius: 116.23557 ft
Center: (212.8197, 2,209.2771) ft
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	118.30294	$2,122.9932$	0	280.136	181.92245	200
Slice 2	126.18176	$2,122.9932$	0	840.408	545.76734	200
Slice 3	134.06059	$2,122.9932$	0	$1,400.68$	909.61223	200
Slice 4	141	$2,122.9932$	0	$1,680.816$	$1,091.5347$	200
Slice 5	147	$2,122.9932$	0	$1,680.816$	$1,091.5347$	200

Slice 6	153.7466	$2,122.9932$	0	$1,920.5984$	$1,247.2512$	200
Slice 7	161.2466	$2,122.9932$	0	$2,400.5984$	$1,558.9668$	200
Slice 8	170.39978	$2,122.9932$	0	$2,986.4016$	580.49767	150
Slice 9	180.07461	$2,123.0604$	0	$3,585.5716$	696.96452	150
Slice 10	188.62472	$2,123.1949$	0	$4,115.1923$	799.91236	150
Slice 11	197.17483	$2,123.3293$	0	$4,644.813$	902.86019	150
Slice 12	205.72494	$2,123.4638$	0	$5,174.4337$	$1,005.808$	150
Slice 13	213.66667	$2,123.5886$	0	$5,432.3441$	$1,055.9407$	150
Slice 14	221	$2,123.704$	0	$5,418.5443$	$1,053.2583$	150
Slice 15	228.33333	$2,123.8193$	0	$5,404.7445$	$1,050.5759$	150
Slice 16	235.625	$2,123.9339$	0	$5,450.8589$	$1,059.5396$	150
Slice 17	242.875	$2,124.0479$	0	$5,556.8876$	$1,080.1495$	150
Slice 18	250.125	$2,124.1619$	0	$5,662.9163$	$1,100.7594$	150
Slice 19	257.375	$2,124.2759$	0	$5,768.945$	$1,121.3693$	150
Slice 20	266.5	$2,124.4194$	0	$6,050.9529$	$1,176.1861$	150
Slice 21	276.5	$2,124.5767$	0	$6,361.2322$	$1,236.4983$	150
Slice 22	285.5	$2,124.7182$	0	$6,523.8037$	$1,268.099$	150
Slice 23	292.78853	$2,124.8328$	0	$6,676.8515$	$1,297.8485$	150
Slice 24	295.88798	$2,125.3207$	0	$5,229.4801$	$1,016.508$	150
Slice 25	300.29903	$2,131.6203$	0	$2,795.7163$	$2,345.8846$	225
Slice 26	308.49931	$2,143.3315$	0	$2,228.0047$	$1,869.5179$	225
Slice 27	316.69958	$2,155.0428$	0	$1,660.2931$	$1,393.1513$	225
Slice 28	324.89986	$2,166.754$	0	$1,092.5815$	916.78469	225
Slice 29	332.39789	$2,177.4623$	0	571.80756	479.80351	225

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/21/2016

2 - Translational
Page 9 of 9
\square

Section 5-5 Static Temporary Final without key SSA for Skyline Ranch.gsz

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International Ltd.

File Information

File Version: 8.15

Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 84
Date: 3/21/2016
Time: 1:43:45 PM
Tool Version: 8.15.5.11777
File Name: Section 5-5 Static Temporary Final without key SSA for Skyline Ranch.gsz
Directory: P:\FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 5-5 results\Latest Update 3-
19-16
Last Solved Date: 3/21/2016
Last Solved Time: 1:44:16 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant Advanced

Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs (150 psf 11° A-Bed 4-8 ${ }^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': $40{ }^{\circ}$
Phi-Anisotropic Strength Fn.: TQs (150 psf 11° A-Bed 4-8 ${ }^{\circ}$)
C-Anisotropic Strength Fn.: 150 psf 11° A-Bed $4-8^{\circ}$
Phi-B: 0°
TQs (100 psf 25° A-Bed 6-7 ${ }^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs ($100 \mathrm{psf} 25^{\circ} \mathrm{A}$-Bed $6-7^{\circ}$)
C-Anisotropic Strength Fn.: ($100 \mathrm{psf} 25^{\circ} \mathrm{A}$-Bed 6-7${ }^{\circ}$)
Phi-B: 0°

Shear Layer

Model: Mohr-Coulomb
Unit Weight: 120 pc
Cohesion': 150 psf
Phi': 11°
Phi-B: 0°
Tmc (150 psf 17° A-Bed 4-8 ${ }^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc ($150 \mathrm{psf} 17^{\circ} \mathrm{A}$-Bed $4-8^{\circ}$)
C-Anisotropic Strength Fn.: 150 psf $17^{\circ} \mathrm{A}$-Bed $4-8^{\circ}$
Phi-B: 0°
TQs (100 psf 25° A-Bed 1-13 ${ }^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°

2 - Translational

C-Anisotropic Strength Fn.: (100 psf 25° A-Bed $1-13^{\circ}$)
Phi-B: 0°

Slip Surface Limits

Left Coordinate: (-200, 2,099) ft
Right Coordinate: $(687,2,139) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: (132.724, 2,155.9869) ft
Lower Left: (147.2387, 2,075.9597) ft
Lower Right: (218.8751, 2,089.9995) ft
X Increments: 10
Y Increments: 10
Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: (261.4184, 2,199.03) ft
Lower Left: (279.2153, 2,088.405) ft
Lower Right: (351.5514, 2,099.3522) ft
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc (150 psf 17° A-Bed $4-8^{\circ}$)
 Model: Spline Data Point Function

Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.425)$
Data Point: $(8,0.425)$

Data Point: $(8.1,1)$
150 psf 17° A-Bed 4-8
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: $(4,0.75)$
Data Point: (8, 0.75)
Data Point: (8.1, 1)
TQs (150 psf 11° A-Bed 4-8ㅇ)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.275)$
Data Point: $(8,0.275)$
Data Point: $(8.1,1)$
150 psf 11° A-Bed 4-8
Model: Spline Data Point Function
function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \% Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.667)$
Data Point: ($8,0.667$
Data Point: (8.1, 1)
TQs (100 psf 25° A-Bed 6-7 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%
-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: (-90, 1 Data Point: (5.9, 1

2-Translational

Data Point: ($6,0.625$)
Data Point: $(7,0.625)$
Data Point: $(7.1,1)$
(100 psf 25° A-Bed 6-7 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: $(6,0.444)$
Data Point: $(7,0.444)$
Data Point: (7.1, 1)
(100 psf 25° A-Bed $1-13^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(0.9,1)$
Data Point: $(1,0.444)$
Data Point: $(13,0.444)$
Data Point: (13.1, 1)
TQs(100 psf 25° A-Bed $1-13^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: (-90, 1)
Data Point: $(0.9,1)$
Data Point: $(1,0.625)$
Data Point: $(13,0.625)$
Data Point: $(13.1,1)$

Points

	$X(\mathrm{ft})$	$Y(\mathrm{ft})$
Point 1	-200	2,099
Point 2	-115	2,101
Point 3	-28	2,101

2 - Translational

Point 4	42	2,101
Point 5	290	2,180
Point 6	329	2,189
Point 7	347	2,193
Point 8	412	2,198
Point 9	444	2,194
Point 10	472	2,188
Point 11	502	2,176
Point 12	523	2,171
Point 13	556	2,160
Point 14	572	2,157
Point 15	645	2,145
Point 16	687	2,139
Point 17	685	2,041
Point 18	685	1,800
Point 19	-200	1,801
Point 20	-200	1,994
Point 21	687	2,133
Point 22	-200	2,033
Point 23	199	2,076
Point 24	687	2,128
Point 25	121	2,101
Point 26	272	2,177
Point 27	163	2,122
Point 28	165	2,123
Point 29	687	2,134
Point 30	73	2,101
Point 31	78	2,096
Point 32	111	2,096

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	$\operatorname{Tmc}\left(150 \mathrm{psf} 17^{\circ} \mathrm{A}\right.$-Bed $\left.4-8^{\circ}\right)$	$17,18,19,20$	$1.9205 \mathrm{e}+005$
Region 2	TQs $\left(100 \mathrm{psf} 25^{\circ} \mathrm{A}\right.$-Bed $\left.6-7^{\circ}\right)$	$1,22,23,24,21,27,25,32,31,30,4,3,2$	32,105
Region 3	TQs $\left(100 \mathrm{psf} \mathrm{25} 5^{\circ} \mathrm{A}\right.$-Bed $\left.1-13^{\circ}\right)$	$16,15,14,13,12,11,10,9,8,7,6,5,26,28,29$	21,235
Region 4	TQs $\left(150 \mathrm{psf} 11^{\circ} \mathrm{A}\right.$-Bed $\left.4-8^{\circ}\right)$	$22,20,17,24,23$	55,865
Region 5	Shear Layer	$27,21,29,28$	512

Current Slip Surface

Slip Surface: 66,176
F of S: 1.51
Volume: $5,425.5653 \mathrm{ft}^{3}$

Weight: $651,067.84 \mathrm{lbs}$
Resisting Force: $194,122.75 \mathrm{lbs}$
Activating Force: $128,297.82 \mathrm{lbs}$
Activating force: $128,297.82 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 300 slip surfaces
Exit: (164.9864, 2,122.9932) ft
Entry: $(342.59158,2,192.0204) \mathrm{ft}$
Radius: 102.6563 ft
Center: $(233.66818,2,209.2771) \mathrm{ft}$

Slip Slices
$\mathrm{X}(\mathrm{ft})$ Y (ft) PWP (psf) Base Normal Stress (psf) Frictional Strength (psf) Cohesive Strength (psf) Slice 1 164.9932 $2,122.9932$ 0 0.408 0.079307166 150 Slice 2 167.69989 $2,122.9932$ 0 164.32321 31.941196 150 Slice 3 173.09966 $2,122.9932$ 0 491.33762 95.506358 150 Slice 4 178.80581 $2,123.0405$ 0 827.99585 160.94609 150 Slice 5 184.81834 $2,123.135$ 0 $1,180.0611$ 229.38063 150 Slice 6 190.83087 $2,123.2296$ 0 $1,532.1263$ 297.81518 150 Slice 7 196.8434 $2,123.3241$ 0 $1,884.1915$ 366.24972 150 Slice 8 202.85593 $2,123.4187$ 0 $2,236.2567$ 434.68426 150 Slice 9 208.86845 $2,123.5132$ 0 $2,588.3219$ 503.1188 150 Slice 10 214.88098 $2,123.6077$ 0 $2,940.3871$ 571.55335 150 Slice 11 220.89351 $2,123.7023$ 0 $3,292.4523$ 639.98789 150 Slice 12 226.90604 $2,123.7968$ 0 $3,644.5175$ 708.42243 150 Slice 13 232.91857 $2,123.8914$ 0 $3,996.5827$ 776.85697 150 Slice 14 238.9311 $2,123.9859$ 0 $4,348.6479$ 845.29152 150 Slice 15 244.94362 $2,124.0805$ 0 $4,700.7131$ 913.72606 150 Slice 16 250.95615 $2,124.175$ 0 $5,052.7783$ 982.1606 150 Slice 17 256.96868 $2,124.2696$ 0 $5,404.8435$ $1,050.5951$ 150 Slice 262.98121 $2,124.3641$ 0 $5,756.9087$ $1,119.0297$ 150$\|$

18						
Slice 19	268.99374	$2,124.4586$	0	$6,108.9739$	$1,187.4642$	150
Slice 20	275	$2,124.5531$	0	$6,339.2358$	$1,232.2226$	150
Slice 21	281	$2,124.6474$	0	$6,447.6945$	$1,253.3049$	150
Slice 22	287	$2,124.7418$	0	$6,556.1533$	$1,274.3871$	150
Slice 23	292.78853	$2,124.8328$	0	$6,682.1963$	$1,298.8874$	150
Slice 24	295.88798	$2,125.3207$	0	$5,560.5139$	$1,080.8544$	150
Slice 25	298.93232	$2,129.6685$	0	$3,386.7557$	$2,841.8255$	225
Slice 26	304.39917	$2,137.4759$	0	$2,948.7961$	$2,474.3338$	225
Slice 27	309.86602	$2,145.2834$	0	$2,510.8366$	$2,106.8421$	225
Slice 28	315.33287	$2,153.0909$	0	$2,072.877$	$1,739.3504$	225
Slice 29	320.79972	$2,160.8984$	0	$1,634.9175$	$1,371.8587$	225
Slice 30	326.26657	$2,168.7058$	0	$1,196.958$	$1,004.367$	225
Slice 31	332.39789	$2,177.4623$	0	703.82351	590.57804	225
Slice 32	339.19368	$2,187.1677$	0	155.51415	130.49187	225

1 - Circular Mode of Failure

Repotenatedura

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 102
Date: 3/21/2016
Time: 3:13:19 PM
Tool Version: 8.15.1.11236
File Name: Section 7-7 Static Final with keyway SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 7-7 results\updated 3-21-2016\}
Last Solved Date: 3/21/2016
Last Solved Time: 3:13:34 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Lef
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs150psf-17 ${ }^{\circ}$ bedding $4-8^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs150psf-17º bedding 4-8
C-Anisotropic Strength Fn.: 150 psf- 17° bedding 4-8
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0
TQs150psf-11 ${ }^{\circ}$ bedding $4-8^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs150psf-11 ${ }^{\circ}$ bedding $4-8^{\circ}$
C-Anisotropic Strength Fn .: 150 psf- 11° bedding $4-8^{\circ}$
Phi-B: 0°

Slip Surface Entry and Exit
Left Projection: Range
Left-Zone Left Coordinate: $(180,1,879) \mathrm{ft}$
Left-Zone Right Coordinate: $(270,1,908.4375) \mathrm{ft}$
Left-Zone Increment: 50
Right Projection: Range
Right-Zone Left Coordinate: (280, 1,909.5714) ft
Right-Zone Right Coordinate: ($460,1,951.3889$) ft
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

1-Circular Mode of Failure

Left Coordinate: $(-177.5082,1,801) \mathrm{ft}$
Right Coordinate: $(550,1,953) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs150psf- 17° bedding 4-8 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.425)$
Data Point: $(8,0.425)$
Data Point: $(8.1,1)$
150 psf- -17° bedding $4-8^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.667)$
Data Point: $(8,0.667)$
Data Point: $(8.1,1)$
TQs150psf-11 ${ }^{\circ}$ bedding 4-8
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.275)$
Data Point: $(8,0.275)$
Data Point: $(8.1,1)$

150 psf- -11° bedding $4-8^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
segment Curvature: 0\%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: $(4,0.667)$
Data Point: $(8,0.667)$
Data Point: $(8.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-177	1,890
Point 2	-151	1,906
Point 3	-37	1,898
Point 4	56	1,894
Point 5	76	1,891
Point 6	101	1,890
Point 7	123	1,887
Point 8	157	1,879
Point 9	181	1,879
Point 10	207	1,880
Point 11	263	1,908
Point 12	279	1,909
Point 13	349	1,949
Point 14	371	1,950
Point 15	406	1,950
Point 16	446	1,951
Point 17	482	1,952
Point 18	506	1,952
Point 19	550	1,953
Point 20	550	1,910
Point 21	550	1,857
Point 22	550	1,833
Point 23	550	1,801
Point 24	433	1,801
Point 25	271	1,801
Point 26	-177.5082	1,801
Point 27	-200	$1,800.4977$
Point 28	217	1,870
Point 29	247	1,870

Point 30	-85	1,801
Point 31	550	1,893

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs150psf-17 bedding 4-8	$1,26,30,31,20,19,18,17,16,15,29,28,10,9,8,7,6,5,4,3,2$	48,206
Region 2	Fill	$10,28,29,15,14,13,12,11$	4,229
Region 3	TQs150psf-11 bedding 4-8		

Current Slip Surface

Slip Surface: 131,245
F of S: 1.82
Volume: $841.81909 \mathrm{ft}^{3}$
Weight: 101,018.29 lbs
Resisting Moment: 7,722,657.4 lbs-ft
Activating Moment: $4,236,948.8$ lbs-lt
F of S Rank (Analysis): 1 of 132,651 slip surfaces
Fof S Rank (Query): 1 of 20 slip surface
Exit: ($270,1,908.4375$) ft
Entry: (357.15601, 1,949.3707) ft
Radius: 95.097239 ft
Center: (278.71534, 2,003.1345) ft
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	271.5	$1,908.3233$	0	34.210662	22.216663	200
Slice 2	274.5	$1,908.1426$	0	75.182007	48.823766	200
Slice 3	277.5	$1,908.0569$	0	103.79506	67.405298	200
Slice 4	280.45833	$1,908.0645$	0	208.89492	135.65794	200
Slice 5	283.375	$1,908.1627$	0	388.31985	252.17786	200
Slice 6	286.29167	$1,908.3509$	0	553.40693	359.38666	200
Slice 7	289.20833	$1,908.6294$	0	704.4939	457.50369	200

Slice 8	292.125	$1,908.999$	0	841.86	546.71028	200
Slice 9	295.04167	$1,909.4609$	0	965.7303	627.15259	200
Slice 10	297.95833	$1,910.0165$	0	$1,076.279$	698.94376	200
Slice 11	300.875	$1,910.6673$	0	$1,173.6319$	762.16549	200
Slice 12	303.79167	$1,911.4155$	0	$1,257.8681$	816.86907	200
Slice 13	306.70833	$1,912.2635$	0	$1,329.0204$	863.07595	200
Slice 14	309.625	$1,913.214$	0	$1,387.0762$	900.77782	200
Slice 15	312.54167	$1,914.2704$	0	$1,431.976$	929.9361	200
Slice 16	315.45833	$1,915.4365$	0	$1,463.6126$	950.48111	200
Slice 17	318.375	$1,916.7168$	0	$1,481.8282$	962.31047	200
Slice 18	321.29167	$1,918.1164$	0	$1,486.4117$	965.28702	200
Slice 19	324.20833	$1,919.6413$	0	$1,477.0939$	959.23597	200
Slice 20	327.125	$1,921.2986$	0	$1,453.542$	943.9412	200
Slice 21	330.04167	$1,923.0965$	0	$1,415.3524$	919.14058	200
Slice 22	332.95833	$1,925.0446$	0	$1,362.0415$	884.52007	200
Slice 23	335.875	$1,927.1547$	0	$1,293.0342$	839.70626	200
Slice 24	338.79167	$1,929.4407$	0	$1,207.6502$	784.25719	200
Slice 25	341.70833	$1,931.9195$	0	$1,105.0854$	717.65082	200
Slice 26	344.625	$1,934.6122$	0	984.3908	639.27086	200
Slice 27	347.54167	$1,937.5453$	0	844.44603	548.38966	200
Slice 28	350.35933	$1,940.6338$	0	629.24686	408.63769	200
Slice 29	353.078	$1,943.8984$	0	343.5332	223.09307	200
Slice 30	355.79667	$1,947.4878$	0	44.75417	29.063698	200
	00					

1 - Circular Mode of Failure

Renotenader

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 99
Date: 3/21/2016
Time: 3:03:48 PM
Tool Version: 8.15.1.11236
File Name: Section 7-7 Seismic Final with keyway SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 7-7 results\updated 3-21-2016\}
Last Solved Date: 3/21/2016
Last Solved Time: 3:08:03 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Lef
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs150psf-17 ${ }^{\circ}$ bedding $4-8^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs150psf-17º bedding 4-8
C-Anisotropic Strength Fn.: 150 psf- 17° bedding $4-8$
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
TQs150psf-11 ${ }^{\circ}$ bedding $4-8^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs150psf-11 ${ }^{\circ}$ bedding $4-8^{\circ}$
C-Anisotropic Strength Fn .: 150 psf- 11° bedding $4-8^{\circ}$
Phi-B: 0°

Slip Surface Entry and Exit
Left Projection: Range
Left-Zone Left Coordinate: $(180,1,879) \mathrm{ft}$
Left-Zone Right Coordinate: $(270,1,908.4375) \mathrm{ft}$
Left-Zone Increment: 50
Right Projection: Range
Right-Zone Left Coordinate: (280, 1,909.5714) ft
Right-Zone Right Coordinate: ($460,1,951.3889$) ft
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

1 - Circular Mode of Failure

Left Coordinate: (-177.5082, 1,801) ft
Right Coordinate: $(550,1,953) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs150psf- 17° bedding 4-8 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.425)$
Data Point: $(8,0.425)$
Data Point: $(8.1,1)$
150 psf- -17° bedding $4-8^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.667)$
Data Point: $(8,0.667)$
Data Point: $(8.1,1)$
TQs150psf-11 ${ }^{\circ}$ bedding 4-8
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.275)$
Data Point: ($8,0.275$)
Data Point: $(8.1,1)$
$150 \mathrm{psf}-11^{\circ}$ bedding $4-8^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
segment Curvature: 0\%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: $(4,0.667)$
Data Point: $(8,0.667)$
Data Point: $(8.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-177	1,890
Point 2	-151	1,906
Point 3	-37	1,898
Point 4	56	1,894
Point 5	76	1,891
Point 6	101	1,890
Point 7	123	1,887
Point 8	157	1,879
Point 9	181	1,879
Point 10	207	1,880
Point 11	263	1,908
Point 12	279	1,909
Point 13	349	1,949
Point 14	371	1,950
Point 15	406	1,950
Point 16	446	1,951
Point 17	482	1,952
Point 18	506	1,952
Point 19	550	1,953
Point 20	550	1,910
Point 21	550	1,857
Point 22	550	1,833
Point 23	550	1,801
Point 24	433	1,801
Point 25	271	1,801
Point 26	-177.5082	1,801
Point 27	-200	$1,800.4977$
Point 28	217	1,870
Point 29	247	1,870

Point 30	-85	1,801
Point 31	550	1,893

Regions
Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs150psf-17 bedding 4-8	$1,26,30,31,20,19,18,17,16,15,29,28,10,9,8,7,6,5,4,3,2$	48,206
Region 2	Fill	$10,28,29,15,14,13,12,11$	4,229
Region 3	TQs150psf-11 bedding 4-8	$30,25,24,23,22,21,31$	29,210

Current Slip Surface

Slip Surface: 37,755
F of S: 1.33
Volume: $2,445.3315 \mathrm{ft}^{3}$
Weight: 293,439.78 lbs
Resisting Moment: 47,114,303 lbs-ft
Activating Moment: $35,344,421 \mathrm{lbs}-\mathrm{ft}$
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 20 slip surfaces
Exit: (207.03645, 1,880.0182) ft
Entry: (368.5749, 1,949.8898) ft
Radius: 230.49199 ft
Center: $(203.23372,2,110.4788) \mathrm{ft}$
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	209.83463	$1,880.0984$	0	151.8663	98.623131	200
Slice 2	215.43099	$1,880.3269$	0	447.1842	290.40481	200
Slice 3	221.02734	$1,880.6918$	0	719.93456	467.53097	200
Slice 4	226.62369	$1,881.194$	0	970.74694	630.41043	200
Slice 5	232.22005	$1,881.8342$	0	$1,200.1804$	779.40625	200
Slice 6	237.8164	$1,882.6136$	0	$1,408.7294$	914.83954	200
Slice 7	243.41276	$1,883.5336$	0	$1,596.829$	$1,036.9929$	200

Slice 8	249.00911	$1,884.5961$	0	$1,764.8594$	$1,146.1131$	200
Slice 9	254.60547	$1,885.8029$	0	$1,913.1492$	$1,242.4136$	200
Slice 10	260.20182	$1,887.1565$	0	$2,041.9789$	$1,326.0766$	200
Slice 11	265.66667	$1,888.6208$	0	$2,026.2575$	$1,315.867$	200
Slice 12	271	$1,890.1915$	0	$1,871.2051$	$1,215.1748$	200
Slice 13	276.33333	$1,891.9037$	0	$1,704.4537$	$1,106.8852$	200
Slice 14	281.69231	$1,893.7703$	0	$1,665.0158$	$1,081.2739$	200
Slice 15	287.07692	$1,895.7965$	0	$1,748.0189$	$1,135.1767$	200
Slice 16	292.46154	$1,897.9784$	0	$1,812.8562$	$1,177.2826$	200
Slice 17	297.84615	$1,900.321$	0	$1,859.5331$	$1,207.5949$	200
Slice 18	303.23077	$1,902.8296$	0	$1,888.0188$	$1,226.0937$	200
Slice 19	308.61538	$1,905.5103$	0	$1,898.2453$	$1,232.7349$	200
Slice 20	314	$1,908.3701$	0	$1,890.1074$	$1,227.4501$	200
Slice 21	319.38462	$1,911.4165$	0	$1,863.4615$	$1,210.146$	200
Slice 22	324.76923	$1,914.6584$	0	$1,818.1243$	$1,180.7038$	200
Slice 23	330.15385	$1,918.1057$	0	$1,753.8722$	$1,138.978$	200
Slice 24	335.53846	$1,921.7695$	0	$1,670.4392$	$1,084.7959$	200
Slice 25	340.92308	$1,925.6629$	0	$1,567.5158$	$1,017.9567$	200
Slice 26	346.30769	$1,929.8007$	0	$1,444.7477$	938.23016	200
Slice 27	351.44686	$1,933.9874$	0	$1,199.5612$	779.00412	200
Slice 28	356.34059	$1,938.217$	0	838.67409	544.64132	200
Slice 29	361.23432	$1,942.696$	0	468.0426	303.95042	200
Slice 30	366.12804	$1,947.445$	0	87.825777	57.034726	200
	200					

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 10
Date: 3/21/2016
Time: 3:10:42 PM
Tool Version: 8.15.1.11236
File Name: Section 7-7 Static Final with keyway SSA for Skyline Ranch.gsz
Directory: G:|SLOPE RESULTS\Section 7-7 results\updated 3-21-2016 \}
Last Solved Date: 3/21/2016
Last Solved Time: 3:11:08 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs150psf- 17° bedding 4-8 ${ }^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs150psf-17 ${ }^{\circ}$ bedding 4-8
C-Anisotropic Strength Fn.: 150 psf- 17° bedding $4-8^{\circ}$
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
TQs150psf-11 ${ }^{\circ}$ bedding 4-8
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs150psf-11 ${ }^{\circ}$ bedding 4-8 C-Anisotropic Strength Fn .: 150 psf-11 ${ }^{\circ}$ bedding $4-8^{\circ}$
Phi-B: 0°

Slip Surface Limits
Left Coordinate: ($-177.5082,1,801$) ft
Right Coordinate: $(550,1,953) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: (187.968, 1,876.0315) ft
Lower Left: (197.2912, 1,806.9576) ft
Lower Right: (269.9924, 1,838.286) ft
X Increments: 10
Y Increments: 10

2-Translational

Starting Angle: 135°
Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: (333.3485, 1,910.6689) ft
Lower Left: $(339.0092,1,860.8593) \mathrm{ft}$
Lower Right: (415.9794, 1,896.8331) ft
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs150psf- 17° bedding 4-8웅
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.425)$
Data Point: $(8,0.425)$
Data Point: $(8.1,1)$
150 psf- 17° bedding $4-8^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.667)$
Data Point: $(8,0.667)$
Data Point: $(8.1,1)$
TQs150psf- 11° bedding 4-8 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.275)$
Data Point: ($8,0.275$)
Data Point: $(8.1,1)$
$150 \mathrm{psf}-11^{\circ}$ bedding $4-8^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: $(4,0.667)$
Data Point: $(8,0.667)$
Data Point: (8.1, 1)

Points

	$X(\mathrm{ft})$	$Y(\mathrm{ft})$
Point 1	-177	1,890
Point 2	-151	1,906
Point 3	-37	1,898
Point 4	56	1,894
Point 5	76	1,891
Point 6	101	1,890
Point 7	123	1,887
Point 8	157	1,879
Point 9	181	1,879
Point 10	207	1,880
Point 11	263	1,908
Point 12	279	1,909
Point 13	349	1,949
Point 14	371	1,950
Point 15	406	1,950
Point 16	446	1,951
Point 17	482	1,952
Point 18	506	1,952
Point 19	550	1,953
Point 20	550	1,910
Point 21	550	1,857

2-Translational

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs150psf-17 bedding 4-8	$1,26,30,31,20,19,18,17,16,15,29,28,10,9,8,7,6,5,4,3,2$	48,206
Region 2	Fill	$10,28,29,15,14,13,12,11$	4,229
Region 3	TQs150psf-11 bedding 4-8	$30,25,24,23,22,21,31$	29,210

Current Slip Surface

Slip Surface: 87,617
Fof $\mathrm{S}: 1.62$
Volume: 6,644.417 ft^{3}
Weight: 797,330.04 lbs
Resisting Force: $332,180.03 \mathrm{lbs}$
Activating Force: $205,264.76 \mathrm{lbs}$
Fof S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 20 slip surfaces
Exit: $(178.07102,1,879) \mathrm{ft}$
Entry: $(385.21109,1,950) \mathrm{ft}$
Radius: 114.02385 ft
Center: $(263.38891,1,967.75) \mathrm{ft}$

Slip Slices

	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	179.53551	$1,878.3934$	0	166.26136	139.50985	225
Slice 2	184.25	$1,876.4406$	0	483.9536	406.08528	225
Slice 3	190.75	$1,873.7482$	0	933.83861	783.58363	225
Slice 4	197.25	$1,871.0558$	0	$1,383.7236$	$1,161.082$	225
Slice 5	203.75	$1,868.3634$	0	$1,833.6086$	$1,538.5803$	225
Slice 6	209.78766	$1,865.8625$	0	$2,448.214$	$2,054.2955$	225
Slice 7	214.78766	$1,864.9943$	0	$2,201.9664$	673.20867	150.075
Slice 8	220.75	$1,865.7662$	0	$2,460.7383$	752.32321	150.075
Slice 9	228.25	$1,866.7371$	0	$2,786.2464$	851.84102	150.075
Slice 10	235.75	$1,867.7081$	0	$3,111.7545$	951.35883	150.075
Slice 11	243.25	$1,868.6791$	0	$3,437.2626$	$1,050.8766$	150.075
Slice 12	251	$1,869.6824$	0	$3,773.621$	$1,153.7117$	150.075
Slice 13	259	$1,870.7181$	0	$4,120.8296$	$1,259.864$	150.075
Slice 14	267	$1,871.7538$	0	$4,263.0607$	$1,303.3485$	150.075
Slice 15	275	$1,872.7895$	0	$4,200.3143$	$1,284.1649$	150.075
Slice 16	282.60906	$1,873.7746$	0	$4,355.773$	$1,331.6934$	150.075
Slice 17	289.82717	$1,874.7091$	0	$4,729.4368$	$1,445.9339$	150.075
Slice 18	297.04529	$1,875.6435$	0	$5,103.1006$	$1,560.1744$	150.075
Slice 19	304.2634	$1,876.578$	0	$5,476.7645$	$1,674.4149$	150.075
Slice 20	311.48152	$1,877.5125$	0	$5,850.4283$	$1,788.6554$	150.075
Slice 21	318.69963	$1,878.447$	0	$6,224.0921$	$1,902.8959$	150.075
Slice 22	325.91775	$1,879.3814$	0	$6,597.756$	$2,017.1364$	150.075
Slice 23	333.13586	$1,880.3159$	0	$6,971.4198$	$2,131.3769$	150.075

file:///G:/SLOPE\%20RESULTS/Section\%207-7\%20results/updated\%203-21-2016/section... 3/21/2016

2 - Translational
Page 7 of 7

Slice 24	339.80869	$1,885.1587$	0	$3,922.1401$	$3,291.0663$	225
Slice 25	345.93623	$1,893.9097$	0	$3,560.4843$	$2,987.601$	225
Slice 26	352.66667	$1,903.5218$	0	$3,030.381$	$2,542.7916$	225
Slice 27	360	$1,913.9948$	0	$2,331.8302$	$1,956.6378$	225
Slice 28	367.33333	$1,924.4679$	0	$1,633.2794$	$1,370.4841$	225
Slice 29	372.4516	$1,931.7776$	0	$1,141.1832$	957.5664	225
Slice 30	376.73017	$1,937.888$	0	810.99373	526.66549	200
Slice 31	382.38412	$1,945.9627$	0	195.44588	126.92404	200

file:///G:/SLOPE\%20RESULTS/Section\%207-7\%20results/updated\%203-21-2016/section... 3/21/2016

2 - Translational

Report generated using GeoStudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 99
Date: 3/21/2016
Time: 3:03:48 PM
Tool Version: 8.15.1.11236
File Name: Section 7-7 Seismic Final with keyway SSA for Skyline Ranch.gsz
Directory: G:|SLOPE RESULTS\Section 7-7 results\updated 3-21-2016 \}
Last Solved Date: 3/21/2016
Last Solved Time: 3:04:43 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs150psf- 17° bedding 4-8 ${ }^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs150psf-17 ${ }^{\circ}$ bedding 4-8
C-Anisotropic Strength Fn.: 150 psf- 17° bedding $4-8^{\circ}$
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
TQs150psf-11 ${ }^{\circ}$ bedding 4-8
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs150psf-11 ${ }^{\circ}$ bedding 4-8 C-Anisotropic Strength Fn.: 150 psf-11 ${ }^{\circ}$ bedding $4-8^{\circ}$
Phi-B: 0°

Slip Surface Limits
Left Coordinate: ($-177.5082,1,801$) ft
Right Coordinate: $(550,1,953) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: ($187.968,1,876.0315$) ft
Lower Left: (197.2912, 1,806.9576) ft
Lower Right: (269.9924, 1,838.286) ft
X Increments: 10
Y Increments: 10

2-Translational

Starting Angle: 135°
Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: (333.3485, 1,910.6689) ft
Lower Left: $(339.0092,1,860.8593) \mathrm{ft}$
Lower Right: (415.9794, 1,896.8331) ft
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs150psf-17 ${ }^{\circ}$ bedding 4-8 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.425)$
Data Point: $(8,0.425)$
Data Point: $(8.1,1)$
150 psf- 17° bedding $4-8^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.667)$
Data Point: $(8,0.667)$
Data Point: $(8.1,1)$
TQs150psf- 11° bedding 4-8 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.275)$
Data Point: ($8,0.275$)
Data Point: $(8.1,1)$
$150 \mathrm{psf}-11^{\circ}$ bedding $4-8^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: $(4,0.667)$
Data Point: $(8,0.667)$
Data Point: (8.1, 1)

Points

	$X(\mathrm{ft})$	$Y(\mathrm{ft})$
Point 1	-177	1,890
Point 2	-151	1,906
Point 3	-37	1,898
Point 4	56	1,894
Point 5	76	1,891
Point 6	101	1,890
Point 7	123	1,887
Point 8	157	1,879
Point 9	181	1,879
Point 10	207	1,880
Point 11	263	1,908
Point 12	279	1,909
Point 13	349	1,949
Point 14	371	1,950
Point 15	406	1,950
Point 16	446	1,951
Point 17	482	1,952
Point 18	506	1,952
Point 19	550	1,953
Point 20	550	1,910
Point 21	550	1,857

2-Translational

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs150psf-17 bedding 4-8	$1,26,30,31,20,19,18,17,16,15,29,28,10,9,8,7,6,5,4,3,2$	48,206
Region 2	Fill	$10,28,29,15,14,13,12,11$	4,229
Region 3	TQs150psf-11 bedding 4-8	$30,25,24,23,22,21,31$	29,210

Current Slip Surface

Slip Surface: 87,617
Fof S: 1.10
Volume: $6,644.417 \mathrm{ft}^{3}$
Weight: 797,330.04 lbs
Resisting Force: $320,432.74 \mathrm{lbs}$
Activating Force: 292,595.3 lbs
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 20 slip surfaces
Exit: $(178.07102,1,879) \mathrm{ft}$
Entry: $(385.21109,1,950) \mathrm{ft}$
Radius: 114.02385 ft
Center: (263.38891, 1,967.75) ft

Slip Slices

	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	179.53551	$1,878.3934$	0	230.20495	193.16489	225
Slice 2	184.25	$1,876.4406$	0	594.66078	498.97964	225
Slice 3	190.75	$1,873.7482$	0	$1,110.7679$	932.04491	225
Slice 4	197.25	$1,871.0558$	0	$1,626.875$	$1,365.1102$	225
Slice 5	203.75	$1,868.3634$	0	$2,142.982$	$1,798.1754$	225
Slice 6	209.78766	$1,865.8625$	0	$2,848.056$	$2,389.8027$	225
Slice 7	214.78766	$1,864.9943$	0	$2,172.1571$	664.09509	150.075
Slice 8	220.75	$1,865.7662$	0	$2,428.0646$	742.33384	150.075
Slice 9	228.25	$1,866.7371$	0	$2,749.9694$	840.75001	150.075
Slice 10	235.75	$1,867.7081$	0	$3,071.8741$	939.16617	150.075
Slice 11	243.25	$1,868.6791$	0	$3,393.7789$	$1,037.5823$	150.075
Slice 12	251	$1,869.6824$	0	$3,726.4139$	$1,139.279$	150.075
Slice 13	259	$1,870.7181$	0	$4,069.779$	$1,244.2563$	150.075
Slice 14	267	$1,871.7538$	0	$4,210.4356$	$1,287.2593$	150.075
Slice 15	275	$1,872.7895$	0	$4,148.3838$	$1,268.2882$	150.075
Slice 16	282.60906	$1,873.7746$	0	$4,302.1216$	$1,315.2906$	150.075
Slice 17	289.82717	$1,874.7091$	0	$4,671.649$	$1,428.2664$	150.075
Slice 18	297.04529	$1,875.6435$	0	$5,041.1764$	$1,541.2423$	150.075
Slice 19	304.2634	$1,876.578$	0	$5,410.7039$	$1,654.2182$	150.075
Slice 20	311.48152	$1,877.5125$	0	$5,780.2313$	$1,767.1941$	150.075
Slice 21	318.69963	$1,878.447$	0	$6,149.7588$	$1,880.1699$	150.075
Slice 22	325.91775	$1,879.3814$	0	$6,519.2862$	$1,993.1458$	150.075
Slice 23	333.13586	$1,880.3159$	0	$6,888.8137$	$2,106.1217$	150.075

file:///G:/SLOPE\%20RESULTS/Section\%207-7\%20results/updated\%203-21-2016/section... 3/21/2016

2 - Translational

Slice 24	339.80869	$1,885.1587$	0	$3,225.6989$	$2,706.6828$	225
Slice 25	345.93623	$1,893.9097$	0	$2,924.1517$	$2,453.6546$	225
Slice 26	352.66667	$1,903.5218$	0	$2,482.1536$	$2,082.7741$	225
Slice 27	360	$1,913.9948$	0	$1,899.7045$	$1,594.0414$	225
Slice 28	367.33333	$1,924.4679$	0	$1,317.2555$	$1,105.3086$	225
Slice 29	372.4516	$1,931.7776$	0	906.9476	761.0194	225
Slice 30	376.73017	$1,937.888$	0	647.83123	420.70652	200
Slice 31	382.38412	$1,945.9627$	0	122.03969	79.253504	200

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 10
Date: 3/21/2016
Time: 3:16:19 PM
Tool Version: 8.15.1.11236
File Name: Section 7-7 Static Temporary Final without keyway SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 7-7 results\updated 3-21-2016\}
Last Solved Date: 3/21/2016
Last Solved Time: 3:17:08 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs150psf- 17° bedding 4-8 ${ }^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs150psf-17 ${ }^{\circ}$ bedding 4-8
C-Anisotropic Strength Fn.: 150 psf- 17° bedding $4-8^{\circ}$
Phi-B: 0°
TQs150psf-11 ${ }^{\circ}$ bedding 4-8 ${ }^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs150psf-11 ${ }^{\circ}$ bedding 4-8
C-Anisotropic Strength Fn.: 150 psf-11 ${ }^{\circ}$ bedding $4-8$
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-177.5082,1,801) \mathrm{ft}$
Right Coordinate: (550, 1,953) ft

Slip Surface Block

Left Grid
Upper Left: $(187.968,1,876.0315) \mathrm{ft}$
Lower Left: (197.2912, 1,806.9576) ft
Lower Right: (269.9924, 1,838.286) ft
X Increments: 10
Increments: 10
Starting Angle: 135
Ending Angle: 180°
Angle Increments:
Right Grid
Upper Left: (333.3485, 1,910.6689) ft
Lower Left: (339.0092, 1,860.8593) ft
Lower Right: (415.9794, 1,896.8331) ft

2-Translational

X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs150psf- 17° bedding 4-8 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.425)$
Data Point: $(8,0.425)$
Data Point: $(8.1,1)$
150 psf- 17° bedding $4-8^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.667)$
Data Point: $(8,0.667)$
Data Point: $(8.1,1)$
TQs150psf- 11° bedding 4-8 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: (4, 0.275)

Data Point: ($8,0.275$)
Data Point: $(8.1,1)$
150 psf- 11° bedding $4-8^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.667)$
Data Point: $(8,0.667)$
Data Point: $(8.1,1)$

Points

	$X(\mathrm{ft})$	$Y(\mathrm{ft})$
Point 1	-177	1,890
Point 2	-151	1,906
Point 3	-37	1,898
Point 4	56	1,894
Point 5	76	1,891
Point 6	101	1,890
Point 7	123	1,887
Point 8	157	1,879
Point 9	181	1,879
Point 10	207	1,880
Point 11	406	1,950
Point 12	446	1,951
Point 13	482	1,952
Point 14	506	1,952
Point 15	550	1,953
Point 16	550	1,910
Point 17	550	1,857
Point 18	550	1,833
Point 19	550	1,801
Point 20	433	1,801
Point 21	271	1,801
Point 22	-177.5082	1,801
Point 23	-200	$1,800.4977$
Point 24	217	1,870
Point 25	247	1,870
Point 26	-85	1,801
Point 27	550	1,893

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs150psf-17 bedding 4-8	$1,22,26,27,16,15,14,13,12,11,25,24,10,9,8,7,6,5,4,3,2$	48,206
Region 2	TQs150psf-11 bedding 4-8	$26,21,20,19,18,17,27$	29,210

Current Slip Surface

Slip Surface: 80,306
Slip Surface
F of $\mathrm{S}: 1.35$
Volume: $4,025.9453 \mathrm{ft}^{3}$
Weight: $483,113.44 \mathrm{lbs}$
Resisting Force: $186,246.05 \mathrm{lbs}$
Activating Force: $138,339.21 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 20 slip surfaces
Exit: (249.57834, 1,871.2973) ft
Entry: (419.44452, 1,950.3361) ft
Radius: 106.60257 ft
Center: $(306.92882,1,970.0958) \mathrm{ft}$
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	252.45979	$1,871.6953$	0	107.51923	32.871927	150.075
Slice 2	258.22269	$1,872.4912$	0	352.30531	107.71054	150.075
Slice 3	263.9856	$1,873.2871$	0	597.0914	182.54916	150.075
Slice 4	269.7485	$1,874.0831$	0	841.87749	257.38778	150.075
Slice 5	275.5114	$1,874.879$	0	$1,086.6636$	332.22639	150.075
Slice 6	281.2743	$1,875.675$	0	$1,331.4497$	407.06501	150.075
Slice 7	287.0372	$1,876.4709$	0	$1,576.2357$	481.90363	150.075
Slice 8	292.8001	$1,877.2669$	0	$1,821.0218$	556.74224	150.075
Slice 9	298.563	$1,878.0628$	0	$2,065.8079$	631.58086	150.075
Slice 10	304.3259	$1,878.8588$	0	$2,310.594$	706.41948	150.075
Slice 11	310.0888	$1,879.6547$	0	$2,555.3801$	781.2581	150.075

Slice 12	315.8517	$1,880.4507$	0	$2,800.1662$	856.09671	150.075
Slice 13	321.6146	$1,881.2466$	0	$3,044.9523$	930.93533	150.075
Slice 14	327.3775	$1,882.0426$	0	$3,289.7383$	$1,005.7739$	150.075
Slice 15	333.1404	$1,882.8385$	0	$3,534.5244$	$1,080.6126$	150.075
Slice 16	338.90331	$1,883.6345$	0	$3,779.3105$	$1,155.4512$	150.075
Slice 17	344.66621	$1,884.4304$	0	$4,024.0966$	$1,230.2898$	150.075
Slice 18	350.42911	$1,885.2264$	0	$4,268.8827$	$1,305.1284$	150.075
Slice 19	356.19201	$1,886.0223$	0	$4,513.6688$	$1,379.967$	150.075
Slice 20	361.95491	$1,886.8183$	0	$4,758.4549$	$1,454.8056$	150.075
Slice 21	367.71781	$1,887.6142$	0	$5,003.2409$	$1,529.6443$	150.075
Slice 22	373.48071	$1,888.4101$	0	$5,248.027$	$1,604.4829$	150.075
Slice 23	379.32594	$1,893.0408$	0	$2,643.0094$	$2,217.7482$	225
Slice 24	385.25351	$1,901.5063$	0	$2,294.2888$	$1,925.1368$	225
Slice 25	391.18108	$1,909.9717$	0	$1,945.5681$	$1,632.5255$	225
Slice 26	397.10865	$1,918.4372$	0	$1,596.8474$	$1,339.9141$	225
Slice 27	403.03622	$1,926.9026$	0	$1,248.1268$	$1,047.3027$	225
Slice 28	409.36113	$1,935.9355$	0	773.81792	649.31033	225
Slice 29	416.08339	$1,945.5359$	0	173.92083	145.93691	225

1 - Circular Mode of Failure

Repotenatedura

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 158
Date: 3/22/2016
Time: 9:37:29 AM
Tool Version: 8.15.1.11236
File Name: Section 8-8 Static Final with keyway SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 8-8 results\Latest updated 3-21-2016
Last Solved Date: 3/22/2016
Last Solved Time: 9:37:45 AM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Lef
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs100-25 ${ }^{\circ}$ bedding 3-14
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}$ bedding 3-14
C-Anisotropic Strength Fn.: 100 pcf-25 ${ }^{\circ}$ bedding 3-14 ${ }^{\circ}$
Phi-B: 0°
Tmc150-17 ${ }^{\circ}$ bedding 13-17 ${ }^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc150-17º bedding 13-17 C-Anisotropic Strength Fn.: 150 psf- 17° bedding $13-17^{\circ}$ Phi-B: 0°
Model: Mohr-Coulomb

Mode: : Mohr-Coulom
Unit Weight: 120 p
Phi': 33°
Phi-B: 0°
Tmc100psf-25 ${ }^{\circ}$ bedding 0-15 ${ }^{\circ}$
Model: Anisotropic Fr
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc100-25 ${ }^{\circ}$ bedding 0-15
C-Anisotropic Strength Fn .: $100 \mathrm{psf-} 25^{\circ}$ bedding $0-15^{\circ}$
Phi-B: 0

Slip Surface Entry and Exit

Left Projection: Range
Left-Zone Left Coordinate: ($31.8663,1,894.4016$) ft
Left-Zone Right Coordinate: $(167,1,935) \mathrm{ft}$
Left-Zone Increment: 50

1 - Circular Mode of Failure

Right Projection: Range
Right-Zone Left Coordinate: $(180.1299,1,941.5649) \mathrm{ft}$
Right-Zone Right Coordinate: ($432.5595,2,006.8366$) ft
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: (-201, 1,843) ft
Right Coordinate: $(550,2,009) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc100-25 ${ }^{\circ}$ bedding $0-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.625
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.625)$
Data Point: ($15,0.625$)
Data Point: $(15.1,1)$
100 pcf- 25° bedding $3-14^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

Curve Fit to Data: 100%

Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: ($3,0.444$)
Data Point: $(14,0.444)$
Data Point: $(14.1,1)$
100 psf- 25° bedding $0-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%

Segment Curvature: 0%
Y-Intercept: 0.5
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1$
Data Point: $(0,0.5)$
Data Point: $(15,0.5)$
Data Point: (15.1, 1
TQs100-25 ${ }^{\circ}$ bedding 3-14
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: ($-90,1$)
Data Point: $(2.9,1)$
Data Point: $(3,0.625)$
Data Point: $(14,0.625)$
Data Point: $(14.1,1)$
Tmc150-17 ${ }^{\circ}$ bedding $13-17^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(12.9,1)$
Data Point: $(13,0.425)$
Data Point: (17, 0.425
Data Point: (17.1, 1)
150psf-17 ${ }^{\circ}$ bedding $13-17$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(12.9,1)$
Data Point: $(13,0.75)$
Data Point: $(17,0.75)$
Data Point: $(17.1,1)$

Points

	f (ft)	$\mathrm{Y}(\mathrm{ft})$
Point 1	-200	1,890
Point 2	-135	1,890
Point 3	-27	1,893
Point 4	57	1,895
Point 5	107	1,910
Point 6	117	1,910
Point 7	185	1,944
Point 8	201	1,944
Point 9	220	1,954
Point 10	550	1,996
Point 11	550	1,919
Point 12	268	1,892
Point 13	36	1,868
Point 14	-201	1,843
Point 15	-200	$1,800.4977$
Point 16	550	1,799
Point 17	550	1,929
Point 18	98	1,874
Point 19	128	1,878
Point 20	146	1,900
Point 21	256	1,955
Point 22	78	1,896
Point 23	-200	1,878

Point 24	245	1,955
Point 25	294	1,977
Point 26	304	1,977
Point 27	360	$2,005.5$
Point 28	550	2,009
Point 29	83	1,891
Point 30	128	1,891
Point 31	140	1,897

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Tmc150-17 bedding $13-17^{\circ}$	$11,12,19,18,13,14,15,16$	61,653
Region 2	Tmc100psf-25 ${ }^{\circ}$ bedding $0-15^{\circ}$	$12,11,17,20,19$	6,209
Region 3	TQs100-25 ${ }^{\circ}$ bedding 3-14	$1,23,22,4,3,2$	$1,447.5$
Region 4	Tmc100psf-25 ${ }^{\circ}$ bedding $0-15^{\circ}$	$23,14,13,18,29,22$	8,396
Region 5	TQs100-25 5° bedding 3-14	$20,21,10,17$	19,364
Region 6	Tmc100psf-25 ${ }^{\circ}$ bedding 0-15	$18,19,20,31,30,29$	694.5
Region 7	Fill	$22,5,6,7,8,9,24,25,26,27,28,10,21,20,31$	9,516
Region 8	Fill	$22,29,30,31$	292.5

Current Slip Surface

Slip Surface: 80,754
F of S: 2.06
Volume: 648.41255 ft
Volume: $648.41255 \mathrm{ft}^{3}$
Weight: $77,809.507 \mathrm{lbs}$
Resisting Moment: $5,233,028.6 \mathrm{lbs}$-ft
Resisting Moment: $5,233,028.6 \mathrm{lbs}-\mathrm{ft}$
Activating Moment: $2,546,265.3 \mathrm{lbs}-\mathrm{ft}$
Activating Moment: $2,546,265.3 \mathrm{lbs}$-ft
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Analysis): 1 of 132,651 slip su
F of S Rank (Query): 1 of 50 slip surfaces
F of S Rank (Query): 1 of 50 slip s
Exit: (117.96558, 1,910.4828) ft
Entry: (190.23724, 1,944) ft
Radius: 81.288567 ft
Center: ($124.28877,1,991.5251$) ft
Slip Slices

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)

file:///G:/SLOPE\%20RESULTS/Section\%208-8\%20results/Latest\%20updated\%203-21-20... 3/22/2016

1 - Circular Mode of Failure \quad Page 7 of 8

Slice 1	119.16263	$1,910.4071$	0	88.81307	57.675882	200
Slice 2	121.55671	$1,910.2912$	0	244.3156	158.6604	200
Slice 3	123.9508	$1,910.246$	0	388.44124	252.25669	200
Slice 4	126.34489	$1,910.2713$	0	521.51091	338.67315	200
Slice 5	128.73897	$1,910.3672$	0	643.79862	418.08771	200
Slice 6	131.13306	$1,910.534$	0	755.53575	490.65065	200
Slice 7	133.52714	$1,910.7721$	0	856.91453	556.4868	200
Slice 8	135.92123	$1,911.0822$	0	948.0908	615.69736	200
Slice 9	138.31532	$1,911.465$	0	$1,029.1861$	668.36129	200
Slice 10	140.7094	$1,911.9217$	0	$1,100.2894$	714.53632	200
Slice 11	143.10349	$1,912.4534$	0	$1,161.4581$	754.2597	200
Slice 12	145.49758	$1,913.0618$	0	$1,212.7185$	787.5486	200
Slice 13	147.89166	$1,913.7486$	0	$1,254.0663$	814.40021	200
Slice 14	150.28575	$1,914.516$	0	$1,285.4663$	834.79156	200
Slice 15	152.67983	$1,915.3664$	0	$1,306.8511$	848.67906	200
Slice 16	155.07392	$1,916.3025$	0	$1,318.1208$	855.99768	200
Slice 17	157.46801	$1,917.3277$	0	$1,319.1404$	856.65979	200
Slice 18	159.86209	$1,918.4457$	0	$1,309.7378$	850.55364	200
Slice 19	162.25618	$1,919.6608$	0	$1,289.7005$	837.54133	200
Slice 20	164.65027	$1,920.9781$	0	$1,258.7722$	817.45625	200
Slice 21	167.04435	$1,922.4033$	0	$1,216.6473$	790.09998	200
Slice 22	169.43844	$1,923.9435$	0	$1,162.965$	755.23831	200
Slice 23	171.83253	$1,925.6066$	0	$1,097.3023$	712.59642	200
Slice 24	174.22661	$1,927.4022$	0	$1,019.1641$	661.85291	200

1 - Circular Mode of Failure

Repotenatedura

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 155
Date: 3/22/2016
Time: 9:28:29 AM
Tool Version: 8.15.1.11236
File Name: Section 8-8 Seismic Final with keyway SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 8-8 results\Latest updated 3-21-2016
Last Solved Date: 3/22/2016
Last Solved Time: 9:28:45 AM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Lef
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs100-25 ${ }^{\circ}$ bedding 3-14
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}$ bedding 3-14
C-Anisotropic Strength Fn.: 100 pcf-25 ${ }^{\circ}$ bedding 3-14 ${ }^{\circ}$
Phi-B: 0°
Tmc150-17 ${ }^{\circ}$ bedding 13-17 ${ }^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc150-17º bedding 13-17 C-Anisotropic Strength Fn.: 150 psf- 17° bedding $13-17^{\circ}$ Phi-B: 0°
Model: Mohr-Coulomb

Mode: : Mohr-Coulom
Unit Weight: 120 p
Phi': 33°
Phi-B: 0°
Tmc100psf-25 ${ }^{\circ}$ bedding 0-15 ${ }^{\circ}$
Model: Anisotropic Fr
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc100-25 ${ }^{\circ}$ bedding 0-15
C-Anisotropic Strength Fn .: $100 \mathrm{psf-} 25^{\circ}$ bedding $0-15^{\circ}$
Phi-B: 0

Slip Surface Entry and Exit

Left Projection: Range
Left-Zone Left Coordinate: ($31.8663,1,894.4016$) ft
Left-Zone Right Coordinate: $(167,1,935) \mathrm{ft}$
Left-Zone Increment: 50

1 - Circular Mode of Failure

Right Projection: Range
Right-Zone Left Coordinate: $(180.1299,1,941.5649) \mathrm{ft}$
Right-Zone Right Coordinate: ($432.5595,2,006.8366$) ft
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: (-201, 1,843) ft
Right Coordinate: $(550,2,009) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc100-25 ${ }^{\circ}$ bedding $0-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.625
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.625)$
Data Point: $(15,0.625)$
Data Point: $(15.1,1)$
100 pcf- 25° bedding $3-14^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

Curve Fit to Data: 100%

Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: ($3,0.444$)
Data Point: $(14,0.444)$
Data Point: $(14.1,1)$
100 psf- 25° bedding $0-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%

1 - Circular Mode of Failure

Segment Curvature: 0%
Y-Intercept: 0.5
Data Points: Inclination (${ }^{\circ}$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1$
Data Point: $(0,0.5)$
Data Point: $(15,0.5)$
Data Point: (15.1, 1
TQs100-25 ${ }^{\circ}$ bedding 3-14
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(2.9,1)$
Data Point: $(3,0.625)$
Data Point: $(14,0.625)$
Data Point: $(14.1,1)$
Tmc150-17 ${ }^{\circ}$ bedding $13-17^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: $(-90,1)$
Data Point: $(12.9,1)$
Data Point: $(13,0.425)$
Data Point: $(17,0.425$
Data Point: (17.1, 1)
150psf-17 ${ }^{\circ}$ bedding $13-17$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(12.9,1)$
Data Point: $(13,0.75)$
Data Point: $(17,0.75)$
Data Point: $(17.1,1)$

Points

	f (ft)	$\mathrm{Y}(\mathrm{ft})$
Point 1	-200	1,890
Point 2	-135	1,890
Point 3	-27	1,893
Point 4	57	1,895
Point 5	107	1,910
Point 6	117	1,910
Point 7	185	1,944
Point 8	201	1,944
Point 9	220	1,954
Point 10	550	1,996
Point 11	550	1,919
Point 12	268	1,892
Point 13	36	1,868
Point 14	-201	1,843
Point 15	-200	$1,800.4977$
Point 16	550	1,799
Point 17	550	1,929
Point 18	98	1,874
Point 19	128	1,878
Point 20	146	1,900
Point 21	256	1,955
Point 22	78	1,896
Point 23	-200	1,878

Point 24	245	1,955
Point 25	294	1,977
Point 26	304	1,977
Point 27	360	$2,005.5$
Point 28	550	2,009
Point 29	83	1,891
Point 30	128	1,891
Point 31	140	1,897

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Tmc150-17 bedding $13-17^{\circ}$	$11,12,19,18,13,14,15,16$	61,653
Region 2	Tmc100psf-25 ${ }^{\circ}$ bedding $0-15^{\circ}$	$12,11,17,20,19$	6,209
Region 3	TQs100-25 ${ }^{\circ}$ bedding 3-14	$1,23,22,4,3,2$	$1,447.5$
Region 4	Tmc100psf-25 ${ }^{\circ}$ bedding $0-15^{\circ}$	$23,14,13,18,29,22$	8,396
Region 5	TQs100-25 5° bedding 3-14	$20,21,10,17$	19,364
Region 6	Tmc100psf-25 ${ }^{\circ}$ bedding 0-15	$18,19,20,31,30,29$	694.5
Region 7	Fill	$22,5,6,7,8,9,24,25,26,27,28,10,21,20,31$	9,516
Region 8	Fill	$22,29,30,31$	292.5

Current Slip Surface

Slip Surface: 42,140
F of S: 1.48
Volume: $2,129.5156 \mathrm{ft}^{3}$
Weiume: 2,129.5156 It
Weight: $255,541.87 \mathrm{lbs}$
Resisting Moment: $39,750,707 \mathrm{lbs}-\mathrm{ft}$
Resisting Moment: $39,750,707 \mathrm{lbs}-\mathrm{ft}$
Activating Moment: $26,865,927 \mathrm{lbs}-\mathrm{ft}$
Activating Moment: $26,865,927 \mathrm{lbs}$-ft
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Analysis): 1 of 132,651 slip su
F of S Rank (Query): 1 of 50 slip surfaces
F of S Rank (Query): 1 of 50 slip s
Exit: ($78.001259,1,896.0006$) ft
Exit: $(78.001259,1,896.0006) \mathrm{ft}$
Entry: $(230.48674,1,954.4195) \mathrm{ft}$
Entry: (230.48674, 1,
Radius: 216.9753 ft
Radius: 216.9753 ft
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)

file:///G:/SLOPE\%20RESULTS/Section\%208-8\%20results/Latest\%20updated\%203-21-20... 3/22/2016

1 - Circular Mode of Failure \quad Page 7 of 8

Slice 1	78.009414	$1,896.0004$	0	3.2043685	2.0809412	200
Slice 2	80.61912	$1,895.9798$	0	155.74732	101.14349	200
Slice 3	85.822221	$1,896.0013$	0	447.65659	290.71159	200
Slice 4	91.025322	$1,896.1476$	0	718.79949	466.79385	200
Slice 5	95.855727	$1,896.3913$	0	952.92412	618.83616	200
Slice 6	100.31344	$1,896.716$	0	$1,153.4495$	749.05883	200
Slice 7	104.77115	$1,897.1333$	0	$1,339.7967$	870.07412	200
Slice 8	109.5	$1,897.6807$	0	$1,384.6889$	899.2275	200
Slice 9	114.5	$1,898.3712$	0	$1,290.4376$	838.01995	200
Slice 10	119.61538	$1,899.2024$	0	$1,327.6056$	862.15715	200
Slice 11	124.84615	$1,900.1814$	0	$1,491.429$	968.54535	200
Slice 12	130.07692	$1,901.2943$	0	$1,637.0297$	$1,063.0995$	200
Slice 13	135.30769	$1,902.543$	0	$1,764.6215$	$1,145.9586$	200
Slice 14	140.53846	$1,903.9301$	0	$1,874.3786$	$1,217.2357$	200
Slice 15	145.76923	$1,905.4583$	0	$1,966.4365$	$1,277.0188$	200
Slice 16	151	$1,907.1308$	0	$2,040.8934$	$1,325.3716$	200
Slice 17	156.23077	$1,908.9511$	0	$2,097.8105$	$1,362.3341$	200
Slice 18	161.46154	$1,910.9233$	0	$2,137.2134$	$1,387.9226$	200
Slice 19	166.69231	$1,913.0518$	0	$2,159.091$	$1,402.1301$	200
Slice 20	171.92308	$1,915.3416$	0	$2,163.3964$	$1,404.9261$	200
Slice 21	177.15385	$1,917.7986$	0	$2,150.0457$	$1,396.256$	200
Slice 22	182.38462	$1,920.429$	0	$2,118.9177$	$1,376.0413$	200
Slice 23	187.66667	$1,923.2695$	0	$1,940.5046$	$1,260.1784$	200
Slice 24	193	$1,926.3322$	0	$1,619.3073$	$1,051.5905$	200

2 - Translational

Report generated using Geostudio 2012 Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 15
Date: 3/22/2016
Time: 9:34:48 AM
Tool Version: 8.15.1.11236
File Name: Section 8-8 Static Final with keyway SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 8-8 results\Latest updated 3-21-2016
Last Solved Date: 3/22/2016
Last Solved Time: 9:35:28 AM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)

Fof S Distribution

F of S Calculation Option: Constan
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $100-25^{\circ}$ bedding 3-14
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs100-25 ${ }^{\circ}$ bedding 3-14 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 100pcf-25 bedding 3-14
Phi-B: 0°
Tmc150-17 ${ }^{\circ}$ bedding $13-17^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc150-17º bedding 13-17
C-Anisotropic Strength Fn.: 150 psf-17 ${ }^{\circ}$ bedding $13-1^{\circ}$
Phi-B: 0°

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Tmc100psf- 25° bedding $0-15^{\circ}$
Model: Anisotropic Fr
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc100-25 bedding 0-15 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 100 psf- 25° bedding $0-15^{\circ}$
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-201,1,843)$ ft
Right Coordinate: $(550,2,009) \mathrm{ft}$

2 - Translational

Slip Surface Block

Left Grid
Upper Left: $(76.8746,1,925.8506) \mathrm{ft}$
Lower Left: (110.8805, 1,850.7649) ft
Lower Right: (236.0227, 1,856.3268) ft
X Increments: 10
XIncrements: 10
Starting Angle: 135°
Starting Angle: $135{ }^{\circ}$
Ending Angle: 180°
Ending Angle: 180°
Right Grid
Upper Left: (244.9639, 1,985.7845) ft
Lower Left: $(275.7545,1,865.054) \mathrm{ft}$
Lower Right: (416.7433, 1,877.9566) ft
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc100-25 ${ }^{\circ}$ bedding $0-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.625
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.625)$
Data Point: $(15,0.625)$
Data Point: $(15.1,1)$
100 pcf- 25° bedding $3-14^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: $(-90,1)$

Data Point: $(2.9,1)$
Data Point: $(3,0.444)$
Data Point: $(14,0.444)$
Data Point: $(14.1,1)$
100 psf- 25° bedding $0-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.5
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.5)$
Data Point: $(15,0.5)$
Data Point: (15.1,1)
TQs100-25 ${ }^{\circ}$ bedding 3-14 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: $(3,0.625)$
Data Point: $(14,0.625$
Data Point: $(14.1,1)$
Tmc150-17 ${ }^{\circ}$ bedding $13-17^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(12.9,1)$
Data Point: (13, 0.425
Data Point: $(17,0.425$
Data Point: (17.1, 1)
150 psf- 17° bedding $13-17^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1

2-Translational

Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(12.9,1$
Data Point: $(13,0.75)$
Data Point: $(17,0.75)$
Data Point: $(17.1,1)$

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-200	1,890
Point 2	-135	1,890
Point 3	-27	1,893
Point 4	57	1,895
Point 5	107	1,910
Point 6	117	1,910
Point 7	185	1,944
Point 8	201	1,944
Point 9	220	1,954
Point 10	550	1,996
Point 11	550	1,919
Point 12	268	1,892
Point 13	36	1,868
Point 14	-201	1,843
Point 15	-200	$1,800.4977$
Point 16	550	1,799
Point 17	550	1,929
Point 18	98	1,874
Point 19	128	1,878
Point 20	146	1,900
Point 21	256	1,955
Point 22	78	1,896
Point 23	-200	1,878
Point 24	245	1,955
Point 25	294	1,977
Point 26	304	1,977
Point 27	360	$2,005.5$
Point 28	550	2,009
Point 29	83	1,891
Point 30	128	1,891
Point 31	140	1,897

Regions

 gions

 gions}| $\begin{aligned} & \text { Region } \\ & 1 \end{aligned}$ | Tmc150-17 ${ }^{\circ}$ bedding $13-$ 17° | 11,12,19,18,13,14,15,16 | 61,653 |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Region } \\ & \hline \end{aligned}$ | Tmc100psf- 25° bedding $0-15^{\circ}$ | 12,11,17,20,19 | 6,209 |
| $\begin{aligned} & \text { Region } \\ & 3 \end{aligned}$ | $\begin{array}{\|l\|} \hline \text { TQs100-25 }{ }^{\circ} \text { bedding } \\ 3-14^{\circ} \end{array}$ | 1,23,22,4,3,2 | 1,447.5 |
| $\begin{aligned} & \text { Region } \\ & 4 \end{aligned}$ | Tmc100psf-25 ${ }^{\circ}$ bedding $0-15^{\circ}$ | 23,14,13,18,29,22 | 8,396 |
| $\begin{aligned} & \text { Region } \\ & 5 \end{aligned}$ | $\begin{aligned} & \text { TQs100-25 } 5^{\circ} \text { bedding } \\ & 3-14^{\circ} \end{aligned}$ | 20,21,10,17 | 19,364 |
| $\begin{aligned} & \text { Region } \\ & 6 \end{aligned}$ | Tmc100psf-25 ${ }^{\circ}$ bedding $0-15^{\circ}$ | 18,19,20,31,30,29 | 694.5 |
| $\begin{aligned} & \text { Region } \\ & 7 \\ & \hline \end{aligned}$ | Fill | 22,5,6,7,8,9,24,25,26,27,28,10,21,20,31 | 9,516 |
| $\begin{aligned} & \text { Region } \\ & 8 \end{aligned}$ | Fill | 22,29,30,31 | 292.5 |

Current Slip Surface

Slip Surface: 78,263
Fof S: 1.73
Volume: $9,473.1768 \mathrm{ft}^{3}$
Weight: 1,136,781.2 lbs
Resisting Force: 556,949.79 lbs
Activating Force: $321,328.2 \mathrm{lbs}$
F of S Rank (Analysis): 2 of 131,769 slip surfaces
of S Rank (Query): 2 of 50 slip surfaces
Exit: $(83.380059,1,898.5973) \mathrm{ft}$
Entry: (384.38678, 2,005.9492) ft
Radius: 160.07064 ft
Center: $(205.16867,2,032.7872) \mathrm{ft}$
Slip Slices

	X (ft)	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	89.285044	$1,898.5973$	0	342.0819	222.15058	200
Slice 2	101.09501	$1,898.5973$	0	$1,026.2457$	666.45175	200
Slice 3	112	$1,898.5973$	0	$1,368.3276$	888.60233	200
Slice 4	121.36576	$1,898.5973$	0	$1,630.273$	$1,058.7117$	200
Slice 5	130.09727	$1,898.5973$	0	$2,154.1638$	$1,398.9303$	200
Slice 6	138.82878	$1,898.5973$	0	$2,678.0546$	$1,739.149$	200
	144.02343	$1,898.5973$	0	$2,989.7332$	$1,394.1355$	100

2-Translational

Slice 7						
Slice 8	145.42616	$1,898.5973$	0	$3,073.897$	$1,433.3817$	100
Slice 9	149.52403	$1,898.5973$	0	$3,319.7694$	$1,548.0339$	100
Slice 10	158.49512	$1,899.9426$	0	$3,453.2084$	$1,610.2575$	100
Slice 11	169.20664	$1,902.5882$	0	$3,758.2068$	$1,752.4806$	99.9
Slice 12	179.73555	$1,905.1886$	0	$4,057.9925$	$1,892.273$	99.9
Slice 13	189	$1,907.4768$	0	$4,096.7113$	$1,910.3278$	99.9
Slice 14	197	$1,909.4526$	0	$3,874.363$	$1,806.6451$	99.9
Slice 15	205.75	$1,911.6137$	0	$3,912.5004$	$1,824.4289$	99.9
Slice 16	215.25	$1,913.9601$	0	$4,211.1235$	$1,963.6791$	99.9
Slice 17	226.25	$1,916.6769$	0	$4,214.8585$	$1,965.4208$	99.9
Slice 18	238.75	$1,919.7642$	0	$3,923.7055$	$1,829.6539$	99.9
Slice 19	250.5	$1,922.6662$	0	$3,903.1505$	$1,820.069$	99.9
Slice 20	260.75	$1,925.1978$	0	$4,136.1451$	$1,928.7161$	99.9
Slice 21	270.25	$1,927.5441$	0	$4,352.0914$	$2,029.4135$	99.9
Slice 22	279.75	$1,929.8905$	0	$4,568.0376$	$2,130.1109$	99.9
Slice 23	289.25	$1,932.2368$	0	$4,783.9839$	$2,230.8083$	99.9
Slice 24	299	$1,934.6449$	0	$4,752.9893$	$2,216.3553$	99.9
Slice 25	308.73418	$1,937.049$	0	$4,753.5728$	$2,216.6274$	99.9
Slice 26	318.20253	$1,939.3876$	0	$5,032.6751$	$2,346.775$	99.9
Slice 27	327.67089	$1,941.7261$	0	$5,311.7775$	$2,476.9225$	99.9
Slice 28	337.13924	$1,944.0646$	0	$5,590.8798$	$2,607.0701$	99.9
Slice 29	346.0912	$1,951.2575$	0	$3,238.4279$	$2,717.3637$	225
Slice 30	354.52676	$1,963.3047$	0	$2,687.9975$	$2,255.4977$	225

2 - Translational

Report generated using Geostudio 2012 Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 15
Date: 3/22/2016
Time: 9:20:06 AM
Tool Version: 8.15.1.11236
File Name: Section 8-8 Seismic Final with keyway SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 8-8 results\Latest updated 3-21-2016
Last Solved Date: 3/22/2016
Last Solved Time: 9:20:24 AM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 po
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)

Fof S Distribution

F of S Calculation Option: Constan
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $100-25^{\circ}$ bedding 3-14
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs100-25 ${ }^{\circ}$ bedding 3-14 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 100pcf-25 bedding 3-14
Phi-B: 0°
Tmc150-17 ${ }^{\circ}$ bedding $13-17^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc150-17º bedding 13-17
C-Anisotropic Strength Fn.: 150 psf-17 ${ }^{\circ}$ bedding $13-1^{\circ}$
Phi-B: 0°

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Tmc100psf- 25° bedding $0-15^{\circ}$
Model: Anisotropic Fr
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc100-25 bedding 0-15 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 100 psf- 25° bedding $0-15^{\circ}$
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-201,1,843)$ ft
Right Coordinate: $(550,2,009) \mathrm{ft}$

2 - Translational

Slip Surface Block

Left Grid
Upper Left: $(76.8746,1,925.8506) \mathrm{ft}$
Lower Left: (110.8805, 1,850.7649) ft
Lower Right: (236.0227, 1,856.3268) ft
X Increments: 10
XIncrements: 10
Starting Angle: 135°
Starting Angle: $135{ }^{\circ}$
Ending Angle: 180°
Ending Angle: 180°
Angle
Right Grid
Upper Left: $(244.9639,1,985.7845) \mathrm{ft}$
Lower Left: $(275.7545,1,865.054) \mathrm{ft}$
Lower Right: (416.7433, 1,877.9566) ft
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc100-25 ${ }^{\circ}$ bedding $0-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.625
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.625)$
Data Point: $(15,0.625)$
Data Point: $(15.1,1)$
100 pcf- 25° bedding $3-14^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: $(-90,1)$

Data Point: $(2.9,1)$
Data Point: $(3,0.444)$
Data Point: $(14,0.444)$
Data Point: $(14.1,1)$
100 psf- 25° bedding $0-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.5
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.5)$
Data Point: $(15,0.5)$
Data Point: (15.1,1)
TQs100-25 ${ }^{\circ}$ bedding 3-14
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: $(3,0.625)$
Data Point: $(14,0.625$
Data Point: $(14.1,1)$
Tmc150-17 ${ }^{\circ}$ bedding $13-17^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(12.9,1)$
Data Point: (13, 0.425
Data Point: $(17,0.425$
Data Point: (17.1, 1)
150 psf- 17° bedding $13-17^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1

2-Translational

Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(12.9,1)$
Data Point: $(13,0.75)$
Data Point: $(17,0.75)$
Data Point: $(17.1,1)$

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-200	1,890
Point 2	-135	1,890
Point 3	-27	1,893
Point 4	57	1,895
Point 5	107	1,910
Point 6	117	1,910
Point 7	185	1,944
Point 8	201	1,944
Point 9	220	1,954
Point 10	550	1,996
Point 11	550	1,919
Point 12	268	1,892
Point 13	36	1,868
Point 14	-201	1,843
Point 15	-200	$1,800.4977$
Point 16	550	1,799
Point 17	550	1,929
Point 18	98	1,874
Point 19	128	1,878
Point 20	146	1,900
Point 21	256	1,955
Point 22	78	1,896
Point 23	-200	1,878
Point 24	245	1,955
Point 25	294	1,977
Point 26	304	1,977
Point 27	360	$2,005.5$
Point 28	550	2,009
Point 29	83	1,891
Point 30	128	1,891
Point 31	140	1,897

Regions

$\begin{aligned} & \text { Region } \\ & 1 \end{aligned}$	Tmc150-17 ${ }^{\circ}$ bedding $13-$ 17°	11,12,19,18,13,14,15,16	61,653
$\begin{aligned} & \text { Region } \\ & \hline \end{aligned}$	Tmc100psf- 25° bedding $0-15^{\circ}$	12,11,17,20,19	6,209
$\begin{aligned} & \text { Region } \\ & 3 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { TQs100-25 }{ }^{\circ} \text { bedding } \\ 3-14^{\circ} \end{array}$	1,23,22,4,3,2	1,447.5
$\begin{aligned} & \text { Region } \\ & 4 \end{aligned}$	Tmc100psf-25 ${ }^{\circ}$ bedding $0-15^{\circ}$	23,14,13,18,29,22	8,396
$\begin{aligned} & \text { Region } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { TQs100-25 } 5^{\circ} \text { bedding } \\ & 3-14^{\circ} \end{aligned}$	20,21,10,17	19,364
$\begin{aligned} & \text { Region } \\ & 6 \end{aligned}$	Tmc100psf-25 ${ }^{\circ}$ bedding $0-15^{\circ}$	18,19,20,31,30,29	694.5
$\begin{aligned} & \text { Region } \\ & 7 \\ & \hline \end{aligned}$	Fill	22,5,6,7,8,9,24,25,26,27,28,10,21,20,31	9,516
$\begin{aligned} & \text { Region } \\ & 8 \end{aligned}$	Fill	22,29,30,31	292.5

Current Slip Surface

Slip Surface: 78,263
Fof S: 1.15
Volume: $9,473.1768 \mathrm{ft}^{3}$
Weight: 1,136,781.2 lbs
Resisting Force: $532,408.49 \mathrm{lbs}$
Activating Force: $462,664.31 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
of S Rank (Query): 1 of 50 slip surfaces
Exit: $(83.380059,1,898.5973) \mathrm{ft}$
Entry: (384.38678, 2,005.9492) ft
Entry: ($384.38678,2,0$
Center: (205.16867, 2,032.7872) ft
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	89.285044	$1,898.5973$	0	342.0819	222.15058	200
Slice 2	101.09501	$1,898.5973$	0	$1,026.2457$	666.45175	200
Slice 3	112	$1,898.5973$	0	$1,368.3276$	888.60233	200
Slice 4	121.36576	$1,898.5973$	0	$1,630.273$	$1,058.7117$	200
Slice 5	130.09727	$1,898.5973$	0	$2,154.1638$	$1,398.9303$	200
Slice 6	138.82878	$1,898.5973$	0	$2,678.0546$	$1,739.149$	200
	144.02343	$1,898.5973$	0	$2,989.7332$	$1,394.1355$	100

2-Translational

Slice 7						
Slice 8	145.42616	$1,898.5973$	0	$3,073.897$	$1,433.3817$	100
Slice 9	149.52403	$1,898.5973$	0	$3,319.7694$	$1,548.0339$	100
Slice 10	158.49512	$1,899.9426$	0	$3,338.9706$	$1,556.9876$	100
Slice 11	169.20664	$1,902.5882$	0	$3,634.4758$	$1,694.7839$	99.9
Slice 12	179.73555	$1,905.1886$	0	$3,924.924$	$1,830.2221$	99.9
Slice 13	189	$1,907.4768$	0	$3,962.4367$	$1,847.7146$	99.9
Slice 14	197	$1,909.4526$	0	$3,747.014$	$1,747.2613$	99.9
Slice 15	205.75	$1,911.6137$	0	$3,783.9635$	$1,764.4912$	99.9
Slice 16	215.25	$1,913.9601$	0	$4,073.2853$	$1,899.4041$	99.9
Slice 17	226.25	$1,916.6769$	0	$4,076.904$	$1,901.0915$	99.9
Slice 18	238.75	$1,919.7642$	0	$3,794.8196$	$1,769.5534$	99.9
Slice 19	250.5	$1,922.6662$	0	$3,774.9049$	$1,760.267$	99.9
Slice 20	260.75	$1,925.1978$	0	$4,000.6423$	$1,865.5302$	99.9
Slice 21	270.25	$1,927.5441$	0	$4,209.8624$	$1,963.0911$	99.9
Slice 22	279.75	$1,929.8905$	0	$4,419.0825$	$2,060.652$	99.9
Slice 23	289.25	$1,932.2368$	0	$4,628.3026$	$2,158.213$	99.9
Slice 24	299	$1,934.6449$	0	$4,598.2735$	$2,144.2101$	99.9
Slice 25	308.73418	$1,937.049$	0	$4,598.8388$	$2,144.4738$	99.9
Slice 26	318.20253	$1,939.3876$	0	$4,869.2478$	$2,270.5676$	99.9
Slice 27	327.67089	$1,941.7261$	0	$5,139.6569$	$2,396.6614$	99.9
Slice 28	337.13924	$1,944.0646$	0	$5,410.0659$	$2,522.7552$	99.9
Slice 29	346.0912	$1,951.2575$	0	$2,627.4325$	$2,204.6776$	225
Slice 30	354.52676	$1,963.3047$	0	$2,172.9106$	$1,823.2885$	225

Slice 31	359.37227	$1,970.2248$	0	$2,179.0503$	$1,415.0918$	200
Slice 32	366.0967	$1,979.8283$	0	$1,571.137$	$1,020.3083$	200
Slice 33	378.29008	$1,997.2422$	0	431.80198	280.41549	200

2 - Translational

Report generated using Geostudio 2012 Copyright © 1991-2015 GEO-SLOPE International Lto

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 15
Date: 3/22/2016
Time: 9:06:34 AM
Tool Version: 8.15.1.11236
File Name: Section 8-8 Static Temporary Final without keyway SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 8-8 results \Latest updated 3-21-2016
Last Solved Date: 3/22/2016
Last Solved Time: 9:06:55 AM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 po
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $100-25^{\circ}$ bedding 3-14
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs100-25 ${ }^{\circ}$ bedding 3-14 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 100pcf-25 bedding 3-14
Phi-B: 0°
Tmc150-17 ${ }^{\circ}$ bedding $13-17^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc150-17º bedding 13-17
C-Anisotropic Strength Fn.: 150 psf-170 bedding $13-17^{\circ}$
Phi-B: 0°
Tmc100psf-25 ${ }^{\circ}$ bedding $0-15^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc100-25 bedding 0-15 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 100 psf-25 ${ }^{\circ}$ bedding $0-15^{\circ}$
Phi-B: 0°

Slip Surface Limits

Left Coordinate: (-201, 1,843) ft
Right Coordinate: $(550,1,996) \mathrm{ft}$

Slip Surface Block

Left Grid

Upper Left: (92.8893, 1,918.8506) ft
Lower Left: (113.9754, 1,843.7649) ft
Lower Right: (191.5725, 1,849.3268) ft

X Increments: 10
Y Increments: 10
Starting Angle: 135°
Ending Angle: 180°
Angle Increments:
Right Grid
Upper Left: (199.961, 1,950.2414) ft
Lower Left: (217.5045, 1,860.0503) ft
Lower Right: (297.8353, 1,869.6891) ft
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc100-25 bedding 0-15
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%
Y-Intercept: 0.625
Data Points: Inclination (${ }^{\circ}$), Modifier Facto Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.625)$
Data Point: $(15,0.625$
Data Point: $(15.1,1)$
$100 p c f-25^{\circ}$ bedding $3-14^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: $(3,0.444)$
Data Point: $(14,0.444)$
Data Point: $(14.1,1)$
100 psf- 25° bedding $0-15^{\circ}$

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.5
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: ($-90,1$)
Data Point: $(-0.9,1)$
Data Point: $(0,0.5)$
Data Point: $(15,0.5)$
Data Point: (15.1, 1
TQs100-25 ${ }^{\circ}$ bedding 3-14
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: $(3,0.625)$
Data Point: $(14,0.625)$
Data Point: $(14.1,1)$
Tmc150-17 ${ }^{\circ}$ bedding 13-17 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: (-90, 1)
Data Point: $(12.9,1)$
Data Point: (13, 0.425
Data Point: $(17,0.425)$
Data Point: (17.1, 1)

150pst-17 ${ }^{\circ}$ bedding 13-17

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

$$
\text { Curve Fit to Data: } 100 \%
$$

Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(12.9,1)$
Data Point: $(13,0.75)$
Data Point: $(17,0.75)$
Data Point: (17.1, 1)

Points

	$X(\mathrm{ft})$	$Y(\mathrm{ft})$
Point 1	-200	1,890
Point 2	-135	1,890
Point 3	-27	1,893
Point 4	57	1,895
Point 5	550	1,996
Point 6	550	1,919
Point 7	268	1,892
Point 8	36	1,868
Point 9	-201	1,843
Point 10	-200	$1,800.4977$
Point 11	550	1,799
Point 12	550	1,929
Point 13	98	1,874
Point 14	128	1,878
Point 15	146	1,900
Point 16	256	1,955
Point 17	78	1,896
Point 18	-200	1,878
Point 19	83	1,891
Point 20	128	1,891
Point 21	140	1,897

Regions

	Material	Points	Area (ft^{2})
Region 1	Tmc150-17 ${ }^{\circ}$ bedding 13-170	6,7,14,13,8,9,10,11	61,653
Region 2	Tmc100psf-25 ${ }^{\circ}$ bedding 0-15 ${ }^{\circ}$	7,6,12,15,14	6,209
Region 3	TQs100-25 ${ }^{\circ}$ bedding 3-14 ${ }^{\circ}$	1,18,17,4,3,2	1,447.5
Region 4	Tmc100psf-25 ${ }^{\circ}$ bedding 0-15 ${ }^{\circ}$	18,9,8,13,19,17	8,396
Region 5	TQs100-25 ${ }^{\circ}$ bedding 3-14 ${ }^{\circ}$	15,16,5,12	19,364
Region 6	Tmc100psf-25 bedding 0-15	13,14,15,21,20,19	694.5

Current Slip Surface

Slip Surface: 76,07
Fof S: 1.54
Volume: $1,982.3892 \mathrm{ft}^{3}$
Weight: $237,886.7 \mathrm{lbs}$
Resisting Force: $118,932.65 \mathrm{lbs}$
Activating Force: $77,235.118 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 50 slip surfaces

Exit: $(129.16285,1,891.5814) \mathrm{ft}$
Entry: (265.97843, 1,956.3916) ft
Radius: 84.753865 ft
Center: (174.54501, 1,972.5941) ft
Slip Slices

	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	131.87213	$1,892.2329$	0	64.140147	29.909042	100
Slice 2	137.29071	$1,893.5359$	0	221.46642	103.27149	100
Slice 3	140.77451	$1,894.3737$	0	322.61716	150.43885	100
Slice 4	143.77451	$1,895.0951$	0	409.72099	191.05603	100
Slice 5	148.15872	$1,896.1493$	0	537.01468	250.41406	100
Slice 6	152.47615	$1,897.1876$	0	662.36961	308.86802	100
Slice 7	156.79358	$1,898.2258$	0	787.72455	367.32199	100
Slice 8	161.11101	$1,899.264$	0	913.07949	425.77596	100
Slice 9	165.42844	$1,900.3022$	0	$1,038.4344$	484.22993	100
Slice 10	169.74587	$1,901.3404$	0	$1,163.7894$	542.68389	100
Slice 11	174.14479	$1,902.3982$	0	$1,291.5248$	602.24791	99.9
Slice 12	178.6252	$1,903.4756$	0	$1,421.6117$	662.90844	99.9
Slice 13	183.10561	$1,904.553$	0	$1,551.6986$	723.56896	99.9
Slice 14	187.58602	$1,905.6304$	0	$1,681.7856$	784.22949	99.9
Slice 15	192.06643	$1,906.7078$	0	$1,811.8725$	844.89001	99.9
Slice 16	196.54684	$1,907.7852$	0	$1,941.9594$	905.55054	99.9
Slice 17	201.02725	$1,908.8626$	0	$2,072.0463$	966.21107	99.9
Slice 18	205.50765	$1,909.94$	0	$2,202.1332$	$1,026.8716$	99.9
Slice 19	209.98806	$1,911.0174$	0	$2,332.2202$	$1,087.5321$	99.9
Slice 20	214.46847	$1,912.0948$	0	$2,462.3071$	$1,148.1926$	99.9
1	0					

Slice 21	218.94888	$1,913.1722$	0	$2,592.394$	$1,208.8532$	99.9
Slice 22	223.42929	$1,914.2496$	0	$2,722.4809$	$1,269.5137$	99.9
Slice 23	227.9097	$1,915.327$	0	$2,852.5678$	$1,330.1742$	99.9
Slice 24	232.39011	$1,916.4044$	0	$2,982.6547$	$1,390.8347$	99.9
Slice 25	236.87052	$1,917.4818$	0	$3,112.7417$	$1,451.4953$	99.9
Slice 26	241.22188	$1,921.0355$	0	$1,678.1283$	$1,408.1168$	225
Slice 27	245.4442	$1,927.0656$	0	$1,413.3821$	$1,185.9684$	225
Slice 28	249.66652	$1,933.0957$	0	$1,148.636$	963.82006	225
Slice 29	253.88884	$1,939.1258$	0	883.88989	741.67168	225
Slice 30	258.49461	$1,945.7035$	0	534.34036	448.3648	225
Slice 31	263.48382	$1,952.8289$	0	99.987422	83.899409	225

1 - Circular Mode of Failure

Repotenatedura

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 97
Date: 3/19/2016
Time: 7:19:51 PM
Tool Version: 8.15.1.11236
File Name: Section 10-10 Static Final with keyway SSA for Skyline Ranch.gsz
Directory: C:\Users\Alexander\Desktop\LGC valley\original sections\}
Last Solved Date: 3/19/2016
Last Solved Time: 7:20:14 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exi
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
TQs $150-11^{\circ}$ bedding $0-6^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40
Phi-Anisotropic Strength Fn.: TQs $150-17^{\circ}$ bedding 0-6
C-Anisotropic Strength Fn.: 150 pcf- 11° bedding 0-6
Phi-B: 0
TQs $150-17^{\circ}$ bedding $0-6^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-17^{\circ}$ bedding 0-6
C-Anisotropic Strength Fn.: 150 pcf-17 ${ }^{\circ}$ bedding 0-6 ${ }^{\circ}$
Phi-B: 0°

Slip Surface Entry and Exit
Left Projection: Range
Left-Zone Left Coordinate: ($114.0248,1,897.657$) ft Left-Zone Right Coordinate: ($333.4764,1,956.7205$) ft Left-Zone Increment: 50
Right Projection: Range
Right-Zone Left Coordinate: ($350.425,1,966.4569$) ft
Right-Zone Right Coordinate: ($525.4812,2,021.6692$) ft
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: $(-200,1,800) \mathrm{ft}$
Right Coordinate: $(612,1,969) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

150 pcf- 11° bedding $0-6$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
segment Curvature: 0%
Y-Intercept: 0.667
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.667)$
Data Point: $(6,0.667)$
Data Point: $(6.1,1)$
TQs $150-17^{\circ}$ bedding $0-6^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.425
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: ($0,0.425$)
Data Point: $(6,0.425)$
Data Point: $(6.1,1)$
150 pcf- 17° bedding $0-6^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.667
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.667)$
Data Point: $(6,0.667)$
Data Point: $(6.1,1)$

Points		
	X (ft)	Y (f)
Point 1	-175	1,893
Point 2	-105	1,893
Point 3	-94	1,899
Point 4	-2	1,895
Point 5	129	1,898
Point 6	173	1,898
Point 7	180	1,905
Point 8	220	1,909
Point 9	253	1,925
Point 10	263	1,925
Point 11	315	1,951
Point 12	327	1,953
Point 13	374	1,980
Point 14	388	1,980
Point 15	432	2,005
Point 16	477	2,014
Point 17	550	2,014
Point 18	573	1,996
Point 19	612	1,969
Point 20	612	1,878
Point 21	612	1,802
Point 22	299	1,800
Point 23	51	1,800
Point 24	-175	1,800
Point 25	-200	1,800
Point 26	-175.1684	1,877
Point 27	-122	1,833
Point 28	-95	1,826
Point 29	53	1,896.2595
Point 30	13	1,877.2704
Point 31	-30	1,800
Point 32	612	1,862
Point 33	-199	1,893
Point 34	193	1,878
Point 35	253	1,878
Point 36	508	2,024
Point 37	538	2,020

Regions

	Material	Points	

			Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Fill	$26,27,28,30,29,4,3,2,1$	8,996
Region 2	TQs $150-11^{\circ}$ bedding $0-6^{\circ}$	$31,23,22,21,32$	19,589
Region 3	TQs $150-17^{\circ}$ bedding $0-6^{\circ}$	$31,32,20,19,18,17,37,35,34,6,5,29,30,28,27,26,1,33,25,24$	70,166
Region 4	Fill	$6,34,35,37,36,16,15,14,13,12,11,10,9,8,7$	11,889

Current Slip Surface

Slip Surface: 87,378
F of S: 1.83
Volume: $3,220.1592 \mathrm{ft}^{3}$
Weight: 386,419.11 lbs
Resisting Moment: 76,374,330 lbs-ft
Activating Moment: 41,799,057 lbs-ft
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 50 slip surfaces
Exit: (263.09824, 1,925.0491) ft
Entry: (452.53556, 2,009.1071) ft
Radius: 275.23527 ft
Center: (254.39858, 2,200.1469) ft
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	266.3421	$1,925.19$	0	170.35033	110.6268	200
Slice 2	272.82982	$1,925.5487$	0	504.59684	327.68902	200
Slice 3	279.31754	$1,926.0613$	0	815.45248	529.56103	200
Slice 4	285.80526	$1,926.7289$	0	$1,103.3308$	716.51143	200
Slice 5	292.29298	$1,927.5524$	0	$1,368.5909$	888.7733	200
Slice 6	298.7807	$1,928.5334$	0	$1,611.54$	$1,046.5463$	200
Slice 7	305.26842	$1,929.6735$	0	$1,832.437$	$1,189.9985$	200
Slice 8	311.75614	$1,930.9749$	0	$2,031.4938$	$1,319.2675$	200
Slice 9	318	$1,932.3787$	0	$2,092.263$	$1,358.7315$	200
	324	$1,933.8754$	0	$2,019.1095$	$1,311.225$	200

Slice 10						
Slice 11	330.35714	$1,935.6236$	0	$2,073.9016$	$1,346.8074$	200
Slice 12	337.07143	$1,937.6449$	0	$2,250.9306$	$1,461.7715$	200
Slice 13	343.78571	$1,939.8551$	0	$2,404.0566$	$1,561.2126$	200
Slice 14	350.5	$1,942.259$	0	$2,533.2287$	$1,645.0979$	200
Slice 15	357.21429	$1,944.8622$	0	$2,638.3431$	$1,713.36$	200
Slice 16	363.92857	$1,947.6706$	0	$2,719.2418$	$1,765.8962$	200
Slice 17	370.64286	$1,950.6915$	0	$2,775.71$	$1,802.5672$	200
Slice 18	377.5	$1,954.0063$	0	$2,602.7087$	$1,690.2188$	200
Slice 19	384.5	$1,957.6344$	0	$2,205.4244$	$1,432.2193$	200
Slice 20	391.14286	$1,961.3115$	0	$1,990.0447$	$1,292.3501$	200
Slice 21	397.42857	$1,965.0228$	0	$1,952.2516$	$1,267.807$	200
Slice 22	403.71429	$1,968.9645$	0	$1,891.59$	$1,228.4129$	200
Slice 23	410	$1,973.1488$	0	$1,807.5807$	$1,173.8566$	200
Slice 24	416.28571	$1,977.5892$	0	$1,699.6805$	$1,103.7854$	200
Slice 25	422.57143	$1,982.3016$	0	$1,567.277$	$1,017.8016$	200
Slice 26	428.85714	$1,987.3039$	0	$1,409.6837$	915.45932	200
Slice 27	435.42259	$1,992.869$	0	$1,101.178$	715.11335	200
Slice 28	442.26778	$1,999.0557$	0	644.12484	418.29956	200
Slice 29	449.11297	$2,005.6802$	0	162.08651	105.26021	200

1 - Circular Mode of Failure

Report generated using GeoStudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 92
Date: 3/19/2016
Time: 7:00:06 PM
Tool Version: 8.15.1.11236
File Name: Section 10-10 Seismic Final with keyway SSA for Skyline Ranch.gsz
Directory: C:\Users\Alexander\Desktop\LGC valley\original sections\}
Last Solved Date: 3/19/2016
Last Solved Time: 7:07:10 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure

Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
TQs $150-11^{\circ}$ bedding $0-6^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-17^{\circ}$ bedding 0-6 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 150pcf-11 ${ }^{\circ}$ bedding 0-6 ${ }^{\circ}$
Phi-B: 0°
TQs $150-17^{\circ}$ bedding $0-6^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-17^{\circ}$ bedding 0-6
C-Anisotropic Strength Fn.: 150pcf-17 ${ }^{\circ}$ bedding 0-6 ${ }^{\circ}$
Phi-B: 0°

Slip Surface Entry and Exit

Left Projection: Range
Left-Zone Left Coordinate: (114.0248, 1,897.657) ft
Left-Zone Right Coordinate: (333.4764, 1,956.7205) ft
Left-Zone Increment: 50
Right Projection: Range
Right-Zone Left Coordinate: (350.425, 1,966.4569) ft
Right-Zone Right Coordinate: $(525.4812,2,021.6692) \mathrm{ft}$
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: $(-200,1,800) \mathrm{ft}$
Right Coordinate: $(612,1,969) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

150 pcf- 11° bedding $0-6^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0 \%
Y-Intercept: 0.667
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.667)$
Data Point: $(6,0.667)$
Data Point: $(6.1,1)$
TQs $150-17^{\circ}$ bedding $0-6^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0 \%
Y-Intercept: 0.425
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: (0, 0.425)
Data Point: $(6,0.425)$
Data Point: $(6.1,1)$
150pcf-17 ${ }^{\circ}$ bedding $0-6^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0 \%
Y-Intercept: 0.667
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: (0, 0.667)
Data Point: $(6,0.667)$
Data Point: $(6.1,1)$

Points

	X (ft)	Y (ft)
Point 1	-175	1,893
Point 2	-105	1,893
Point 3	-94	1,899
Point 4	-2	1,895
Point 5	129	1,898
Point 6	173	1,898
Point 7	180	1,905
Point 8	220	1,909
Point 9	253	1,925
Point 10	263	1,925
Point 11	315	1,951
Point 12	327	1,953
Point 13	374	1,980
Point 14	388	1,980
Point 15	432	2,005
Point 16	477	2,014
Point 17	550	2,014
Point 18	573	1,996
Point 19	612	1,969
Point 20	612	1,878
Point 21	612	1,802
Point 22	299	1,800
Point 23	51	1,800
Point 24	-175	1,800
Point 25	-200	1,800
Point 26	-175.1684	1,877
Point 27	-122	1,833
Point 28	-95	1,826
Point 29	53	1,896.2595
Point 30	13	1,877.2704
Point 31	-30	1,800
Point 32	612	1,862
Point 33	-199	1,893
Point 34	193	1,878
Point 35	253	1,878
Point 36	508	2,024
Point 37	538	2,020

Regions

	Material	Points	

			Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Fill	$26,27,28,30,29,4,3,2,1$	8,996
Region 2	TQs 150-11 bedding 0-6	$31,23,22,21,32$	19,589
Region 3	TQs 150-17 bedding 0-6	$31,32,20,19,18,17,37,35,34,6,5,29,30,28,27,26,1,33,25,24$	70,166
Region 4	Fill	$6,34,35,37,36,16,15,14,13,12,11,10,9,8,7$	11,889

Current Slip Surface

Slip Surface: 61,570
F of S: 1.29
Volume: $4,845.2894 \mathrm{ft}^{3}$
Weight: 581,434.73 lbs
Resisting Moment: $1.5192364 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
Activating Moment: $1.1738992 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 50 slip surfaces
Exit: (218.35144, 1,908.8351) ft
Entry: $(467.27523,2,012.055) \mathrm{ft}$
Radius: 391.16783 ft
Center: (202.14986, 2,299.6673) ft
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	219.17572	$1,908.8711$	0	-1.1093562	-0.72042433	200
Slice 2	224.125	$1,909.1391$	0	208.75719	135.5685	200
Slice 3	232.375	$1,909.6909$	0	601.79972	390.81331	200
Slice 4	240.625	$1,910.4183$	0	966.73558	627.80542	200
Slice 5	248.875	$1,911.3224$	0	$1,304.2256$	846.974	200
Slice 6	258	$1,912.5401$	0	$1,373.7608$	892.1307	200
Slice 7	267.33333	$1,913.9938$	0	$1,433.4381$	930.88557	200
Slice 8	276	$1,915.5593$	0	$1,717.9318$	$1,115.638$	200
Slice 9	284.66667	$1,917.3277$	0	$1,974.1637$	$1,282.0369$	200
	293.33333	$1,919.3017$	0	$2,202.5694$	$1,430.3653$	200

file:///C:/Users/Alexander/Desktop/LGC\%20valley/original\%20sections/section\%2010-10... 3/19/2016

Slice 10						
Slice 11	302	$1,921.4846$	0	$2,403.5279$	$1,560.8693$	200
Slice 12	310.66667	$1,923.8801$	0	$2,577.3648$	$1,673.7603$	200
Slice 13	321	$1,927.0452$	0	$2,539.9395$	$1,649.456$	200
Slice 14	330.91667	$1,930.3244$	0	$2,500.9306$	$1,624.1233$	200
Slice 15	338.75	$1,933.1496$	0	$2,641.8007$	$1,715.6054$	200
Slice 16	346.58333	$1,936.1656$	0	$2,759.997$	$1,792.363$	200
Slice 17	354.41667	$1,939.3771$	0	$2,855.5741$	$1,854.4315$	200
Slice 18	362.25	$1,942.7895$	0	$2,928.5539$	$1,901.8252$	200
Slice 19	370.08333	$1,946.4085$	0	$2,978.9251$	$1,934.5366$	200
Slice 20	377.5	$1,950.0257$	0	$2,813.4162$	$1,827.0539$	200
Slice 21	384.5	$1,953.6253$	0	$2,440.1515$	$1,584.6529$	200
Slice 22	392.4	$1,957.9192$	0	$2,239.8111$	$1,454.5503$	200
Slice 23	401.2	$1,962.9698$	0	$2,201.1826$	$1,429.4647$	200
Slice 24	410	$1,968.3312$	0	$2,133.6531$	$1,385.6105$	200
Slice 25	418.8	$1,974.0186$	0	$2,036.95$	$1,322.8108$	200
Slice 26	427.6	$1,980.0495$	0	$1,910.748$	$1,240.8543$	200
Slice 27	436.4094	$1,986.4511$	0	$1,612.7149$	$1,047.3093$	200
Slice 28	445.22821	$1,993.2468$	0	$1,149.2693$	746.3442	200
Slice 29	454.04702	$2,000.4569$	0	664.5264	431.54849	200
Slice 30	462.86582	$2,008.112$	0	158.5394	102.95669	200

A-973

file:///C:/Users/Alexander/Desktop/LGC\%20valley/original\%20sections/section\%2010-10... 3/19/2016

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 95
Date: 3/19/2016
Time: 7:14:14 PM
Tool Version: 8.15.1.11236
File Name: Section 10-10 Static Final with keyway SSA for Skyline Ranch.gsz
Directory: C:\Users\Alexander\Desktop\LGC valley\original sections\}
Last Solved Date: 3/19/2016
Last Solved Time: 7:14:29 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pc
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B:
TQs $150-11^{\circ}$ bedding $0-6^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-17^{\circ}$ bedding 0-6
C-Anisotropic Strength Fn.: 150 pcf- 11° bedding 0-6
Phi-B: 0°
TQs $150-17^{\circ}$ bedding 0-6 ${ }^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs 150-17 bedding 0-6
C-Anisotropic Strength Fn.: 150 pcf-17 ${ }^{\circ}$ bedding 0-6 ${ }^{\circ}$
Phi-B: 0°

Slip Surface Limits
Left Coordinate: $(-200,1,800)$ ft
Right Coordinate: $(612,1,969) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: $(207,1,894) \mathrm{ft}$
Lower Left: $(229,1,828) \mathrm{ft}$
Lower Right: (353, 1,872) ft
X Increments: 10
Y Increments: 10

2-Translational

Starting Angle: 135°
Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: (373.9817, 1,953.006) ft
Lower Left: (411.6124, 1,862.1107) ft Lower Right: $(574.679,1,945.8768)$ ft X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

150 pcf- 11° bedding $0-6^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

Curve Fit to Data: 100 \%

Segment Curvature: 0%
Y-Intercept: 0.667
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.667)$
Data Point: $(6,0.667)$
Data Point: $(6.1,1)$
TQs $150-17^{\circ}$ bedding $0-6^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.425
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.425)$
Data Point: $(6,0.425)$
Data Point: $(6.1,1)$
150 pcf- 17° bedding $0-6^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

2 - Translational

Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.667
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.667)$
Data Point: $(6,0.667)$
Data Point: $(6.1,1)$

Points
\qquad $\mathrm{X}(\mathrm{ft})$ $\mathrm{Y}(\mathrm{ft})$ Point 1 -175 1,893 Point 2 -105 1,893 Point 3 -94 1,899 Point 4 -2 1,895 Point 5 129 1,898 Point 6 173 1,898 Point 7 180 1,905 Point 8 220 1,909 Point 9 253 1,925 Point 10 263 1,925 Point 11 315 1,951 Point 12 327 1,953 Point 13 374 1,980 Point 14 388 1,980 Point 15 432 2,005 Point 16 477 2,014 Point 17 550 2,014 Point 18 573 1,996 Point 19 612 1,969 Point 20 612 1,878 Point 21 612 1,802 Point 22 299 1,800 Point 23 51 1,800 Point 24 -175 1,800 Point 25 -200 1,800 Point 26 -175.1684 1,877 Point 27 -122 1,833 Point 28 -95 1,826 Point 29 53 $1,896.2595$ Point 30 13 $1,877.2704$ Point 31 -30 1,800 Point 32 612 1,862

Point 33	-199	1,893
Point 34	193	1,878
Point 35	253	1,878
Point 36	508	2,024
Point 37	538	2,020

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Fill	$26,27,28,30,29,4,3,2,1$	8,996
Region 2	TQs $150-11^{\circ}$ bedding $0-6^{\circ}$	$31,23,22,21,32$	19,589
Region 3	TQs $150-17^{\circ}$ bedding $0-6^{\circ}$	$31,32,20,19,18,17,37,35,34,6,5,29,30,28,27,26,1,33,25,24$	70,166
Region 4	Fill	$6,34,35,37,36,16,15,14,13,12,11,10,9,8,7$	11,889

Current Slip Surface

Slip Surface: 88,709
F of S : 1.68
Volume: $13,456.281 \mathrm{ft}^{3}$
Weight: $1,614,753.8 \mathrm{lbs}$
Resisting Force: $682,879.44 \mathrm{lbs}$
Activating Force: $406,970.26 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 50 slip surfaces
Exit: $(220.77194,1,909.3743) \mathrm{ft}$
Entry: (491.07679, 2,018.5409) ft
Radius: 163.0926 ft
Center: (322.85795, 2,045.8326) ft

Slip Slices

	X (ft)	$Y(\mathrm{ft})$	$\begin{aligned} & \hline \text { PWP } \\ & \text { (psf) } \\ & \hline \end{aligned}$	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
$\begin{aligned} & \text { Slice } \\ & 1 \end{aligned}$	224.80045	1,907.7056	0	576.96079	374.68272	200
$\begin{aligned} & \text { Slice } \\ & 2 \end{aligned}$	232.85747	1,904.3683	0	1,612.8226	1,047.3793	200
$\begin{aligned} & \text { Slice } \\ & 3 \end{aligned}$	240.91448	1,901.031	0	2,648.6845	1,720.0758	200

[^20]| Slice
 4 | 248.97149 | $1,897.6936$ | 0 | $3,684.5464$ | $2,392.7724$ | 200 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Slice
 5 | 258 | $1,893.9539$ | 0 | $4,498.6414$ | $2,921.4519$ | 200 |
| Slice
 6 | 268.57993 | $1,892.3923$ | 0 | $4,091.7363$ | $2,657.2046$ | 200 |
| Slice
 7 | 279.63978 | $1,893.4526$ | 0 | $4,592.7697$ | $2,982.5795$ | 200 |
| Slice
 8 | 290.09976 | $1,894.5041$ | 0 | $5,181.2522$ | $1,584.0678$ | 150.075 |
| Slice
 9 | 300.05986 | $1,895.5054$ | 0 | $5,650.092$ | $1,727.4065$ | 150.075 |
| Slice
 10 | 310.01995 | $1,896.5066$ | 0 | $6,118.9318$ | $1,870.7452$ | 150.075 |
| Slice
 11 | 321 | $1,897.6104$ | 0 | $6,400.1135$ | $1,956.7111$ | 150.075 |
| Slice
 12 | 331.7 | $1,898.686$ | 0 | $6,709.3549$ | $2,051.2556$ | 150.075 |
| Slice
 13 | 341.1 | $1,899.631$ | 0 | $7,234.3141$ | $2,211.7518$ | 150.075 |
| Slice
 14 | 350.5 | $1,900.5759$ | 0 | $7,759.2733$ | $2,372.2479$ | 150.075 |
| Slice
 15 | 359.9 | $1,901.5209$ | 0 | $8,284.2325$ | $2,532.744$ | 150.075 |
| Slice
 16 | 369.3 | $1,902.4658$ | 0 | $8,809.1917$ | $2,693.2402$ | 150.075 |
| Slice
 17 | 377.5 | $1,903.2901$ | 0 | $9,030.2122$ | $2,760.8129$ | 150.075 |
| Slice
 18 | 384.5 | $1,903.9938$ | 0 | $8,947.294$ | $2,735.4623$ | 150.075 |
| Slice
 19 | 392.14446 | $1,904.7623$ | 0 | $9,134.2196$ | $2,792.6112$ | 150.075 |
| Slice
 20 | 400.43339 | $1,905.5955$ | 0 | $9,590.9891$ | $2,932.2596$ | 150.075 |
| Slice
 21 | 408.72232 | $1,906.4288$ | 0 | $10,047.759$ | $3,071.9081$ | 150.075 |
| Slice
 22 | 417.65008 | $1,913.6767$ | 0 | $5,702.2777$ | $4,784.7791$ | 225 |
| Slice
 23 | 427.2167 | $1,927.3392$ | 0 | $5,127.1506$ | $4,302.1902$ | 225 |
| Slice
 24 | 436.43803 | $1,940.5087$ | 0 | $4,458.5518$ | $3,741.1692$ | 225 |
| Slice
 25 | 445.31408 | $1,953.185$ | 0 | $3,696.4813$ | $3,101.7161$ | 225 |
| Slice
 26 | 454.19014 | $1,965.8613$ | 0 | $2,934.4107$ | $2,462.263$ | 225 |
| Slice
 27 | 463.0662 | $1,978.5376$ | 0 | $2,172.3402$ | $1,822.8099$ | 225 |

file:///C:/Users/Alexander/Desktop/LGC\%20valley/original\%20sections/section\%2010-10... $3 / 19 / 2016$

2 - Translational \quad Page 7 of 7

Slice 28	472.25211	$1,991.6565$	0	$1,541.5795$	$1,001.1134$	200
Slice 29	480.5192	$2,003.4631$	0	791.13205	513.76716	200
Slice 30	487.55759	$2,013.515$	0	190.46801	123.69137	200

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 92
Date: 3/19/2016
Time: 7:00:06 PM
Tool Version: 8.15.1.11236
File Name: Section 10-10 Seismic Final with keyway SSA for Skyline Ranch.gsz
Directory: C:\Users\Alexander\Desktop\LGC valley\original sections\}
Last Solved Date: 3/19/2016
Last Solved Time: 7:02:03 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B:
TQs $150-11^{\circ}$ bedding $0-6^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-17^{\circ}$ bedding 0-6
C-Anisotropic Strength Fn.: 150 pcf- 11° bedding 0-6
Phi-B: 0°
TQs $150-17^{\circ}$ bedding 0-6 ${ }^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-17^{\circ}$ bedding 0-6
C-Anisotropic Strength Fn.: 150 pcf-17 ${ }^{\circ}$ bedding 0-6 ${ }^{\circ}$
Phi-B: 0°

Slip Surface Limits
Left Coordinate: $(-200,1,800)$ ft
Right Coordinate: $(612,1,969) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: $(207,1,894) \mathrm{ft}$
Lower Left: $(229,1,828) \mathrm{ft}$
Lower Right: (353, 1,872) ft
X Increments: 10
Y Increments: 10

2-Translational

Starting Angle: 135°
Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: (373.9817, 1,953.006) ft
Lower Left: (411.6124, 1,862.1107) ft Lower Right: $(574.679,1,945.8768)$ ft X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

150 pcf- 11° bedding $0-6^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

Curve Fit to Data: 100%

Segment Curvature: 0%
Y-Intercept: 0.667
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.667)$
Data Point: $(6,0.667)$
Data Point: $(6.1,1)$
TQs $150-17^{\circ}$ bedding 0-6
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.425
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.425)$
Data Point: $(6,0.425)$
Data Point: $(6.1,1)$
150 pcf- -17° bedding $0-6^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

2 - Translational

Curve Fit to Data: 100 \%
Segment Curvature: 0 \%
Y-Intercept: 0.667
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.667)$
Data Point: $(6,0.667)$
Data Point: $(6.1,1)$

Points
\qquad $\mathrm{X}(\mathrm{ft})$ $\mathrm{Y}(\mathrm{ft})$ Point 1 -175 1,893 Point 2 -105 1,893 Point 3 -94 1,899 Point 4 -2 1,895 Point 5 129 1,898 Point 6 173 1,898 Point 7 180 1,905 Point 8 220 1,909 Point 9 253 1,925 Point 10 263 1,925 Point 11 315 1,951 Point 12 327 1,953 Point 13 374 1,980 Point 14 388 1,980 Point 15 432 2,005 Point 16 477 2,014 Point 17 550 2,014 Point 18 573 1,996 Point 19 612 1,969 Point 20 612 1,878 Point 21 612 1,802 Point 22 299 1,800 Point 23 51 1,800 Point 24 -175 1,800 Point 25 -200 1,800 Point 26 -175.1684 1,877 Point 27 -122 1,833 Point 28 -95 1,826 Point 29 53 $1,896.2595$ Point 30 13 $1,877.2704$ Point 31 -30 1,800 Point 32 612 1,862

Point 33	-199	1,893
Point 34	193	1,878
Point 35	253	1,878
Point 36	508	2,024
Point 37	538	2,020

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Fill	$26,27,28,30,29,4,3,2,1$	8,996
Region 2	TQs $150-11^{\circ}$ bedding $0-6^{\circ}$	$31,23,22,21,32$	19,589
Region 3	TQs $150-17^{\circ}$ bedding $0-6^{\circ}$	$31,32,20,19,18,17,37,35,34,6,5,29,30,28,27,26,1,33,25,24$	70,166
Region 4	Fill	$6,34,35,37,36,16,15,14,13,12,11,10,9,8,7$	11,889

Current Slip Surface

Slip Surface: 99,572

F of S: 1.11
Volume: 16,392.944 ft ${ }^{3}$
Weight: $1,967,153.3 \mathrm{lbs}$
Resisting Force: 770,188.39 lbs
Activating Force: 696,251.3 lbs
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 50 slip surfaces
Exit: $(213.86735,1,908.3867) \mathrm{ft}$
Entry: $(524.38023,2,021.816) \mathrm{ft}$
Radius: 174.70961 ft
Radius: 174.70961 ft
Center: $(338.04733,2,050.1733) \mathrm{ft}$
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	216.93367	$1,907.1166$	0	348.42727	226.27131	200
Slice 2	224.76667	$1,903.8721$	0	$1,277.1805$	829.41072	200
Slice 3	234.3	$1,899.9233$	0	$2,635.083$	$1,711.2429$	200

file:///C:/Users/Alexander/Desktop/LGC\%20valley/original\%20sections/section\%2010-10... 3/19/2016

Slice 4	243.83333	$1,895.9744$	0	$3,992.9855$	$2,593.0751$	200
Slice 5	250.8	$1,894.2249$	0	$3,346.2791$	$2,173.0991$	200
Slice 6	258	$1,894.9608$	0	$3,383.7224$	$2,197.415$	200
Slice 7	268.25613	$1,896.0092$	0	$3,562.582$	$2,313.5678$	200
Slice 8	278.76839	$1,897.0837$	0	$4,036.034$	$2,621.0311$	200
Slice 9	289.28064	$1,898.1582$	0	$4,509.486$	$2,928.4944$	200
Slice 10	299.65258	$1,899.2184$	0	$5,134.421$	$1,569.75$	150.075
Slice 11	309.88419	$1,900.2643$	0	$5,609.4308$	$1,714.9751$	150.075
Slice 12	321	$1,901.4005$	0	$5,892.0677$	$1,801.3859$	150.075
Slice 13	331.7	$1,902.4942$	0	$6,196.2494$	$1,894.3835$	150.075
Slice 14	341.1	$1,903.4551$	0	$6,714.3486$	$2,052.7824$	150.075
Slice 15	350.5	$1,904.4159$	0	$7,232.4479$	$2,211.1812$	150.075
Slice 16	359.9	$1,905.3767$	0	$7,750.5471$	$2,369.5801$	150.075
Slice 17	369.3	$1,906.3376$	0	$8,268.6464$	$2,527.9789$	150.075
Slice 18	381	$1,907.5335$	0	$8,444.1871$	$2,581.6471$	150.075
Slice 19	393.5	$1,908.8112$	0	$8,659.7862$	$2,647.5623$	150.075
Slice 20	404.5	$1,909.9356$	0	$9,258.0021$	$2,830.4553$	150.075
Slice 21	415.5	$1,911.06$	0	$9,856.218$	$3,013.3483$	150.075
Slice 22	426.5	$1,912.1844$	0	$10,454.434$	$3,196.2412$	150.075
Slice 23	436.31079	$1,913.1872$	0	$10,802.738$	$3,302.7285$	150.075
Slice 24	444.93238	$1,914.0685$	0	$10,901.131$	$3,332.8102$	150.075
Slice 25	453.86931	$1,921.1159$	0	$4,951.0517$	$4,154.4256$	225
Slice 26	463.12158	$1,934.3296$	0	$4,295.6757$	$3,604.4999$	225
Slice 27	472.37386	$1,947.5432$	0	$3,640.2998$	$3,054.5742$	225

file:///C:/Users/Alexander/Desktop/LGC\%20valley/original\%20sections/section\%2010-10... $3 / 19 / 2016$

2 - Translational \quad Page 7 of 7

Slice 28	482.16667	$1,961.5287$	0	$2,983.1638$	$2,503.1717$	225
Slice 29	492.5	$1,976.2863$	0	$2,324.2679$	$1,950.2923$	225
Slice 30	502.83333	$1,991.0438$	0	$1,665.3719$	$1,397.413$	225
Slice 31	511.56492	$2,003.5138$	0	$1,014.8699$	851.57692	225
Slice 32	519.75504	$2,015.2105$	0	331.69356	215.40432	200

2 - Translational

Report generated using GeoStudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 100
Date: 3/19/2016
Time: 7:32:52 PM
Tool Version: 8.15.1.11236
File Name: Section 10-10 Static Final Temporary without keyway SSA for Skyline Ranch.gsz
Directory: C:\Users\Alexander\Desktop\LGC valley\original sections\}
Last Solved Date: 3/19/2016
Last Solved Time: 7:33:40 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B. 0°
TQs $150-11^{\circ}$ bedding $0-6^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-17^{\circ}$ bedding 0-6
C-Anisotropic Strength Fn.: 150 pcf- 11° bedding 0-6
Phi-B: 0°
TQs $150-17^{\circ}$ bedding 0-6 ${ }^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-17^{\circ}$ bedding 0-6
C-Anisotropic Strength Fn.: 150 pcf-17 ${ }^{\circ}$ bedding 0-6 ${ }^{\circ}$
Phi-B: 0°

Slip Surface Limits
Left Coordinate: $(-200,1,800) \mathrm{ft}$
Right Coordinate: $(612,1,969) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: $(207,1,894)$ ft
Lower Left: $(229,1,828) \mathrm{ft}$
Lower Right: (353, 1,872) ft
X Increments: 10
Y Increments: 10

2-Translational

Starting Angle: 135°
Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: (373.9817, 1,953.006) ft
Lower Left: (411.6124, 1,862.1107) ft
Lower Right: (574.679, 1,945.8768) ft
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

150 pcf- 11° bedding $0-6^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

Curve Fit to Data: 100%

Segment Curvature: 0%
Y-Intercept: 0.667
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.667)$
Data Point: $(6,0.667)$
Data Point: $(6.1,1)$
TQs $150-17^{\circ}$ bedding $0-6^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.425
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.425)$
Data Point: $(6,0.425)$
Data Point: $(6.1,1)$
150 pcf- 17° bedding $0-6^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

2 - Translational

Curve Fit to Data: 100 \%
 Segment Curvature: 0%

Y-Intercept: 0.667
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.667)$
Data Point: $(6,0.667)$
Data Point: $(6.1,1)$

Points

	$X(\mathrm{ft})$	$Y(\mathrm{ft})$
Point 1	-175	1,893
Point 2	-105	1,893
Point 3	-94	1,899
Point 4	-2	1,895
Point 5	129	1,898
Point 6	173	1,898
Point 7	550	2,014
Point 8	573	1,996
Point 9	612	1,969
Point 10	612	1,878
Point 11	612	1,802
Point 12	299	1,800
Point 13	51	1,800
Point 14	-175	1,800
Point 15	-200	1,800
Point 16	-175.1684	1,877
Point 17	-122	1,833
Point 18	-95	1,826
Point 19	53	$1,896.2595$
Point 20	13	$1,877.2704$
Point 21	-30	1,800
Point 22	612	1,862
Point 23	-199	1,893
Point 24	193	1,878
Point 25	253	1,878
Point 26	538	2,020

Regions

$\left.$| | Material | | Points |
| :--- | :--- | :--- | :---: | | Area |
| :---: |
| $\left(\mathrm{ft}^{2}\right)$ | \right\rvert\, | 8,996 |
| :--- | :--- |

Region 1			
Region 2	TQs 150-11 bedding 0-6	$21,13,12,11,22$	19,589
Region 3	TQs 150-17 bedding 0-6	$21,22,10,9,8,7,26,25,24,6,5,19,20,18,17,16,1,23,15,14$	70,166

Current Slip Surface

Slip Surface: 65,021
Fof S : 1.32
Volume: $12,250.598 \mathrm{ft}^{3}$
Weight: $1,470,071.8 \mathrm{lbs}$
Resisting Force: $542,715.93 \mathrm{lbs}$
Activating Force: $411,405.32 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 50 slip surfaces
Exit: (254.20423, 1,878.6) ft
Entry: (541.97298, 2,018.0135) ft
Radius: 188.34833 ft
Center: $(347.43302,2,052.8669) \mathrm{ft}$
Slip Slices

	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	260.90211	$1,878.6$	0	400.46316	122.43387	150.075
Slice 2	272.32923	$1,879.0433$	0	998.29944	305.21077	150.075
Slice 3	281.7877	$1,879.9298$	0	$1,447.7196$	442.61228	150.075
Slice 4	291.24616	$1,880.8163$	0	$1,897.1397$	580.0138	150.075
Slice 5	300.70463	$1,881.7028$	0	$2,346.5598$	717.41532	150.075
Slice 6	310.16309	$1,882.5893$	0	$2,795.9799$	854.81684	150.075
Slice 7	319.62156	$1,883.4758$	0	$3,245.4$	992.21836	150.075
Slice 8	329.08003	$1,884.3623$	0	$3,694.8201$	$1,129.6199$	150.075
Slice 9	338.53849	$1,885.2488$	0	$4,144.2402$	$1,267.0214$	150.075
Slice 10	347.99696	$1,886.1353$	0	$4,593.6604$	$1,404.4229$	150.075
Slice 11	357.45542	$1,887.0218$	0	$5,043.0805$	$1,541.8244$	150.075
	366.91389	$1,887.9083$	0	$5,492.5006$	$1,679.2259$	150.075

Slice 12						
Slice 13	376.37235	$1,888.7948$	0	$5,941.9207$	$1,816.6275$	150.075
Slice 14	385.83082	$1,889.6813$	0	$6,391.3408$	$1,954.029$	150.075
Slice 15	395.28928	$1,890.5678$	0	$6,840.7609$	$2,091.4305$	150.075
Slice 16	404.74775	$1,891.4543$	0	$7,290.1811$	$2,228.832$	150.075
Slice 17	414.20622	$1,892.3408$	0	$7,739.6012$	$2,366.2335$	150.075
Slice 18	423.66468	$1,893.2273$	0	$8,189.0213$	$2,503.6351$	150.075
Slice 19	433.12315	$1,894.1138$	0	$8,638.4414$	$2,641.0366$	150.075
Slice 20	442.58161	$1,895.0003$	0	$9,087.8615$	$2,778.4381$	150.075
Slice 21	452.04008	$1,895.8868$	0	$9,537.2816$	$2,915.8396$	150.075
Slice 22	461.84623	$1,903.5807$	0	$4,818.3043$	$4,043.0374$	225
Slice 23	472.00006	$1,918.0818$	0	$4,223.2569$	$3,543.7333$	225
Slice 24	482.1539	$1,932.583$	0	$3,628.2094$	$3,044.4292$	225
Slice 25	492.30774	$1,947.0842$	0	$3,033.1619$	$2,545.1251$	225
Slice 26	502.46157	$1,961.5854$	0	$2,438.1145$	$2,045.821$	225
Slice 27	512.61541	$1,976.0866$	0	$1,843.067$	$1,546.5169$	225
Slice 28	522.76925	$1,990.5877$	0	$1,248.0196$	$1,047.2128$	225
Slice 29	532.92308	$2,005.0889$	0	652.97212	547.90866	225
Slice 30	539.98649	$2,015.1765$	0	114.06313	95.71033	225

1 - Circular Mode of Failure

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
ast Edited By: Alexander Bykovtsev
Revision Number: 13
Date: 3/20/2016
Tool Version: 8.15.1.11236
File Name: Section 11-11 Static Final with 250' keyway SSA for Skyline Ranch.gs
Directory: C:\Users\Alexander\Desktop\LGC valley\original sections\}
Last Solved Date: 3/20/2016
Last Solved Time: 5:13:41 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: p
Strength Units: ps
of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
se Passive Mode: No
Slip Surface Option: Entry and Exit

esisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: №
ension Crack
Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30

F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Qls
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 0 ps
hi': 20
Phi-B: 0
TQs $150-17^{\circ}$ bedding $17-23^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TOS $150-17^{\circ}$ bedding 17-23
C-Anisotropic Strength Fn.: 150 pcf-17 ${ }^{\circ}$ bedding 17-23
Phi-B: 0
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': $33^{\circ}:$
TQs $150-11^{\circ}$ bedding $11-15^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-11^{\circ}$ bedding $11-15^{\circ}$
C-Anisotropic Strength Fn.: 150 pcf- 11° bedding $11-15^{\circ}$
Phi-B: $0{ }^{\circ}$
TQs $150-17^{\circ}$ bedding $5-15^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-17^{\circ}$ bedding 5-15
C-Anisotropic Strength Fn.: 150 pcf-17 ${ }^{\circ}$ bedding $11-15^{\circ}$
Phi-B: 0°

Slip Surface Entry and Exit
Left Projection: Range
Left-Zone Left Coordinate: $(130.2939,1,841)$ ft
Left-Zone Right Coordinate: ($255.214,1,870.1495$) ft
Left-Zone Increment: 50

1 - Circular Mode of Failure

Right Projection: Range
Right-Zone Left Coordinate: ($371.9441,1,906.4136$) ft
Right-Zone Right Coordinate: (760.9121, 2,017.6352) ft
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: $(-270,1,825) \mathrm{ft}$
Right Coordinate: $(815,1,994) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs $\mathbf{1 5 0 - 1 7}{ }^{\circ}$ bedding $\mathbf{1 7 - 2 3}{ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
ata Point: $(16.9,1)$
Data Point: $(17,0.425)$
Data Point: (23, 0.425
Data Point: $(23.1,1)$
150 pcf- 17° bedding $17-23^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(16.9,1)$
Data Point: $(17,0.667)$
Data Point: $(23,0.667)$
Data Point: $(23.1,1)$
TQs $150-17^{\circ}$ bedding $5-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)

1 - Circular Mode of Failure

Data Point: $(4.9,1)$
Data Point: $(5,0.425)$
Data Point: $(5,0.425)$
Data Point: $(15,0.425)$
Data Point: $(15.1,1)$
150 pcf- 17° bedding $11-15^{\circ}$
Model: Spline Data Point Function
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100% Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(4.9,1)$
Data Point: $(15,0.667)$
Data Point: $(15.1,1)$
TQs $150-11^{\circ}$ bedding $11-15$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \% Segment Curvature: 0% -Intercept: 1
Data Points: Inclination ($)$, Modifier Facto
Data Point: (-90, 1)
Data Point: $(10.9,1)$
Data Point: $(11,0.275)$
Data Point: $(17,0.275)$
Data Point: (17.1, 1)
150 pcf- 11° bedding $11-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%

-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: ($-90,1$)
Data Point: (111, 0.667
Data Point. (11, 0.667)
Da Point $(15.1,1)$

Points

ints

	$X(\mathrm{ft})$	$Y(\mathrm{ft})$
Point 1	-266	1,662
Point 2	815	1,994
Point 3	815	1,614
Point 4	-267	1,613
Point 5	-267	1,786
Point 6	-270	1,825

Point 7 -233 Point 8 -210 1,842		
Point 9	-179	1,856
Point 10	-147	1,859
Point 11	-89	1,801
Point 12	-103	1,870
Point 13	-26	1,872
Point 14	25	1,855
Point 15	67	1,841
Point 16	115	1,841
Point 17	74	1,829
Point 18	14	1,818
Point 19	-41	1,809
Point 20	169	1,841
Point 21	222	1,860
Point 22	236	1,861
Point 23	278	1,881
Point 24	290	1,881
Point 25	335	1,907
Point 26	398	1,906
Point 27	436	1,928
Point 28	450	1,928
Point 29	498	1,956
Point 30	524	1,956
375	1,986	
590	1,986	

Point 32		
Point 33	641	2,016
Point 34	678	2,022
Point 35	712	2,023
Point 36	741	2,025
Point 37	760	2,018
Point 38	790	2,006
Point 39	194	1,816
Point 40	454	1,816
Point 41	813	1,994
Point 42	300	1,816
Point 43	639	1,907

Regions

	Material	Points	Area (ft^{2})
Region 1	TQs 150-11 ${ }^{\circ}$ bedding 11-15	1,4,3,2,43,40,42	$2.0743 \mathrm{e}+005$
$\begin{aligned} & \text { Region } \\ & 2 \\ & \hline \end{aligned}$	Qls	5,6,7,8,9,10,11	8,715
$\begin{aligned} & \text { Region } \\ & 3 \end{aligned}$	Fill	10,12,13,14,15,16,17,18,19,11	9,960
$\begin{aligned} & \text { Region } \\ & 4 \end{aligned}$	$\begin{aligned} & \hline \text { TQs } \\ & 150-17^{\circ} \\ & \text { bedding } \\ & 17-23^{\circ} \\ & \hline \end{aligned}$	16,17,18,19,11,5,1,42,39,20	41,895
Region 5	TQs 150-17 bedding 5-15	2,41,43	87
Region 6	Fill	20,39,42,40,43,41,38,37,36,35,34,33,32,31,30,29,28,27,26,25,24,23,22,21	52,185

Current Slip Surface

Slip Surface: 111,395
F of S: 2.08

Volume: $13,457.952 \mathrm{ft}^{3}$
Weight: 1,614,954.2 lbs
Resisting Moment: $8.4519605 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
Activating Moment: 4.0620067 008 los-ft
Activating Moment: $4.0620062 \mathrm{e}+008$ libs-t
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 100 slip surfaces
Exit: (236.38743, 1,861.1845) ft
Entry: (694.99917, 2,022.5) ft
Radius: 765.84149 ft
Center: $(224.71301,2,626.937) \mathrm{ft}$

Slip Slices
X (ft) Y (ft) PWP (psf) Base Normal Stress (psf) Frictional Strength (psf) Cohesive Strength (psf) Slice 1 243.32286 $1,861.3531$ 0 370.93407 240.8874 200 Slice 2 257.19372 $1,861.8161$ 0 $1,094.5741$ 710.82476 200 Slice 3 271.06457 $1,862.5311$ 0 $1,780.4771$ $1,156.2554$ 200 Slice 4 284 $1,863.4175$ 0 $2,052.7439$ $1,333.0675$ 200 Slice 5 297.5 $1,864.5995$ 0 $2,407.2284$ $1,563.2724$ 200 Slice 6 312.5 $1,866.181$ 0 $3,211.6387$ $2,085.6626$ 200 Slice 7 327.5 $1,868.0623$ 0 $3,971.7733$ $2,579.2997$ 200 Slice 8 342.875 $1,870.308$ 0 $4,169.9869$ $2,708.0212$ 200 Slice 9 358.625 $1,872.9365$ 0 $3,814.3422$ $2,477.0628$ 200 Slice 10 374.375 $1,875.9044$ 0 $3,424.5553$ $2,223.9322$ 200 Slice 11 390.125 $1,879.2158$ 0 $3,000.8693$ $1,948.7873$ 200 Slice 12 407.5 $1,883.293$ 0 $3,121.9662$ $2,027.4285$ 200 Slice 13 426.5 $1,888.2231$ 0 $3,766.2189$ $2,445.8111$ 200 Slice 14 443 $1,892.8998$ 0 $3,828.4792$ $2,486.2435$ 200 Slice 15 458 $1,897.5401$ 0 $3,805.0151$ $2,471.0057$ 200 Slice 16 474 $1,902.853$ 0 $4,212.387$ $2,735.5561$ 200 Slice 17 490 $1,908.5616$ 0 $4,570.8406$ $2,968.3386$ 200 Slice 18 504.5 $1,914.067$ 0 $4,449.7307$ $2,889.6889$ 200 Slice 19 517.5 $1,919.3075$ 0 $3,864.7675$ $2,509.8094$ 200 Slice 20 532.5 $1,925.7279$ 0 $3,686.0226$ $2,393.7311$ 200 Slice 21 549.5 $1,933.4397$ 0 $3,893.678$ $2,528.584$ 200 Slice 22 566.5 $1,941.66$ 0 $4,044.0082$ $2,626.2096$ 200 Slice 23 582.5 $1,949.8626$ 0 $3,679.4836$ $2,389.4846$ 200 23 0

1 - Circular Mode of Failure

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
ast Edited By: Alexander Bykoytsev
Revision Number: 13
Date: 3/20/2016
Time: 5:04:15 PM
Tool Version: 8.15.1.11236
File Name: Section 11-11 Seismic Final with 250' keyway SSA for Skyline Ranch.gsz
Directory: C:\Users\Alexander\Desktop\LGC valley\original sections\}
last Solved Date: 3/20/2016
Last Solved Time: 5:07:26 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: p
Strength Units: ps
of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
se Passive Mode: No
Slip Surface Option: Entry and Exit
位
硅
riving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: №
Tension Crack
Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30

F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Qls
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 0 ps
hi': 20
Phi-B: 0
TQs $150-17^{\circ}$ bedding $17-23^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TOS $150-17^{\circ}$ bedding 17-23
C-Anisotropic Strength $\mathrm{Fn} .: 150$ pcf-17 ${ }^{\circ}$ bedding 17-23
Phi-B: 0
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°.
TQs $150-11^{\circ}$ bedding $11-15^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-11^{\circ}$ bedding $11-15^{\circ}$
C-Anisotropic Strength Fn.: 150 pcf- 11° bedding $11-15^{\circ}$
Phi-B: $0{ }^{\circ}$
TQs $150-17^{\circ}$ bedding $5-15^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-17^{\circ}$ bedding 5-15
C-Anisotropic Strength Fn.: 150 pcf-17 ${ }^{\circ}$ bedding $11-15^{\circ}$
Phi-B: 0°

Slip Surface Entry and Exit
Left Projection: Range
Left-Zone Left Coordinate: $(130.2939,1,841)$ ft
Left-Zone Right Coordinate: (255.214, 1,870.1495) ft
Left-Zone Increment: 50

1 - Circular Mode of Failure

Right Projection: Range
Right-Zone Left Coordinate: ($371.9441,1,906.4136$) ft
Right-Zone Right Coordinate: ($760.9121,2,017.6352$) ft
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: $(-270,1,825) \mathrm{ft}$
Right Coordinate: $(815,1,994) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs $\mathbf{1 5 0 - 1 7 ^ { \circ }}$ bedding $\mathbf{1 7 - 2 3 ^ { \circ }}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
ata Point: $(16.9,1)$
Data Point: $(17,0.425)$
Data Point: $(23,0.425)$
Data Point: $(23.1,1)$
150 pcf- 17° bedding $17-23^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(16.9,1)$
Data Point: $(17,0.667)$
Data Point: $(23,0.667)$
Data Point: $(23.1,1)$
TQs $150-17^{\circ}$ bedding 5-15 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)

1 - Circular Mode of Failure

Data Point: $(4.9,1)$
Data Point: ($5,0.425$)
Data Point: $(5,0.425)$
Data Point: $(15,0.425)$
Data Point: $(15.1,1)$
150 pcf- 17° bedding $11-15^{\circ}$
Model: Spline Data Point Function
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100% Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(4.9,1)$
Data Point: $(15,0.667)$
Data Point: $(15.1,1)$
TQs $150-11^{\circ}$ bedding $11-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \% Segment Curvature: 0% -Intercept: 1
Data Points: Inclination ($)$, Modifier Facto
Data Point: $(-90,1)$
Data Point: $(10.9,1)$
Data Point: $(11,0.275)$
Data Point: $(17,0.275)$
Data Point: $(17.1,1)$
150 pcf- 11° bedding $11-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Y-Intercept:1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(11,0.667)$
Data Point. (11, 0.667)
Daint: $115.1,1$)

Points

ints

	$X(\mathrm{ft})$	$Y(\mathrm{ft})$
Point 1	-266	1,662
Point 2	815	1,994
Point 3	815	1,614
Point 4	-267	1,613
Point 5	-267	1,786
Point 6	-270	1,825

Point 7	-233	1,842
Point 8	-210	1,852
Point 9	-179	1,856
Point 10	-147	1,859
Point 11	-89	1,801
Point 12	-103	1,870
Point 13	-26	1,872
Point 14	25	1,855
Point 15	67	1,841
Point 16	115	1,841
Point 17	74	1,829
Point 18	14	1,818
Point 19	-41	1,809
Point 20	169	1,841
Point 21	222	1,860
Point 22	236	1,861
Point 23	278	1,881
Point 24	290	1,881
Point 25	335	1,907
Point 26	398	1,906
Point 27	436	1,928
Point 28	450	1,928
Point 29	498	1,956
Point 30	524	1,956
375	1,986	
1,986		

file://C:/Users/Alexander/Desktop/LGC\%20valley/original\%20sections/Final\%20Results... 3/20/2016

Point 32 Point 33 641 Point 34 678 Point 35 712 22,022		
Point 36	741	2,025
Point 37	760	2,018
Point 38	790	2,006
Point 39	194	1,816
Point 40	454	1,816
Point 41	813	1,994
Point 42	300	1,816
Point 43	639	1,907

Regions

	Material	Points	Area (ft^{2})
$\begin{aligned} & \text { Region } \\ & 1 \end{aligned}$	TQs 150-11 ${ }^{\circ}$ bedding $11-15^{\circ}$	1,4,3,2,43,40,42	$2.0743 \mathrm{e}+005$
$\begin{aligned} & \text { Region } \\ & 2 \\ & \hline \end{aligned}$	Qls	5,6,7,8,9,10,11	8,715
$\begin{aligned} & \text { Region } \\ & 3 \end{aligned}$	Fill	10,12,13,14,15,16,17,18,19,11	9,960
$\begin{aligned} & \text { Region } \\ & 4 \end{aligned}$	TQs 150-17 ${ }^{\circ}$ bedding 17-23	16,17,18,19,11,5,1,42,39,20	41,895
$\begin{aligned} & \text { Region } \\ & 5 \end{aligned}$	TQs $150-17^{\circ}$ bedding 5-15	2,41,43	87
$\begin{aligned} & \text { Region } \\ & 6 \end{aligned}$	Fill	20,39,42,40,43,41, 38,37,36,35,34,33,32,31,30,29,28,27,26,25,24,23,22,21	52,185

Current Slip Surface

Slip Surface: 111,445
F of S: 1.40

Volume: $13,525.903 \mathrm{ft}^{3}$
Weight: 1,623,108.4 lbs
Resisting Moment: $8.8568221 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
Activating Moment: $6.319232 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 100 slip surfaces
Exit: ($236.38743,1,861.1845$) ft
Entry: (703.40902, 2,022.7473) ft
Radius: 836.89711 ft
Center: (208.48626, 2,697.6164) ft

Slip Slices						
	X (ft)	Y (ft)	$\begin{aligned} & \text { PWP } \\ & \text { (psf) } \end{aligned}$	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	243.32286	1,861.4734	0	348.97626	226.62783	200
Slice 2	257.19372	1,862.1667	0	1,034.8511	672.04019	200
Slice 3	271.06457	1,863.0911	0	1,683.6765	1,093.3923	200
Slice 4	284	1,864.1548	0	1,927.733	1,251.8844	200
Slice 5	297.5	1,865.5007	0	2,253.1932	1,463.2408	200
Slice 6	312.5	1,867.2425	0	3,018.1974	1,960.0403	200
Slice 7	327.5	1,869.2595	0	3,739.8716	2,428.701	200
Slice 8	342.875	1,871.6183	0	3,913.1576	2,541.2343	200
Slice 9	358.625	1,874.3357	0	3,549.3584	2,304.9803	200
$\begin{aligned} & \text { Slice } \\ & 10 \end{aligned}$	374.375	1,877.3645	0	3,157.1346	2,050.2672	200
Slice 11	390.125	1,880.7081	0	2,736.8888	1,777.3564	200
Slice 12	407.5	1,884.7851	0	2,848.3543	1,849.7429	200
$\begin{aligned} & \hline \text { Slice } \\ & 13 \end{aligned}$	426.5	1,889.6746	0	3,467.8152	2,252.0255	200
Slice 14	443	1,894.2815	0	3,528.2505	2,291.2727	200
$\begin{aligned} & \text { Slice } \\ & 15 \end{aligned}$	458	1,898.8239	0	3,509.5952	2,279.1578	200
Slice 16	474	1,903.9993	0	3,907.743	2,537.718	200
$\begin{aligned} & \hline \text { Slice } \\ & 17 \end{aligned}$	490	1,909.5335	0	4,261.0923	2,767.1857	200
$\begin{aligned} & \hline \text { Slice } \\ & 18 \\ & \hline \end{aligned}$	504.5	1,914.8493	0	4,157.114	2,699.6614	200
$\begin{aligned} & \hline \text { Slice } \\ & 19 \end{aligned}$	517.5	1,919.89	0	3,612.6961	2,346.1123	200
$\begin{aligned} & \text { Slice } \\ & 20 \end{aligned}$	532.5	1,926.0421	0	3,462.5969	2,248.6367	200
$\begin{aligned} & \hline \text { Slice } \\ & 21 \end{aligned}$	549.5	1,933.4045	0	3,686.9516	2,394.3344	200
$\begin{aligned} & \hline \text { Slice } \\ & 22 \\ & \hline \end{aligned}$	566.5	1,941.2206	0	3,860.8905	2,507.2916	200
$\begin{aligned} & \text { Slice } \\ & 23 \end{aligned}$	582.5	1,948.9908	0	3,549.6951	2,305.199	200

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 13
Date: 3/20/2016
Tool Version: 8.15.1.11236
File Name: Section 11-11 Static Final with 250' keyway SSA for Skyline Ranch.gs
Directory: C:\Users\Alexander\Desktop\LGC valley\original sections\}
Last Solved Date: 3/20/2016
Last Solved Time: 5:11:28 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: p
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janb
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
lip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: №
Tension Crack
Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced

Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Qls
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 0 ps
Phi': 20°
$150-17^{\circ}$ bedding 17-23
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 pst
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-17^{\circ}$ bedding 17-23*
C-Anisotropic Strength Fn.: 150pcf-17 bedding 17-23 ${ }^{\circ}$
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
TQs $150-11^{\circ}$ bedding $11-15^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-11^{\circ}$ bedding $11-15^{\circ}$
C-Anisotropic Strength Fn .: 150 pcf- 11° bedding $11-15^{\circ}$
Phi-B: 0
TQs $150-17^{\circ}$ bedding $5-15^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-17^{\circ}$ bedding 5-15 ${ }^{\circ}$ C-Anisotropic Strength Fn.: 150 pcf-17
Phi-B: 0° Phi-B: 0°

Slip Surface Limits
Left Coordinate: $(-270,1,825)$ ft
Right Coordinate: $(815,1,994) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: (462.0176, 1,878.9172) ft
Lower Left: (475.6569, 1,750.9259) ft
Lower Right: (571.9684, 1,795.6298) ft
X Increments: 10
Y Increments: 10
Starting Angle: 135°
Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: ($674.1719,1,984.603$) ft
Lower Left: (701.0288, 1,838.0786) ft
Lower Right: ($808.478,1,875.8575$) ft
X Increments: 10
Y Increments: 10
Starting Angle: $45{ }^{\circ}$
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs $150-17^{\circ}$ bedding $\mathbf{1 7 - 2 3}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: $(-90,1)$
Data Point: $(16.9,1)$
Data Point: $(17,0.425)$
Data Point: $(23,0.425)$
Data Point: $(23.1,1)$
150 pcf- 17° bedding $17-23^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(16.9,1)$
Data Point: $(17,0.667)$
Data Point: $(23,0.66)$
Data Point: $(23.1,1)$

TQs $150-17^{\circ}$ bedding $5-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment
V-Intercept: 1
Vata Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1
Data Point. (4.9, $)$
Data Point: $(5,0.425)$
Data Point: $(15.1,1)$
150 pcf- 17° bedding $11-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Curve Fit to Data: 100%
Segment
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$)
Data Point: (-90, 1)
Data Point: $(4.9,1)$
Data Point: $(5,0.667)$
Data Point: $(15,0.667)$
Data Point: $(15.1,1)$
TQs $150-11^{\circ}$ bedding 11-15
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$, Modifier Factor
Data Point: (-90, 1)
Data Point: $(10.9,1)$
Data Point: ($11,0.275$)
Data Point: ($17,0.275$
Data Point: $(17.1,1)$
150 pcf-11 ${ }^{\circ}$ bedding $11-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(10.9,1)$
ata Point: $(11,0.667$
Data Point: $(15,0.667)$
Data Point: $(15.1,1)$

Points

2-Translational

	X (ft)	$\mathrm{Y}(\mathrm{ft})$
Point 1	-266	1,662
Point 2	815	1,994
Point 3	815	1,614
Point 4	-267	1,613
Point 5	-267	1,786
Point 6	-270	1,825
Point 7	-233	1,842
Point 8	-210	1,852
Point 9	-179	1,856
Point 10	-147	1,859
Point 11	-89	1,801
Point 12	-103	1,870
Point 13	-26	1,872
Point 14	25	1,855
Point 15	67	1,841
Point 16	115	1,841
Point 17	74	1,829
Point 18	14	1,818
Point 19	-41	1,809
Point 20	169	1,841
Point 21	222	1,860
Point 22	236	1,861
Point 23	278	1,881
Point 24	290	1,881
	335	1,907

Regions

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs $150-11^{\circ}$ bedding $11-15^{\circ}$	$1,4,3,2,43,40,42$	$2.0743 \mathrm{e}+005$
Region 2	Qls	$5,6,7,8,9,10,11$	8,715
Region 3	Fill	$10,12,13,14,15,16,17,18,19,11$	9,960
		$16,17,18,19,11,5,1,42,39,20$	41,895

Region 4	TQs $150-17^{\circ}$ bedding $17-23^{\circ}$		
Region 5	TQs $150-17^{\circ}$ bedding $5-15^{\circ}$	$2,41,43$	87
Region 6	Fill	$20,39,42,40,43,41,38,37,36,35,34,33,32,31,30,29,28,27,26,25,24,23,22,21$	52,185

Current Slip Surface

Slip Surface: 76,011
Fof S : 1.82
Volume: $47,947.893 \mathrm{ft}^{3}$
Weight: 5,753,747.1 lbs
Resisting Force: $2,380,689.2 \mathrm{lbs}$
Activating Force: 1,311,665.4 lbs
F of S Rank (Analysis): 1 of 131,769 slip surfaces
Fof S Rank (Query): 1 of 100 slip surfaces
Ext. ((771.367793 , $1,841.1319$) ft
Radry: ($771.6343,2,013$
Center: $(433.5683,2,056.3999) \mathrm{ft}$
Slip Slices

	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	178.13983	$1,841.1319$	0	377.363	245.0624	200
Slice 2	195.6839	$1,841.1319$	0	$1,132.089$	735.18719	200
Slice 3	213.22797	$1,841.1319$	0	$1,886.815$	$1,225.312$	200
Slice 4	229	$1,841.1319$	0	$2,324.178$	$1,509.3388$	200
Slice 5	246.5	$1,841.1319$	0	$2,984.178$	$1,937.9479$	200
Slice 6	267.5	$1,841.1319$	0	$4,184.178$	$2,717.237$	200
Slice 7	284	$1,841.1319$	0	$4,784.178$	$3,106.8815$	200
Slice 8	301.25	$1,841.1319$	0	$5,564.178$	$3,613.4194$	200
Slice 9	323.75	$1,841.1319$	0	$7,124.178$	$4,626.4953$	200
Slice 10	345.5	$1,841.1319$	0	$7,884.178$	$5,120.0451$	200
Slice 11	366.5	$1,841.1319$	0	$7,844.178$	$5,094.0688$	200
Slice 12	387.5	$1,841.1319$	0	$7,804.178$	$5,068.0925$	200
Slice 13	407.5	$1,841.1319$	0	$8,444.178$	$5,483.7133$	200
Slice 14	426.5	$1,841.1319$	0	$9,764.178$	$6,340.9313$	200
Slice 15	443	$1,841.1319$	0	$10,424.178$	$6,769.5403$	200
	461.59169	$1,841.1319$	0	$11,235.596$	$7,296.4817$	200

Slice l6						
Slice 17	484.77508	$1,841.1319$	0	$12,858.433$	$8,350.3643$	200
Slice 18	497.18338	$1,841.3734$	0	$12,359.615$	$8,026.4281$	200
Slice 19	508.12566	$1,844.6098$	0	$12,060.058$	$7,831.8931$	200
Slice 20	521.12566	$1,848.4549$	0	$12,474.31$	$2,424.7602$	225
Slice 21	532.5	$1,851.8191$	0	$12,664.586$	$2,461.7461$	225
Slice 22	549.5	$1,856.8472$	0	$13,242.92$	$2,574.1628$	225
Slice 23	566.5	$1,861.8753$	0	$13,821.254$	$2,686.5795$	225
Slice 24	582.5	$1,866.6077$	0	$13,852.385$	$2,692.631$	225
Slice 25	602.25	$1,872.4492$	0	$14,011.091$	$2,723.4802$	225
Slice 26	626.75	$1,879.6956$	0	$14,844.572$	$2,885.4925$	225
Slice 27	640	$1,883.6146$	0	$15,295.332$	$2,973.1115$	225
Slice 28	650.25	$1,886.6463$	0	$15,185.591$	$2,951.7799$	225
Slice 29	668.75	$1,892.1181$	0	$14,898.069$	$2,895.8912$	225
Slice 30	686.5	$1,897.3681$	0	$14,490.948$	$2,816.755$	225
Slice 31	703.5	$1,902.3962$	0	$13,964.229$	$2,714.3712$	225
Slice 32	717.2604	$1,906.4661$	0	$13,562.087$	$2,636.2027$	225
Slice 33	731.7604	$1,927.8364$	0	$5,687.7821$	$4,772.6159$	225
Slice 34	743.96016	$1,953.9989$	0	$4,082.6731$	$3,425.7695$	225
Slice 35	753.46016	$1,974.3717$	0	$2,994.5629$	$1,944.6919$	200
Slice 36	765.81715	$2,000.8714$	0	872.1564	566.38499	200
	0	0				

2 - Translational

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
ast Edited By: Alexander Bykovtsev
Revision Number: 132
Date: 3/20/2016
Time: 5:04:15 PM
Tool Version: 815111236
File Name: Section 11-11 Seismic Final with 250 ' keyway SSA for Skyline Ranch.gsz
Directory: C:\Users\Alexander\Desktop\LGC valley\original sections\}
last Solved Date: 3/20/2016
last Solved Time: 5:04:30 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: p
Strength Units: psf
of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janb
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
se Passive Mode: No
ip Surface Option: Block
Critical slip surfaces saved: 10
esisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: №
Tension Crack
Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced

Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Qls
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 0 ps
Phi': 20°
$150-17^{\circ}$ bedding $17-23^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 pst
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-17^{\circ}$ bedding 17-23*
C-Anisotropic Strength Fn.: 150pcf-17 bedding 17-23 ${ }^{\circ}$
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
TQs $150-11^{\circ}$ bedding $11-15^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-11^{\circ}$ bedding $11-15^{\circ}$
C-Anisotropic Strength Fn .: 150 pcf- 11° bedding $11-15^{\circ}$
Phi-B: 0
TQs $150-17^{\circ}$ bedding $5-15^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-17^{\circ}$ bedding 5-15 ${ }^{\circ}$ C-Anisotropic Strength Fn.: 150 pcf-17
Phi-B: 0° Phi-B: 0°

Slip Surface Limits
Left Coordinate: $(-270,1,825)$ ft
Right Coordinate: $(815,1,994) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: (462.0176, 1,878.9172) ft
Lower Left: (475.6569, 1,750.9259) ft
Lower Right: (571.9684, 1,795.6298) ft
X Increments: 10
Y Increments: 10
Starting Angle: 135°
Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: ($674.1719,1,984.603$) ft
Lower Left: ($701.0288,1,838.0786$) ft
Lower Right: ($808.478,1,875.8575$) ft
X Increments: 10
Y Increments: 10
Starting Angle: $45{ }^{\circ}$
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs $150-17^{\circ}$ bedding $\mathbf{1 7 - 2 3 ^ { \circ }}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: $(-90,1)$
Data Point: $(16.9,1)$
Data Point: $(17,0.425)$
Data Point: $(23,0.425)$
Data Point: $(23.1,1)$
150 pcf- 17° bedding $17-23^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(16.9,1)$
Data Point: $(17,0.667)$
Data Point: $(23,0.66)$
Data Point: $(23.1,1)$

TQs $150-17^{\circ}$ bedding $5-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment
V-Intercept: 1
Vata Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point. (4.9, $)$
Data Point: $(5,0.425)$
Data Point: $(15.1,1)$
150 pcf- 17° bedding $11-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Curve Fit to Data: 100%
Segment
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$)
Data Point: (-90, 1)
Data Point: $(4.9,1)$
Data Point: $(15,0.667)$
Data Point: $(15.1,1)$
TQs $150-11^{\circ}$ bedding 11-15
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$, Modifier Factor
Data Point: (-90, 1)
Data Point: $(10.9,1)$
Data Point: ($11,0.275$)
Data Point: ($17,0.275$
Data Point: $(17.1,1)$
150 pcf-11 ${ }^{\circ}$ bedding $11-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(10.9,1)$
ata Point: $(11,0.667$
Data Point: $(15,0.667)$
Data Point: $(15.1,1)$

Points

2-Translational

	X (ft)	$\mathrm{Y}(\mathrm{ft})$
Point 1	-266	1,662
Point 2	815	1,994
Point 3	815	1,614
Point 4	-267	1,613
Point 5	-267	1,786
Point 6	-270	1,825
Point 7	-233	1,842
Point 8	-210	1,852
Point 9	-179	1,856
Point 10	-147	1,859
Point 11	-89	1,801
Point 12	-103	1,870
Point 13	-26	1,872
Point 14	25	1,855
Point 15	67	1,841
Point 16	115	1,841
Point 17	74	1,829
Point 18	14	1,818
Point 19	-41	1,809
Point 20	169	1,841
Point 21	222	1,860
Point 22	236	1,861
Point 23	278	1,881
Point 24	290	1,881
	335	1,907

Regions

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs $150-11^{\circ}$ bedding $11-15^{\circ}$	$1,4,3,2,43,40,42$	$2.0743 \mathrm{e}+005$
Region 2	Qls	$5,6,7,8,9,10,11$	8,715
Region 3	Fill	$10,12,13,14,15,16,17,18,19,11$	9,960
		$16,17,18,19,11,5,1,42,39,20$	41,895

Region 4	TQs $150-17^{\circ}$ bedding $17-23^{\circ}$		
Region 5	TQs $150-17^{\circ}$ bedding $5-15^{\circ}$	$2,41,43$	87
Region 6	Fill	$20,39,42,40,43,41,38,37,36,35,34,33,32,31,30,29,28,27,26,25,24,23,22,21$	52,185

Current Slip Surface

Slip Surface: 76,023
Fof S : 1.11
Volume: $50,963.807 \mathrm{ft}^{3}$
Weight: 6,115,656.9 lbs
Resisting Force: $2,382,251.1 \mathrm{lbs}$
Activating Force: $2149,311.1 \mathrm{lb}$
Activating Force: 2,149,311.8 lbs
of S Rank (Analysis): 1 of 131,769 slip surfaces
of S Rank (Query): 1 of 100 slip surfaces
Entry: (80137403, 2,000.0655) ft
Entry: $(801.37443,2,0$
Center: ($455.39526,2,039.7989$) ft
Slip Slices

	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	182.52584	$1,841.1319$	0	566.0445	367.5936	200
Slice 2	208.84195	$1,841.1319$	0	$1,698.1335$	$1,102.7808$	200
Slice 3	229	$1,841.1319$	0	$2,324.178$	$1,509.3388$	200
Slice 4	246.5	$1,841.1319$	0	$2,984.178$	$1,937.9479$	200
Slice 5	267.5	$1,841.1319$	0	$4,184.178$	$2,717.237$	200
Slice 6	284	$1,841.1319$	0	$4,784.178$	$3,106.8815$	200
Slice 7	301.25	$1,841.1319$	0	$5,564.178$	$3,613.4194$	200
Slice 8	323.75	$1,841.1319$	0	$7,124.178$	$4,626.4953$	200
Slice 9	345.5	$1,841.1319$	0	$7,884.178$	$5,120.0451$	200
Slice 10	366.5	$1,841.1319$	0	$7,844.178$	$5,094.0688$	200
Slice 11	387.5	$1,841.1319$	0	$7,804.178$	$5,068.0925$	200
Slice 12	407.5	$1,841.1319$	0	$8,444.178$	$5,483.7133$	200
Slice 13	426.5	$1,841.1319$	0	$9,764.178$	$6,340.9313$	200
Slice 14	443	$1,841.1319$	0	$10,424.178$	$6,769.5403$	200
Slice 15	461.59169	$1,841.1319$	0	$11,235.596$	$7,296.4817$	200
	484.77508	$1,841.1319$	0	$12,858.433$	$8,350.3643$	200

Slice l6						
Slice 17	497.18338	$1,841.3807$	0	$11,562.202$	$7,508.5817$	200
Slice 18	508.64675	$1,844.8734$	0	$11,255.414$	$7,309.3512$	200
Slice 19	521.64675	$1,848.8344$	0	$12,143.798$	$2,360.5152$	225
Slice 20	536.75	$1,853.4361$	0	$12,473.818$	$2,424.6647$	225
Slice 21	562.25	$1,861.2057$	0	$13,297.15$	$2,584.7041$	225
Slice 22	582.5	$1,867.3756$	0	$13,448.605$	$2,614.144$	225
Slice 23	602.25	$1,873.3932$	0	$13,583.916$	$2,640.4459$	225
Slice 24	626.75	$1,880.858$	0	$14,374.96$	$2,794.2092$	225
Slice 25	640	$1,884.8951$	0	$14,802.77$	$2,877.3669$	225
Slice 26	650.25	$1,888.0182$	0	$14,684.936$	$2,854.4623$	225
Slice 27	668.75	$1,893.6549$	0	$14,384.692$	$2,796.101$	225
Slice 28	686.5	$1,899.0631$	0	$13,968.133$	$2,715.13$	225
Slice 29	703.5	$1,904.2428$	0	$13,435.258$	$2,611.5495$	225
Slice 30	726.5	$1,911.2506$	0	$12,779.616$	$2,484.1057$	225
Slice 31	750.5	$1,918.5631$	0	$11,662.268$	$2,266.9153$	225
Slice 32	762.75024	$1,922.2956$	0	$10,713.437$	$2,082.4813$	225
Slice 33	777.75024	$1,949.4033$	0	$2,633.4659$	$2,209.7403$	225
Slice 34	791.8086	$1,979.5515$	0	994.79949	834.73589	225
Slice 35	793.88431	$1,984.0029$	0	742.82708	623.30593	225
Slice 36	797.76292	$1,992.3206$	0	337.8916	219.42937	200
	0	0				

1 - Circular Mode of Failure

Reporterated

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 118
Date: 3/20/2016
Time: 1:48:15 PM
Tool Version: 8.15.1.11236
File Name: Section 12-12 Static Final with keyway SSA for Skyline Ranch.gsz
Directory: C:\Users\Alexander\Desktop\LGC valley\original sections\Final Results for Section 12
Last Solved Date: 3/20/2016
Last Solved Time: 1:50:30 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exi
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Tmc100-25 ${ }^{\circ}$ bedding 8-15
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc100pcf-25 bedding 8-15
C-Anisotropic Strength Fn .: 100 pcf- 25° bedding $8-15^{\circ}$
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Tmc150-17 ${ }^{\circ}$ bedding $8-15^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc150-17 ${ }^{\circ}$ bedding 8-15
C-Anisotropic Strength Fn.: $150-17^{\circ}$ bedding 8-15
Phi-B: 0°

Slip Surface Entry and Exit
Left Projection: Range
Left-Zone Left Coordinate: ($-14.6024,2,116.523$) ft
Left-Zone Right Coordinate: ($256.0584,2,207.5292$) ft
Left-Zone Increment: 50
Right Projection: Range
Right-Zone Left Coordinate: $(304,2,225)$ ft
Right-Zone Right Coordinate: ($617.5728,2,317.479$) ft
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: $(-240,2,108) \mathrm{ft}$
Right Coordinate: $(811,2,288) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

$150-17^{\circ}$ bedding $8-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Facto
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.75)$
Data Point: $(15,0.75)$
Data Point: $(15.1,1)$
100 pcf- 25° bedding $8-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.5)$
Data Point: $(15,0.5)$
Data Point: (15.1, 1)
Tmc150-17 ${ }^{\circ}$ bedding $8-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.425)$
Data Point: $(15,0.425)$
Data Point: $(15.1,1)$

Tmc100pcf- 25° bedding 8-15 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: (-90, 1)
Data Point: $(7.9,1)$
Data Point: $(8,0.625)$
Data Point: $(15,0.625)$
Data Point: $(15.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-240	2,108
Point 2	-107	2,112
Point 3	36	2,119
Point 4	78	2,139
Point 5	87	2,139
Point 6	141	2,164
Point 7	159	2,164
Point 8	221	2,195
Point 9	231	2,195
Point 10	291	2,225
Point 11	304	2,225
Point 12	364	2,255
Point 13	375	2,255
Point 14	442	2,288
Point 15	530	2,308
Point 16	591	2,318
Point 17	642	2,317
Point 18	693	2,313
Point 19	764	2,300
Point 20	811	2,288
Point 21	810	1,910
Point 22	-240	1,910
Point 23	-200	1,965
Point 24	450	2,139
Point 25	810.8624	2,236
Point 26	-240	1,957
Point 27	51	2,104
Point 28	121	2,104
Point 29	517	2,305

Regions

	Material	Points	Area (ft^{2})
$\begin{aligned} & \text { Region } \\ & 1 \end{aligned}$	Tmc100-25 ${ }^{\circ}$ bedding 8-15	1,26,23,24,25,20,19,18,17,16,15,29,28,27,3,2	$1.1206 \mathrm{e}+005$
$\begin{aligned} & \text { Region } \\ & 2 \end{aligned}$	Tmc150-17 ${ }^{\circ}$ bedding 8-15 ${ }^{\circ}$	23,26,22,21,25,24	$1.9434 \mathrm{e}+005$
$\begin{aligned} & \text { Region } \\ & 3 \end{aligned}$	Fill	3,27,28,29,14,13,12,11,10,9,8,7,6,5,4	14,105

Current Slip Surface

Slip Surface: 74,165
F of S : 1.85
Volume: $5,764.7121 \mathrm{ft}$
Weight: 691,765.45 lbs
Resisting Moment: $2.7811601 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
Activating Moment: $1.5014612 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 100 slip surfaces
Exit: $(160.87368,2,164.9368) \mathrm{ft}$
Entry: (461.07827, 2,292.3244) ft
Radius: 572.22348 ft
Center: $(96.719459,2,733.5527) \mathrm{ft}$
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	(ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	165.8842	$2,165.547$	0	205.53098	133.47338	200
Slice 2	175.90526	$2,166.8572$	0	625.78062	406.38669	200
Slice 3	185.92631	$2,168.3482$	0	$1,020.4134$	662.66418	200
Slice 4	195.94737	$2,170.0212$	0	$1,389.6628$	902.45758	200
Slice 5	205.96842	$2,171.8781$	0	$1,733.7329$	$1,125.8993$	200
Slice 6	215.98947	$2,173.9205$	0	$2,052.799$	$1,333.1032$	200
Slice 7	226	$2,176.148$	0	$2,069.249$	$1,343.786$	200
Slice 8	236	$2,178.5625$	0	$2,064.1304$	$1,340.4619$	200
Slice 9	246	$2,181.1685$	0	$2,311.9497$	$1,501.3977$	200
Slice 10	256	$2,183.9689$	0	$2,535.3026$	$1,646.4447$	200

Slice 11	266	$2,186.9665$	0	$2,734.233$	$1,775.6317$	200
Slice 12	276	$2,190.1647$	0	$2,908.7593$	$1,888.9704$	200
Slice 13	286	$2,193.567$	0	$3,058.8739$	$1,986.4559$	200
Slice 14	297.5	$2,197.7554$	0	$2,854.5432$	$1,853.762$	200
Slice 15	309	$2,202.1887$	0	$2,626.9576$	$1,705.9662$	200
Slice 16	319	$2,206.2941$	0	$2,700.7433$	$1,753.8832$	200
Slice 17	329	$2,210.6229$	0	$2,749.8355$	$1,785.7641$	200
Slice 18	339	$2,215.1808$	0	$2,774.0927$	$1,801.5169$	200
Slice 19	349	$2,219.9738$	0	$2,773.3453$	$1,801.0315$	200
Slice 20	359	$2,225.0087$	0	$2,747.3953$	$1,784.1794$	200
Slice 21	369.5	$2,230.5702$	0	$2,414.7349$	$1,568.1472$	200
Slice 22	379.78571	$2,236.2772$	0	$2,058.1562$	$1,336.5823$	200
Slice 23	389.35714	$2,241.8496$	0	$1,955.1699$	$1,269.7022$	200
Slice 24	398.92857	$2,247.6745$	0	$1,828.2705$	$1,187.2927$	200
Slice 25	408.5	$2,253.761$	0	$1,677.157$	$1,089.1585$	200
Slice 26	418.07143	$2,260.1193$	0	$1,501.5003$	975.08571	200
Slice 27	427.64286	$2,266.7604$	0	$1,300.9421$	844.84165	200
Slice 28	437.21429	$2,273.6967$	0	$1,075.094$	698.17421	200
Slice 29	446.76957	$2,280.9289$	0	704.25619	457.34932	200
Slice 30	456.30871	$2,288.471$	0	191.44756	124.3275	200

1 - Circular Mode of Failure

Repotenatedura

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 115
Date: 3/20/2016
Time: 1:35:46 PM
Tool Version: 8.15.1.11236
File Name: Section 12-12 Seismic Final with keyway SSA for Skyline Ranch.gsz
Directory: C:\Users\Alexander\Desktop\LGC valley\original sections\}
Last Solved Date: 3/20/2016
Last Solved Time: 1:36:02 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Lef
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Tmc100-25 ${ }^{\circ}$ bedding 8-15
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc100pcf-25 bedding 8-15
C-Anisotropic Strength Fn .: 100 pcf- 25° bedding $8-15^{\circ}$
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Tmc150-17 ${ }^{\circ}$ bedding $8-15^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc150-17 ${ }^{\circ}$ bedding 8-15 ${ }^{\circ}$
C-Anisotropic Strength Fn .: $150-17^{\circ}$ bedding $8-15^{\circ}$
Phi-B: 0°

Slip Surface Entry and Exit
Left Projection: Range
Left-Zone Left Coordinate: ($-14.6024,2,116.523$) ft
Left-Zone Right Coordinate: ($256.0584,2,207.5292$) ft
Left-Zone Increment: 50
Right Projection: Range
Right-Zone Left Coordinate: $(304,2,225)$ ft
Right-Zone Right Coordinate: ($617.5728,2,317.479$) ft
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: $(-240,2,108) \mathrm{ft}$
Right Coordinate: $(811,2,288) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

$150-17^{\circ}$ bedding $8-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Facto
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.75)$
Data Point: $(15,0.75)$
Data Point: $(15.1,1)$
100 pcf- 25° bedding $8-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.5)$
Data Point: $(15,0.5)$
Data Point: (15.1, 1
Tmc150-17 ${ }^{\circ}$ bedding $8-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.425)$
Data Point: $(15,0.425)$
Data Point: $(15.1,1)$

Tmc100pcf- 25° bedding 8-15 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(7.9,1)$
Data Point: $(8,0.625)$
Data Point: $(15,0.625)$
Data Point: $(15.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-240	2,108
Point 2	-107	2,112
Point 3	36	2,119
Point 4	78	2,139
Point 5	87	2,139
Point 6	141	2,164
Point 7	159	2,164
Point 8	221	2,195
Point 9	231	2,195
Point 10	291	2,225
Point 11	304	2,225
Point 12	364	2,255
Point 13	375	2,255
Point 14	442	2,288
Point 15	530	2,308
Point 16	591	2,318
Point 17	642	2,317
Point 18	693	2,313
Point 19	764	2,300
Point 20	811	2,288
Point 21	810	1,910
Point 22	-240	1,910
Point 23	-200	1,965
Point 24	450	2,139
Point 25	810.8624	2,236
Point 26	-240	1,957
Point 27	51	2,104
Point 28	121	2,104
Point 29	517	2,305

Regions

	Material	Points	Area (ft^{2})
$\begin{aligned} & \text { Region } \\ & 1 \end{aligned}$	Tmc100-25 ${ }^{\circ}$ bedding 8-15	1,26,23,24,25,20,19,18,17,16,15,29,28,27,3,2	$1.1206 \mathrm{e}+005$
$\begin{aligned} & \text { Region } \\ & 2 \end{aligned}$	Tmc150-17 ${ }^{\circ}$ bedding 8-15 ${ }^{\circ}$	23,26,22,21,25,24	$1.9434 \mathrm{e}+005$
$\begin{aligned} & \text { Region } \\ & 3 \end{aligned}$	Fill	3,27,28,29,14,13,12,11,10,9,8,7,6,5,4	14,105

Current Slip Surface

Slip Surface: 79,417
F of S: 1.30
Volume: $5,827.6236 \mathrm{ft}^{3}$
Weight: 699,314.83 lbs
Resisting Moment: $2.8656071 \mathrm{e}+008 \mathrm{lbs}$-ft
Activating Moment: $2.2089541 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 100 slip surfaces
Exit: $(161.71733,2,165.3587) \mathrm{ft}$
Entry: (467.54239, 2,293.7896) ft
Radius: 614.64467 ft
Center: $(85.471326,2,775.2559) \mathrm{ft}$
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	166.65755	$2,166.017$	0	184.64344	119.90885	200
Slice 2	176.538	$2,167.4155$	0	576.28907	374.2465	200
Slice 3	186.41844	$2,168.9782$	0	943.68835	612.83838	200
Slice 4	196.29889	$2,170.7064$	0	$1,287.1841$	835.90712	200
Slice 5	206.17933	$2,172.6015$	0	$1,607.091$	$1,043.6571$	200
Slice 6	216.05978	$2,174.6652$	0	$1,903.6972$	$1,236.2754$	200
Slice 7	226	$2,176.9137$	0	$1,910.2766$	$1,240.5481$	200
Slice 8	236	$2,179.351$	0	$1,899.5067$	$1,233.5541$	200
Slice 9	246	$2,181.9669$	0	$2,134.1089$	$1,385.9065$	200
Slice 10	256	$2,184.7638$	0	$2,345.7677$	$1,523.3593$	200

Slice 11	266	$2,187.7441$	0	$2,534.662$	$1,646.0288$	200
Slice 12	276	$2,190.9107$	0	$2,700.9487$	$1,754.0166$	200
Slice 13	286	$2,194.2668$	0	$2,844.763$	$1,847.4107$	200
Slice 14	297.5	$2,198.3816$	0	$2,651.2432$	$1,721.7375$	200
Slice 15	309	$2,202.7227$	0	$2,438.0634$	$1,583.2969$	200
Slice 16	319	$2,206.7287$	0	$2,513.917$	$1,632.5568$	200
Slice 17	329	$2,210.9402$	0	$2,567.6705$	$1,667.4647$	200
Slice 18	339	$2,215.362$	0	$2,599.3578$	$1,688.0427$	200
Slice 19	349	$2,219.9991$	0	$2,608.9941$	$1,694.3006$	200
Slice 20	359	$2,224.857$	0	$2,596.5757$	$1,686.2359$	200
Slice 21	369.5	$2,230.2079$	0	$2,297.3103$	$1,491.8907$	200
Slice 22	379.78571	$2,235.6844$	0	$1,978.2067$	$1,284.6624$	200
Slice 23	389.35714	$2,241.017$	0	$1,899.6515$	$1,233.6481$	200
Slice 24	398.92857	$2,246.5767$	0	$1,800.8901$	$1,169.5117$	200
Slice 25	408.5	$2,252.3707$	0	$1,681.8489$	$1,092.2054$	200
Slice 26	418.07143	$2,258.4069$	0	$1,542.441$	$1,001.6729$	200
Slice 27	427.64286	$2,264.6939$	0	$1,382.5664$	897.84912	200
Slice 28	437.21429	$2,271.2411$	0	$1,202.113$	780.66129	200
Slice 29	446.25706	$2,277.6676$	0	913.53729	593.25806	200
Slice 30	454.77119	$2,283.9542$	0	521.58308	338.72001	200
Slice 31	463.28532	$2,290.4719$	0	116.99713	75.978824	200
	300					

2 - Translational

Report generated using GeoStudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 118
Date: 3/20/2016
Time: 1:48:15 PM
Tool Version: 8.15.1.11236
File Name: Section 12-12 Static Final with keyway SSA for Skyline Ranch.gsz
File Name: Sectors
Directory: C:\Users\Alexander\Desktop\LGC valley\original sections\Final Results for Section $12 \backslash$

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational

Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)
F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Tmc100-25 ${ }^{\circ}$ bedding $8-15^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc100pcf-25 bedding 8-15
C-Anisotropic Strength Fn.: 100 pcf-25 ${ }^{\circ}$ bedding $8-15^{\circ}$
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: $0{ }^{\circ}$
Tmc150-17 ${ }^{\circ}$ bedding 8-15
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc150-17 ${ }^{\circ}$ bedding 8-15 ${ }^{\circ}$
C-Anisotropic Strength Fn .: $150-17^{\circ}$ bedding $8-15^{\circ}$
Phi-B: 0°

Slip Surface Limits
Left Coordinate: $(-240,2,108) \mathrm{ft}$
Right Coordinate: $(811,2,288)$ ft

Slip Surface Block

Left Grid
Upper Left: (-3, 2,120.9992) ft
Lower Left: (34, 1,927.9128) ft
Lower Right: (259, 2,001.527) ft
X Increments: 10
Y Increments: 10
Starting Angle: 135°
Ending Angle: 180°

Angle Increments: 2
Right Grid
Upper Left: $(358,2,253)$ ft
Lower Left: $(402,2,095) \mathrm{ft}$
Lower Right: $(667,2,189) \mathrm{ft}$
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

$150-17^{\circ}$ bedding $8-15^{\circ}$

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.75)$
Data Point: $(15,0.75)$
Data Point: (15.1, 1)
100 pcf- 25° bedding $8-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.5)$
Data Point: $(15,0.5)$
Data Point: $(15.1,1)$
Tmc150-17 ${ }^{\circ}$ bedding 8-15 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%

Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: (-90, 1)
Data Point: $(7.9,1)$
Data Point: $(8,0.425)$
Data Point: $(15,0.425)$
Data Point: $(15.1,1)$
Tmc100pcf-25 ${ }^{\circ}$ bedding 8-15 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.625)$
Data Point: $(15,0.625)$
Data Point: $(15.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-240	2,108
Point 2	-107	2,112
Point 3	36	2,119
Point 4	78	2,139
Point 5	87	2,139
Point 6	141	2,164
Point 7	159	2,164
Point 8	221	2,195
Point 9	231	2,195
Point 10	291	2,225
Point 11	304	2,225
Point 12	364	2,255
Point 13	375	2,255
Point 14	442	2,288
Point 15	530	2,308
Point 16	591	2,318
Point 17	642	2,317
Point 18	693	2,313
Point 19	764	2,300
Point 20	811	2,288
Point 21	810	1,910
Point 22	-240	1,910

2-Translational
Page 5 of 5

Point 23	-200	1,965
Point 24	450	2,139
Point 25	810.8624	2,236
Point 26	-240	1,957
Point 27	51	2,104
Point 28	121	2,104
Point 29	517	2,305

Regions

	Material	Points	Area (ft^{2})
$\begin{aligned} & \hline \text { Region } \\ & 1 \end{aligned}$	Tmc100-25 bedding 8-15 ${ }^{\circ}$	1,26,23,24,25,20,19,18,17,16,15,29,28,27,3,2	1.1206e+005
$\begin{aligned} & \text { Region } \\ & 2 \end{aligned}$	Tmc150-17 ${ }^{\circ}$ bedding 8-15 ${ }^{\circ}$	23,26,22,21,25,24	$1.9434 \mathrm{e}+005$
$\begin{aligned} & \text { Region } \\ & 3 \end{aligned}$	Fill	3,27,28,29,14,13,12,11,10,9,8,7,6,5,4	14,105

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 113
Date: 3/20/2016
Time: 1:28:21 PM
Tool Version: 8.15.1.11236
File Name: Section 12-12 Seismic Final with keyway SSA for Skyline Ranch.gsz
Directory: C:\Users\Alexander\Desktop\LGC valley\original sections\}
Last Solved Date: 3/20/2016
Last Solved Time: 1:28:37 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Tmc100-25 ${ }^{\circ}$ bedding $8-15^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc100pcf-25 bedding 8-15
C-Anisotropic Strength Fn .: 100 pcf- 25° bedding $8-15^{\circ}$
Phi-B: 0°
Fill
Model: Mohr-Coulom
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0
Tmc150-17 ${ }^{\circ}$ bedding $8-15^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc150-17 ${ }^{\circ}$ bedding 8-15
C-Anisotropic Strength Fn.: $150-17^{\circ}$ bedding $8-15^{\circ}$
Phi-B: 0°

Slip Surface Limits
Left Coordinate: $(-240,2,108)$ ft
Right Coordinate: $(811,2,288) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: (-3, 2,120.9992) ft
ower Left: (34, 1,927.9128) ft
Lower Right: (259, 2,001.527) ft
X Increments: 10
Y Increments: 10

Starting Angle: 135
Ending Angle: 180°
Angle Increments:
Right Grid
Upper Left: $(358,2,253) \mathrm{ft}$
Lower Left: $(402,2,095) \mathrm{ft}$
Lower Right: $(667,2,189)$ ft
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

$150-17^{\circ}$ bedding $8-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: ($8,0.75$)
Data Point: ($15,0.75$)
Data Point: (15.1, 1)
100 pcf- 25° bedding $8-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.5)$
Data Point: $(15,0.5)$
Data Point: (15.1, 1)
Tmc150-17 ${ }^{\circ}$ bedding 8-15
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.425)$
Data Point: ($15,0.425$
Data Point: (15.1, 1)
Tmc100pcf- 25° bedding 8-15 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.625)$
Data Point: $(15,0.625)$
Data Point: $(15.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-240	2,108
Point 2	-107	2,112
Point 3	36	2,119
Point 4	78	2,139
Point 5	87	2,139
Point 6	141	2,164
Point 7	159	2,164
Point 8	221	2,195
Point 9	231	2,195
Point 10	291	2,225
Point 11	304	2,225
Point 12	364	2,255
Point 13	375	2,255
Point 14	442	2,288
Point 15	530	2,308
Point 16	591	2,318
Point 17	642	2,317
Point 18	693	2,313
Point 19	764	2,300
Point 20	811	2,288
Point 21	810	1,910

2-Translational

Regions

	Material	Points	Area (ft^{2})
$\begin{aligned} & \hline \text { Region } \\ & 1 \end{aligned}$	Tmc100-25 ${ }^{\circ}$ bedding 8-15	1,26,23,24,25,20,19,18,17,16,15,29,28,27,3,2	1.1206e+005
$\begin{aligned} & \text { Region } \\ & 2 \end{aligned}$	Tmc150-17 ${ }^{\circ}$ bedding 8-15	23,26,22,21,25,24	$1.9434 \mathrm{e}+005$
Region 3	Fill	$3,27,28,29,14,13,12,11,10,9,8,7,6,5,4$	14,105

Current Slip Surface

Slip Surface: 105,473
Fof S: 1.11
Volume: $15,653.932 \mathrm{ft}^{3}$
Weight: $1,878,471.8 \mathrm{lbs}$
Resisting Force: $889,080.31 \mathrm{lbs}$
Activating Force: 799,701.22 lbs
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 100 slip surfaces
Exit: ($91.910285,2,141.2733$) ft
Entry: $(468.48139,2,294.0024) \mathrm{ft}$
Radius: 215.82605 ft
Center: (233.73808, 2,332.1847) ft
Slip Slices
Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	98.046499	$2,141.2733$	0	340.9008	221.38357	200
	110.31893	$2,141.2733$	0	$1,022.7024$	664.1507	200

Slice 2						
Slice 3	122.59136	$2,141.2733$	0	$1,704.504$	$1,106.9178$	200
Slice 4	134.86379	$2,141.2733$	0	$2,386.3056$	$1,549.685$	200
Slice 5	150	$2,141.2733$	0	$2,727.2064$	$1,771.0685$	200
Slice 6	165.35	$2,141.2733$	0	$3,108.2064$	$2,018.4928$	200
Slice 7	178.05	$2,141.2733$	0	$3,870.2064$	$2,513.3414$	200
Slice 8	189.67244	$2,142.6762$	0	$3,763.0085$	$2,443.7263$	200
Slice 9	200.21731	$2,145.482$	0	$4,018.9963$	$2,609.9667$	200
Slice 10	213.24487	$2,148.9485$	0	$4,528.6368$	$2,111.738$	100
Slice 11	226	$2,152.3424$	0	$4,580.8154$	$2,136.0693$	100
Slice 12	237	$2,155.2694$	0	$4,588.6985$	$2,139.7453$	100
Slice 13	249	$2,158.4624$	0	$4,891.5517$	$2,280.968$	100
Slice 14	261	$2,161.6554$	0	$5,194.405$	$2,422.1908$	100
Slice 15	273	$2,164.8484$	0	$5,497.2582$	$2,563.4136$	100
Slice 16	285	$2,168.0414$	0	$5,800.1114$	$2,704.6364$	100
Slice 17	297.5	$2,171.3675$	0	$5,764.9315$	$2,688.2317$	100
Slice 18	310	$2,174.6936$	0	$5,729.7516$	$2,671.827$	100
Slice 19	322	$2,177.8866$	0	$6,032.6048$	$2,813.0498$	100
Slice 20	334	$2,181.0796$	0	$6,335.458$	$2,954.2726$	100
Slice 21	346	$2,184.2726$	0	$6,638.3113$	$3,095.4954$	100
Slice 22	358	$2,187.4656$	0	$6,941.1645$	$3,236.7182$	100
Slice 23	369.5	$2,190.5256$	0	$6,934.6933$	$3,233.7006$	100
Slice 24	381.775	$2,193.7918$	0	$6,942.3262$	$3,237.2599$	100
Slice 25	395.325	$2,197.3973$	0	$7,273.388$	$3,391.6365$	100

file:///C:/Users/Alexander/Desktop/LGC\%20valley/original\%20sections/section\%2012-12... 3/20/2016

2 - Translational Page 7 of 7

Slice 26	408.75	$2,208.6972$	0	$3,499.7987$	$2,936.6798$	200
Slice 27	422.05	$2,227.6916$	0	$2,783.1982$	$2,335.3806$	200
Slice 28	435.35	$2,246.6859$	0	$2,066.5977$	$1,734.0814$	200
Slice 29	447.83806	$2,264.5207$	0	$1,304.3584$	$1,094.4866$	200
Slice 30	461.07875	$2,283.4304$	0	439.95509	285.71017	200

file:///C:/Users/Alexander/Desktop/LGC\%20valley/original\%20sections/section\%2012-12... 3/20/2016

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 120
Date: 3/20/2016
Time: 1:53:40 PM
Tool Version: 8.15.1.11236
File Name: Section 12-12 Static Temporary Final without keyway SSA for Skyline Ranch.gsz
Directory: C:\Users\Alexander\Desktop\LGC valley\original sections\Final Results for Section 12\}
Last Solved Date: 3/20/2016
Last Solved Time: 1:54:59 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Tmc100-25 ${ }^{\circ}$ bedding 8-15
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc100pcf-25 bedding 8-15
C-Anisotropic Strength Fn.: 100pcf- 25° bedding $8-15^{\circ}$
Phi-B: 0°
Tmc150-17 ${ }^{\circ}$ bedding 8-15
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc150-17 ${ }^{\circ}$ bedding 8-15 ${ }^{\circ}$
C-Anisotropic Strength Fn.: $150-17^{\circ}$ bedding $8-15^{\circ}$
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-240,2,108) \mathrm{ft}$
Right Coordinate: $(811,2,288) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: $(-3,2,120.9992) \mathrm{ft}$
Lower Left: (34, 1,927.9128) ft
Lower Right: $(259,2,001.527) \mathrm{ft}$
X Increments: 10
Increments: 10
Starting Angle: 135
Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: $(358,2,253)$ ft
Lower Left: $(402,2,095)$ ft
Lower Right: $(667,2,189) \mathrm{ft}$

X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

$150-17^{\circ}$ bedding $8-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.75)$
Data Point: $(15,0.75)$
Data Point: $(15.1,1)$
100 pcf- 25° bedding $8-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: ($8,0.5$)
Data Point: ($15,0.5$)
Data Point: (15.1, 1)
Tmc150-17 ${ }^{\circ}$ bedding $8-15^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: ($8,0.425$)

Data Point: (15, 0.425

 Data Point: $(15.1,1)$Tmc100pcf- 25° bedding 8-15 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.625)$
Data Point: (15, 0.625)
Data Point: $(15.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-240	2,108
Point 2	-107	2,112
Point 3	36	2,119
Point 4	530	2,308
Point 5	591	2,318
Point 6	642	2,317
Point 7	693	2,313
Point 8	764	2,300
Point 9	811	2,288
Point 10	810	1,910
Point 11	-240	1,910
Point 12	-200	1,965
Point 13	450	2,139
Point 14	810.8624	2,236
Point 15	-240	1,957
Point 16	51	2,104
Point 17	121	2,104
Point 18	517	2,305

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Tmc100-25 ${ }^{\circ}$ bedding 8-15	$1,15,12,13,14,9,8,7,6,5,4,18,17,16,3,2$	$1.1206 \mathrm{e}+005$
Region 2	Tmc150-17 ${ }^{\circ}$ bedding 8-15	$12,15,11,10,14,13$	$1.9434 \mathrm{e}+005$

Current Slip Surface

Slip Surface: 96,734
F of $\mathrm{S}: 1.33$
Volume: $13,980.199 \mathrm{ft}^{3}$
Weight: 1,677,623.9 lbs
Resisting Force: $756,993.04 \mathrm{lbs}$
Activating Force: $568,227.64 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 100 slip surfaces
Exit: (158.16867, 2,122.8659) ft
Entry: (534.04644, 2,308.6634) ft
Radius: 239.0956 ft
Center: (277.22741, 2,355.1127) ft

Slip Slices

	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	164.44641	$2,124.5187$	0	150.44855	70.15531	100
Slice 2	177.00188	$2,127.8243$	0	487.49666	227.32343	100
Slice 3	189.55735	$2,131.1299$	0	824.54477	384.49154	100
Slice 4	202.11282	$2,134.4355$	0	$1,161.5929$	541.65966	100
Slice 5	214.6683	$2,137.7411$	0	$1,498.641$	698.82777	100
Slice 6	227.22377	$2,141.0466$	0	$1,835.6891$	855.99589	100
Slice 7	239.77924	$2,144.3522$	0	$2,172.7372$	$1,013.164$	100
Slice 8	252.33471	$2,147.6578$	0	$2,509.7853$	$1,170.3321$	100
Slice 9	264.89018	$2,150.9634$	0	$2,846.8334$	$1,327.5002$	100
Slice 10	277.44566	$2,154.269$	0	$3,183.8816$	$1,484.6683$	100
Slice 11	290.00113	$2,157.5746$	0	$3,520.9297$	$1,641.8365$	100
Slice 12	302.5566	$2,160.8802$	0	$3,857.9778$	$1,799.0046$	100
Slice 13	315.11207	$2,164.1858$	0	$4,195.0259$	$1,956.1727$	100
Slice 14	327.66754	$2,167.4913$	0	$4,532.074$	$2,113.3408$	100
Slice 15	340.22302	$2,170.7969$	0	$4,869.1221$	$2,270.5089$	100
Slice 16	352.77849	$2,174.1025$	0	$5,206.1702$	$2,427.677$	100
	20					

Slice 17	365.33396	$2,177.4081$	0	$5,543.2183$	$2,584.8452$	100
Slice 18	377.88943	$2,180.7137$	0	$5,880.2664$	$2,742.0133$	100
Slice 19	390.4449	$2,184.0193$	0	$6,217.3146$	$2,899.1814$	100
Slice 20	403.00038	$2,187.3249$	0	$6,554.3627$	$3,056.3495$	100
Slice 21	415.55585	$2,190.6304$	0	$6,891.4108$	$3,213.5176$	100
Slice 22	428.11132	$2,193.936$	0	$7,228.4589$	$3,370.6857$	100
Slice 23	440.66679	$2,197.2416$	0	$7,565.507$	$3,527.8539$	100
Slice 24	453.22226	$2,200.5472$	0	$7,902.5551$	$3,685.022$	100
Slice 25	465.25	$2,210.4119$	0	$4,205.6975$	$3,528.9992$	200
Slice 26	476.75	$2,226.8356$	0	$3,536.5318$	$2,967.5025$	200
Slice 27	488.25	$2,243.2593$	0	$2,867.366$	$2,406.0058$	200
Slice 28	499.75	$2,259.683$	0	$2,198.2003$	$1,844.5091$	200
Slice 29	511.25	$2,276.1067$	0	$1,529.0346$	$1,283.0123$	200
Slice 30	523.5	$2,293.6015$	0	702.49952	589.46709	200
Slice 31	532.02322	$2,305.7739$	0	48.872803	41.009151	200

Section 13-13 Static Final SSA with key for Skyline Ranch.gsz

Section 13-13 Static Final SSA with key for Skyline Ranch.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/22/2016 12:10:09 PM

Name: Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Name: Tmc 100-25 (A-Bed $\left.20^{\circ}-34^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100-25 (A-Bed $20^{\circ}-34^{\circ}$) C-Anisotropic Strength Fn.: 100-25 (A-Bed $\left.20^{\circ}-34^{\circ}\right)$

Name: Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\operatorname{Bed} 4^{\circ}-12^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}$ (A-Bed $4^{\circ}-12^{\circ}$)
C-Anisotropic Strength Fn.: 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 4^{\circ}-12^{\circ}\right)$
Name: Tmc 100-25 ${ }^{\circ}$ (A-Bed $4^{\circ}-8^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100-25 ${ }^{\circ}$ (A-Bed $4^{\circ}-8^{\circ}$) C-Anisotropic Strength Fn.: 100 (A-Bed4 ${ }^{\circ}-8^{\circ}$)

Skyline Ranch

Development project, Tract 60922 Los Angeles CA

Project No: 153035-01 Engineer:
Date:

BAS
March 2016

1 - Circular Mode of Failure

Reporenad

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 13
Date: 3/22/2016
Time: 12:10:09 PM
Tool Version: 8.15.1.11236
File Name: Section 13-13 Static Final SSA with key for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 13-13 results\}
Last Solved Date: 3/22/2016
Last Solved Time: 12:13:40 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B. 0°
Tmc 100-25 (A-Bed $20^{\circ}-34^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40
Phi-Anisotropic Strength Fn.: Tmc 100-25 (A-Bed 20 ${ }^{\circ}-34^{\circ}$)
C-Anisotropic Strength Fn.: $100-25^{\circ}$ (A-Bed $20^{\circ}-34^{\circ}$)
Phi-B: $0{ }^{\circ}$
Tmc 150-17 ${ }^{\circ}$ (A-Bed $4^{\circ}-12^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}$ (A-Bed $4^{\circ}-12^{\circ}$
C-Anisotropic Strength Fn.: 150-17 ${ }^{\circ}$ (A-Bed $4^{\circ}-12^{\circ}$)
Phi-B: 0°
Tmc $100-25^{\circ}\left(\mathrm{A}-\mathrm{Bed} 4^{\circ}-8^{\circ}\right.$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100-25 (A-Bed $4^{\circ}-8^{\circ}$)
C-Anisotropic Strength Fn.: 100 (A-Bed4 $4^{\circ}-8^{\circ}$)
Phi-B: 0

Slip Surface Entry and Exit

Left Projection: Range
Left-Zone Left Coordinate: $(927.8352,2,117.665) \mathrm{ft}$
Left-Zone Right Coordinate: $(1,200,2,135) \mathrm{ft}$
Left-Zone Increment: 50

1 - Circular Mode of Failure

Right Projection: Range
Right-Zone Left Coordinate: $(1,300,2,182.5946) \mathrm{ft}$
Right-Zone Right Coordinate: $(1,923.1499,2,329.2888) \mathrm{ft}$
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: $(-50,2,033) \mathrm{ft}$
Right Coordinate: $(2,050,2,352) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc $\mathbf{1 0 0 - 2 5}{ }^{\circ}\left(\mathrm{A}-\operatorname{Bed} 4^{\circ}-8^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.625)$
Data Point: $(8,0.625)$
Data Point: $(8.1,1)$
Tmc 100- $\mathbf{2 5}^{\circ}$ (A-Bed $20^{\circ}-34^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

Curve Fit to Data: 100%

Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(19.9,1)$
Data Point: ($20,0.625$)
Data Point: $(34,0.625)$
Data Point: $(34.1,1)$
100-25 (A-Bed $20^{\circ}-34^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%

1 - Circular Mode of Failure

Segment Curvature: 0%

-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: $(-90,1)$
Data Point: $(19.9,1)$
Data Point: $(20,0.5)$
Data Point: $(34,0.5)$
Data Point: (34.1, 1
Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 4^{\circ}-\mathbf{1 2}^{\circ}\right.$) Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: ($4,0.425$)
Data Point: $(12,0.425)$
Data Point: $(12.1,1)$
100 (A-Bed4옹ํ)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0% Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: $(4,0.5)$
Data Point: $(8,0.5)$
Data Point: (8.1, 1)
$150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 4^{\circ}-\mathbf{1 2}^{\circ}\right.$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.75)$
Data Point: $(12,0.75)$
Data Point: $(12.1,1)$

Points

Point 1	-50	$\mathrm{X}(\mathrm{ft})$
Point 2	118	$\mathrm{ft})$
Point 3	296	2,039
Point 4	360	2,081
Point 5	373	2,081
Point 6	403	2,097
Point 7	416	2,097
Point 8	437	2,110
Point 9	505	2,110
Point 10	700	2,109
Point 11	831	2,106
Point 12	862	2,117
Point 13	1,060	2,119
Point 14	1,163	2,117
Point 15	1,163	2,121
Point 16	1,192	2,135
Point 17	1,202	2,135
Point 18	1,218	2,146
Point 19	1,234	2,145
Point 20	1,271	2,163
Point 21	1,295	2,174
Point 22	1,327	2,182
Point 23	1,369	2,192
	1,412	2,200

Point 24		
Point 25	1,429	2,201
Point 26	1,462	2,207
Point 27	1,582	2,236
Point 28	1,631	2,240
Point 29	1,713	2,261
Point 30	1,859	2,311
Point 31	1,895	2,322
Point 32	2,007	2,351
Point 33	2,036	2,353
Point 34	2,050	2,352
Point 35	2,050	2,100
Point 36	-50	$1,914.8161$
Point 37	1,250	2,164
Point 38	1,308	2,188
Point 39	1,335	2,189
Point 40	1,347	2,194
Point 41	1,359	2,194
Point 42	1,410	2,223
Point 43	1,425	2,223
Point 44	1,476	2,249
Point 45	1,586	2,253
Point 46	549	$2,109.7744$
Point 47	863	

file:///G:/SLOPE\%20RESULTS/Section\%2013-13\%20results/section\%2013-13\%20static... 3/22/2016

Point 48	1,089	2,117
Point 49	-50	1,996
Point 50	625	$2,087.3194$
Point 51	863	1,994
Point 52	2,049	1,580
Point 53	-50	1,580
Point 54	$1,007.64$	2,081
Point 55	2,050	2,230
Point 56	1,260	$2,157.3607$
Point 57	1,168	2,112
Point 58	1,188	2,112
Point 59	1,313	$2,178.5$
Point 60	$1,276.0361$	$2,158.8352$

Regions			
	Material	Points	Area (ft^{2})
$\begin{aligned} & \text { Region } \\ & 1 \end{aligned}$	Fill	46,50,47,54,48,13,12,11,10	25,797
Region	$\begin{aligned} & \text { Tmc } 100-25^{\circ} \\ & \left(\mathrm{A}-\text { Bed } 4^{\circ}-8^{\circ}\right) \end{aligned}$	49,50,46,9,8,7,6,5,4,3,2,1	16,398
$\begin{aligned} & \text { Region } \\ & 3 \end{aligned}$	$\begin{aligned} & \text { Tmc 100- } 25^{\circ} \\ & \left(\text { A-Bed } 20^{\circ}\right. \\ & -34^{\circ} \text {) } \end{aligned}$	47,50,49,36,51	82,160
$\begin{aligned} & \text { Region } \\ & 4 \end{aligned}$	$\begin{aligned} & \text { Tmc 150-17 } \\ & \left(\text { A-Bed } 4^{\circ}\right. \\ & -12^{\circ} \text {) } \\ & \hline \end{aligned}$	36,51,35,52,53	8.959e+005
$\begin{aligned} & \text { Region } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { Tmc } 100-25^{\circ} \\ & \left(\text { A-Bed } 20^{\circ}\right. \\ & -34^{\circ} \text {) } \end{aligned}$	51,35,55,60,58,57,14,48,54,47	$1.3322 \mathrm{e}+005$
Region 6	$\begin{aligned} & \text { Tmc } 100-25^{\circ} \\ & \left(\mathrm{A}-\operatorname{Bed} 4^{\circ}-8^{\circ}\right. \text {) } \end{aligned}$	$55,34,33,32,31,30,29,28,27,26,25,24,23,22,59,60$	49,472
$\begin{aligned} & \text { Region } \\ & 7 \end{aligned}$	Fill	18,19,56,20,37	372.83

1 - Circular Mode of Failure
Page 8 of 9

Region 8	Fill	$22,23,24,25,26,27,28,29,45,44,43,42,41,40,39,38,20,21,59$	7,527
Region 9	Fill	$14,57,58,60,59,21,20,56,19,18,17,16,15$	$1,578.4$

Current Slip Surface

Slip Surface: 109,307
F of S: 1.68
Volume: 1,809.91 ft ${ }^{3}$
Weight: $217,189.2$ lbs
Resisting Moment: 33,555,141 lbs-ft
Activating Moment: 20,003,789 lbs-ft
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 100 slip surfaces
Exit: $(1,163,2,117.0471) \mathrm{ft}$
Entry: $(1,311.3619,2,188.1245) \mathrm{ft}$
Radius: 237.73425 ft
Center: $(1,140.81,2,353.7435) \mathrm{ft}$
Slip Slices

X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)	
Slice 1	$1,165.4167$	$2,117.2986$	0	549.66949	356.95954	200
Slice 2	$1,170.25$	$2,117.8517$	0	746.90945	485.04867	200
Slice 3	$1,175.0833$	$2,118.5054$	0	929.65523	603.72517	200
Slice 4	$1,179.9167$	$2,119.2606$	0	$1,098.0953$	713.11143	200
Slice 5	$1,184.75$	$2,120.1181$	0	$1,252.3944$	813.3144	200
Slice 6	$1,189.5833$	$2,121.0793$	0	$1,392.6943$	904.42625	200
Slice 7	$1,194.5$	$2,122.1655$	0	$1,388.1535$	901.47742	200
Slice 8	$1,199.5$	$2,123.382$	0	$1,241.5709$	806.28554	200
Slice 9	$1,204.6667$	$2,124.7626$	0	$1,277.5841$	829.67281	200
Slice 10	1,210	$2,126.3176$	0	$1,490.4238$	967.89252	200
Slice 11	$1,215.3333$	$2,128.0092$	0	$1,684.637$	$1,094.016$	200
Slice 12	$1,220.6494$	$2,129.8343$	0	$1,824.7915$	$1,185.0334$	200
	$1,225.9742$	$2,131.8056$	0	$2,005.1994$	935.03984	100

file:///G:/SLOPE\%20RESULTS/Section\%2013-13\%20results/section\%2013-13\%20static... 3/22/2016

Slice 13						
Slice 14	$1,231.3247$	$2,133.9338$	0	$2,084.6151$	972.07198	100
Slice 15	$1,236.6667$	$2,136.2105$	0	$2,146.0572$	$1,000.7229$	100
Slice 16	1,242	$2,138.6401$	0	$2,189.3557$	$1,020.9133$	100
Slice 17	$1,247.3333$	$2,141.2312$	0	$2,214.3685$	$1,032.577$	100
Slice 18	$1,252.5$	$2,143.8985$	0	$2,061.6702$	961.37258	100
Slice 19	$1,257.5$	$2,146.6377$	0	$1,735.673$	809.35762	100
Slice 20	$1,262.75$	$2,149.6897$	0	$1,379.9504$	643.48142	100
Slice 21	$1,268.25$	$2,153.0796$	0	993.29364	463.18043	100
Slice 22	$1,273.518$	$2,156.5204$	0	793.48877	370.00989	100
Slice 23	$1,276.5501$	$2,158.5722$	0	666.91206	559.60566	200
Slice 24	$1,278.3402$	$2,159.8348$	0	657.61914	551.80798	200
Slice 25	$1,282.1802$	$2,162.6365$	0	670.39184	435.35755	200
Slice 26	$1,287.3081$	$2,166.5396$	0	617.5782	401.05997	200
Slice 27	$1,292.436$	$2,170.6696$	0	544.73919	353.75777	200
Slice 28	$1,295.9866$	$2,173.6432$	0	484.76012	314.8069	200
Slice 29	$1,299.7299$	$2,176.9716$	0	405.09049	263.06884	200
Slice 30	$1,305.2433$	$2,182.0906$	0	271.17684	176.1043	200
Slice 31	$1,309.6809$	$2,186.428$	0	54.655435	35.493655	200
	1,					

Section 13-13 Seismic Final SSA with key for Skyline Ranch.gsz

Name: Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Name: Tmc 100-25 (A-Bed $\left.20^{\circ}-34^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100-25 (A-Bed $20^{\circ}-34^{\circ}$) C-Anisotropic Strength Fn.: 100-25 (A-Bed $20^{\circ}-34^{\circ}$)

Name: Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\operatorname{Bed} 4^{\circ}-12^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pc
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc $150-17^{\circ}\left(\right.$ A-Bed $\left.4^{\circ}-12^{\circ}\right)$ C-Anisotropic Strength Fn.: 150-17 ${ }^{\circ}$ (A-Bed $\left.4^{\circ}-12^{\circ}\right)$

Name: Tmc 100-25 ${ }^{\circ}\left(\mathrm{A}-\operatorname{Bed} 4^{\circ}-8^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pc
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100-25 ${ }^{\circ}$ (A-Bed $4^{\circ}-8^{\circ}$) C-Anisotropic Strength Fn.: 100 (A-Bed $4^{\circ}-8^{\circ}$)

LGC Valley, Inc

GEOTECHNICAL CONSULTING
28532 Constellation Road, Valencia, CA 91355
Phone 661-702-8474, Fax 661-702-8475

Skyline Ranch

Development project, Tract 60922 Los Angeles CA

Project No:
Engineer:
Date:

153035-01
BAS
March 2016

1 - Circular Mode of Failure

Reporenated

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 135
Date: 3/22/2016
Time: 12:06:01 PM
Tool Version: 8.15.1.11236
File Name: Section 13-13 Seismic Final SSA with key for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 13-13 results\
Last Solved Date: 3/22/2016
Last Solved Time: 12:06:33 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': $33{ }^{\circ}$
Phi-B. 0°
Tmc 100-25 (A-Bed $20^{\circ}-34^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40
Phi-Anisotropic Strength Fn.: Tmc 100-25 (A-Bed 20 $0^{\circ}-34^{\circ}$)
C-Anisotropic Strength Fn.: $100-25^{\circ}$ (A-Bed $20^{\circ}-34^{\circ}$)
Phi-B: $0{ }^{\circ}$
Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 4^{\circ}-12^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}$ (A-Bed $4^{\circ}-12^{\circ}$
C-Anisotropic Strength Fn.: 150-17 ${ }^{\circ}$ (A-Bed $4^{\circ}-12^{\circ}$)
Phi-B: 0°
Tmc $100-25^{\circ}$ (A-Bed $\left.4^{\circ}-8^{\circ}\right)$
Model: Anisotropic Fr
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100-25 (A-Bed $4^{\circ}-8^{\circ}$)
C-Anisotropic Strength Fn.: 100 (A-Bed4 $4^{\circ}-8^{\circ}$)
Phi-B: 0

Slip Surface Entry and Exit

Left Projection: Range
Left-Zone Left Coordinate: $(927.8352,2,117.665) \mathrm{ft}$
Left-Zone Right Coordinate: $(1,200,2,135) \mathrm{ft}$
Left-Zone Increment: 50

1 - Circular Mode of Failure

Right Projection: Range
Right-Zone Left Coordinate: $(1,300,2,182.5946) \mathrm{ft}$
Right-Zone Right Coordinate: $(1,923.1499,2,329.2888) \mathrm{ft}$
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: $(-50,2,033) \mathrm{ft}$
Right Coordinate: $(2,050,2,352) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc $\mathbf{1 0 0 - 2 5}{ }^{\circ}\left(\mathrm{A}-\operatorname{Bed} 4^{\circ}-8^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.625)$
Data Point: $(8,0.625)$
Data Point: $(8.1,1)$
Tmc 100- $\mathbf{2 5}^{\circ}$ (A-Bed $20^{\circ}-34^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%

Y-Intercept:

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(19.9,1)$
Data Point: ($20,0.625$)
Data Point: $(34,0.625)$
Data Point: $(34.1,1)$
100-25 (A-Bed $20^{\circ}-34^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%

1 - Circular Mode of Failure

Segment Curvature: 0%
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: $(-90,1)$
Data Point: $(19.9,1)$
Data Point: $(20,0.5)$
Data Point: $(34,0.5)$
Data Point: (34.1, 1
Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 4^{\circ}-12^{\circ}\right)$ Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: ($4,0.425$)
Data Point: $(12,0.425)$
Data Point: $(12.1,1)$
100 (A-Bed4오웅
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0% Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: $(4,0.5)$
Data Point: $(8,0.5)$
Data Point: (8.1, 1)
$150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 4^{\circ}-\mathbf{1 2}^{\circ}\right.$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.75)$
Data Point: $(12,0.75)$
Data Point: $(12.1,1)$

Points

Point 1	-50	$\mathrm{X}(\mathrm{ft})$
Point 2	118	$\mathrm{ft})$
Point 3	296	2,039
Point 4	360	2,081
Point 5	373	2,081
Point 6	403	2,097
Point 7	416	2,097
Point 8	437	2,110
Point 9	505	2,110
Point 10	700	2,109
Point 11	831	2,106
Point 12	862	2,117
Point 13	1,060	2,119
Point 14	1,163	2,117
Point 15	1,163	2,121
Point 16	1,192	2,135
Point 17	1,202	2,135
Point 18	1,218	2,146
Point 19	1,234	2,145
Point 20	1,271	2,163
Point 21	1,295	2,174
Point 22	1,327	2,182
Point 23	1,369	2,192
	1,412	2,200

Point 24		
Point 25	1,429	2,201
Point 26	1,462	2,207
Point 27	1,582	2,236
Point 28	1,631	2,240
Point 29	1,713	2,261
Point 30	1,859	2,311
Point 31	1,895	2,322
Point 32	2,007	2,351
Point 33	2,036	2,353
Point 34	2,050	2,352
Point 35	2,050	2,100
Point 36	-50	$1,914.8161$
Point 37	1,250	2,164
Point 38	1,308	2,188
Point 39	1,335	2,189
Point 40	1,347	
Point 41	1,359	2,194
Point 42	1,410	2,223
Point 43	1,425	2,223
Point 44	1,476	2,249
Point 45	1,586	2,253
Point 46	549	$2,109.7744$
Point 47	863	2,017

file:///G:/SLOPE\%20RESULTS/Section\%2013-13\%20results/Latest\%20updated\%203-22-... 3/22/2016

1 - Circular Mode of Failure

Point 48	1,089	2,117
Point 49	-50	1,996
Point 50	625	$2,087.3194$
Point 51	863	1,994
Point 52	2,049	1,580
Point 53	-50	1,580
Point 54	$1,007.64$	2,081
Point 55	2,050	2,230
Point 56	1,260	$2,157.3607$
Point 57	1,168	2,112
Point 58	1,188	2,112
Point 59	1,313	$2,178.5$
Point 60	$1,276.0361$	$2,158.8352$

Regions

	Material	Points	Area (ft^{2})
$\begin{aligned} & \text { Region } \\ & 1 \end{aligned}$	Fill	46,50,47,54,48,13,12,11,10	25,797
$\begin{aligned} & \text { Region } \\ & 2 \end{aligned}$	$\begin{aligned} & \text { Tmc } 100-25^{\circ} \\ & \left(\text { (A- Bed } 4^{\circ}-8^{\circ}\right) \end{aligned}$	49,50,46,9,8,7,6,5,4,3,2,1	16,398
$\begin{aligned} & \text { Region } \\ & 3 \end{aligned}$	$\begin{aligned} & \text { Tmc } 100-25^{\circ} \\ & \left(\text { A-Bed } 20^{\circ}\right. \\ & \left.-34^{\circ}\right) \end{aligned}$	47,50,49,36,51	82,160
$\begin{aligned} & \text { Region } \\ & 4 \end{aligned}$	$\begin{aligned} & \text { Tmc } 150-17^{\circ} \\ & \text { (A-Bed } 4^{\circ} \\ & -12^{\circ} \text {) } \end{aligned}$	36,51,35,52,53	8.959e+005
$\begin{aligned} & \text { Region } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { Tmc } 100-25^{\circ} \\ & \text { (A-Bed } 20^{\circ} \\ & -34^{\circ} \text {) } \end{aligned}$	51,35,55,60,58,57,14,48,54,47	$1.3322 \mathrm{e}+005$
$\begin{aligned} & \text { Region } \\ & 6 \end{aligned}$	$\begin{aligned} & \text { Tmc } 100-25^{\circ} \\ & \left(\text { A- Bed } 4^{\circ}-8^{\circ}\right) \end{aligned}$	55,34,33,32,31,30,29,28,27,26,25,24,23,22,59,60	49,472
$\begin{aligned} & \hline \text { Region } \\ & 7 \end{aligned}$	Fill	18,19,56,20,37	372.83

1 - Circular Mode of Failure
Page 8 of 9

Current Slip Surface

Slip Surface: 109,307
F of S: 1.19
Volume: 1,809.91 ft ${ }^{3}$
Weight: $217,189.2$ lbs
Resisting Moment: 31,921,881 lbs-ft
Activating Moment: $26,799,449 \mathrm{lbs}-\mathrm{ft}$
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 100 slip surfaces
Exit: $(1,163,2,117.0471) \mathrm{ft}$
Entry: $(1,311.3619,2,188.1245) \mathrm{ft}$
Radius: 237.73425 ft
Center: $(1,140.81,2,353.7435) \mathrm{ft}$
Slip Slices

	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	$1,165.4167$	$2,117.2986$	0	536.3873	348.33399	200
Slice 2	$1,170.25$	$2,117.8517$	0	727.5247	472.46006	200
Slice 3	$1,175.0833$	$2,118.5054$	0	903.38437	586.66467	200
Slice 4	$1,179.9167$	$2,119.2606$	0	$1,064.2894$	691.15761	200
Slice 5	$1,184.75$	$2,120.1181$	0	$1,210.5317$	786.1285	200
Slice 6	$1,189.5833$	$2,121.0793$	0	$1,342.3745$	871.74817	200
Slice 7	$1,194.5$	$2,122.1655$	0	$1,333.2452$	865.81958	200
Slice 8	$1,199.5$	$2,123.382$	0	$1,187.0504$	770.87955	200
Slice 9	$1,204.6667$	$2,124.7626$	0	$1,217.2142$	790.46816	200
Slice 10	1,210	$2,126.3176$	0	$1,416.6076$	919.95575	200
Slice 11	$1,215.3333$	$2,128.0092$	0	$1,596.9446$	$1,037.0679$	200
Slice 12	$1,220.6494$	$2,129.8343$	0	$1,724.6363$	$1,119.9919$	200
	$1,225.9742$	$2,131.8056$	0	$1,921.5658$	896.04083	100

file:///G:/SLOPE\%20RESULTS/Section\%2013-13\%20results/Latest\%20updated\%203-22-... 3/22/2016

Slice 13						
Slice 14	$1,231.3247$	$2,133.9338$	0	$1,992.5326$	929.13323	100
Slice 15	$1,236.6667$	$2,136.2105$	0	$2,045.8591$	953.99979	100
Slice 16	1,242	$2,138.6401$	0	$2,081.4956$	970.61735	100
Slice 17	$1,247.3333$	$2,141.2312$	0	$2,099.4124$	978.97206	100
Slice 18	$1,252.5$	$2,143.8985$	0	$1,948.4264$	908.56613	100
Slice 19	$1,257.5$	$2,146.6377$	0	$1,633.9893$	761.94173	100
Slice 20	$1,262.75$	$2,149.6897$	0	$1,292.7285$	602.80921	100
Slice 21	$1,268.25$	$2,153.0796$	0	923.90126	430.82223	100
Slice 22	$1,273.518$	$2,156.5204$	0	732.84731	341.73231	100
Slice 23	$1,276.5501$	$2,158.5722$	0	580.98647	487.50553	200
Slice 24	$1,278.3402$	$2,159.8348$	0	571.45265	479.50571	200
Slice 25	$1,282.1802$	$2,162.6365$	0	589.23793	382.65558	200
Slice 26	$1,287.3081$	$2,166.5396$	0	537.68794	349.17863	200
Slice 27	$1,292.436$	$2,170.6696$	0	468.17483	304.03629	200
Slice 28	$1,295.9866$	$2,173.6432$	0	411.62717	267.31381	200
Slice 29	$1,299.7299$	$2,176.9716$	0	337.38954	219.10333	200
Slice 30	$1,305.2433$	$2,182.0906$	0	213.82023	138.85648	200
Slice 31	$1,309.6809$	$2,186.428$	0	17.499119	11.36406	200
	1,					

2 - Translational

Report generated using GeoStudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 13
Date: 3/22/2016
Time: 12:10:09 PM
Tool Version: 8.15.1.11236
File Name: Section 13-13 Static Final SSA with key for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 13-13 results\}
Last Solved Date: 3/22/2016
Last Solved Time: 12:10:33 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B. 0°
Tmc 100-25 (A-Bed $20^{\circ}-34^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100-25 (A-Bed $20^{\circ}-34^{\circ}$)
C-Anisotropic Strength Fn.: $100-25^{\circ}$ (A-Bed $20^{\circ}-34^{\circ}$)
Phi-B: 0°
Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 4^{\circ}-12^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 4^{\circ}-12^{\circ}\right)$
C-Anisotropic Strength Fn.: 150-17 ${ }^{\circ}$ (A-Bed $\left.4^{\circ}-12^{\circ}\right)$
Phi-B: 0°
Tmc 100-25 ${ }^{\circ}$ (A-Bed $4^{\circ}-8^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100-25 (A-Bed $4^{\circ}-8^{\circ}$)
C-Anisotropic Strength Fn.: 100 (A-Bed4 $4^{\circ}-8^{\circ}$)
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-50,2,033) \mathrm{ft}$
Right Coordinate: $(2,050,2,352) f$

Slip Surface Block

Left Grid
Upper Left: $(1,111,2,143) \mathrm{ft}$
Lower Left: $(1,134,2,025) \mathrm{ft}$
ower Right: (1,248, 2,046)
Lower Right: (1,248, 2,046) ft
X Increments: 10
Y Increments: 10
Starting Angle: 135°
Ending Angle: 180°
Angle Increments:
Right Grid
Upper Left: $(1,266.6877,2,201.9943) \mathrm{ft}$
Lower Left: $(1,284.7124,2,069.4062) \mathrm{ft}$
Lower Right: $(1,386.5849,2,091.0405) \mathrm{ft}$
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc $\mathbf{1 0 0 - 2 5}{ }^{\circ}\left(\mathrm{A}-\operatorname{Bed} 4^{\circ}-8^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: (4, 0.625)
Data Point: $(8,0.625)$
Data Point: $(8.1,1)$
Tmc 100-25 (A-Bed $20^{\circ}-34^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: $(-90,1)$

Data Point: $(19.9,1)$
Data Point: ($20,0.625$
Data Point: ($34,0.625$)
Data Point: $(34.1,1)$
100-25 (A-Bed $20^{\circ}-34^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(19.9,1)$
Data Point: $(20,0.5)$
Data Point: $(34,0.5)$
Data Point: $(34.1,1)$
Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 4^{\circ}-\mathbf{1 2}^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.425)$
Data Point: (12, 0.425
Data Point: $(12.1,1)$
100 (A-Bed4응 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: $(4,0.5)$
Data Point: $(8,0.5)$
Data Point: $(8.1,1)$
$150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 4^{\circ}-12^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.75)$
Data Point: $(12,0.75)$
Data Point: (12.1, 1

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-50	2,033
Point 2	118	2,039
Point 3	296	2,045
Point 4	360	2,081
Point 5	373	2,081
Point 6	403	2,097
Point 7	416	2,097
Point 8	437	2,110
Point 9	505	2,110
Point 10	700	2,109
Point 11	831	2,106
Point 12	862	2,117
Point 13	1,060	2,119
Point 14	1,163	2,117
Point 15	1,163	2,121
Point 16	1,192	2,135
Point 17	1,202	2,135
Point 18	1,218	2,146
Point 19	1,234	2,145
Point 20	1,271	2,163
Point 21	1,295	2,174
Point 22	1,327	2,182
Point 23	1,369	2,192
Point 24	1,412	2,200
Point 25	1,429	2,201
Point 26	1,462	2,207
Point 27	1,582	2,236
Point 28	1,631	2,240
Point 29	1,713	2,261
Point 30	1,859	2,311
Point 31	1,895	2,322
Point 32	2,007	2,351
Point 33	2,036	2,353
Point 34	2,050	2,352
Point 35	2,050	2,100

Point 36	-50	$1,914.8161$
Point 37	1,250	2,164
Point 38	1,308	2,188
Point 39	1,335	2,189
Point 40	1,347	2,194
Point 41	1,359	2,194
Point 42	1,410	2,223
Point 43	1,425	2,223
Point 44	1,476	2,249
Point 45	1,586	2,253
Point 46	549	$2,109.7744$
Point 47	863	2,017
Point 48	1,089	2,117
Point 49	-50	1,996
Point 50	625	$2,087.3194$
Point 51	863	1,994
Point 52	2,049	1,580
Point 53	-50	1,580
Point 54	$1,007.64$	2,081
Point 55	2,050	2,230
Point 56	1,260	$2,157.3607$
Point 57	1,168	2,112
Point 58	1,188	2,112
Point 59	1,313	$2,178.5$

file:///G:/SLOPE\%20RESULTS/Section\%2013-13\%20results/section\%2013-13\%20static... 3/22/2016

Current Slip Surface

Slip Surface: 77,888
Fof S: 1.58
F of S: 1.58
Volume: $3,321.8473 \mathrm{ft}^{3}$
Volume: $3,321.8473 \mathrm{ft}^{3}$
Weight: $398,621.67 \mathrm{lbs}$
Resisting Force: $207,769.45 \mathrm{lbs}$
Resisting Force: $207,769.45 \mathrm{lbs}$
Activating Force: $131,647.76 \mathrm{lbs}$
Activating Force: $131,647.76 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Analysis): 1 of 131,769 slip surf
F of S Rank (Query): 1 of 100 slip surfaces
F of S Rank (Query): 1 of 100
Exit: $(1,151.3679,2,117) \mathrm{ft}$
Exit: $(1,151.3679,2,117) \mathrm{ft}$
Entry: $(1,318.8608,2,188.4023) \mathrm{ft}$
Radius: 98.718185 ft
Center: $(1,212.2853,2,206.2528) \mathrm{ft}$
Slip Slices
Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	$1,154.2759$	$2,115.7955$	0	252.06089	211.5042	200

Slice 2	$1,160.092$	$2,113.3864$	0	622.32647	522.19392	200
Slice 3	$1,165.5$	$2,111.1463$	0	$1,766.8934$	$1,482.5996$	200
Slice 4	$1,170.3$	$2,109.1581$	0	$2,428.6247$	$2,037.8581$	200
Slice 5	$1,174.9$	$2,107.2527$	0	$3,062.7838$	$2,569.9808$	200
Slice 6	$1,179.9$	$2,107.3836$	0	$2,314.4647$	$1,079.2526$	100
Slice 7	$1,185.3$	$2,109.5509$	0	$2,361.6524$	$1,101.2566$	100
Slice 8	1,190	$2,111.4372$	0	$2,402.7231$	$1,120.4082$	100
Slice 9	$1,194.5$	$2,113.2432$	0	$2,312.5102$	$1,078.3412$	100
Slice 10	$1,199.5$	$2,115.2499$	0	$2,097.1304$	977.90795	100
Slice 11	$1,204.6667$	$2,117.3235$	0	$2,071.3426$	965.88294	100
Slice 12	1,210	$2,119.464$	0	$2,235.147$	$1,042.2662$	100
Slice 13	$1,215.3333$	$2,121.6045$	0	$2,398.9514$	$1,118.6494$	100
Slice 14	$1,220.6667$	$2,123.745$	0	$2,526.9791$	$1,178.3497$	100
Slice 15	1,226	$2,125.8855$	0	$2,619.2302$	$1,221.3671$	100
Slice 16	$1,231.3333$	$2,128.026$	0	$2,711.4814$	$1,264.3845$	100
Slice 17	$1,236.6667$	$2,130.1665$	0	$2,803.7325$	$1,307.4019$	100
Slice 18	1,242	$2,132.3069$	0	$2,895.9836$	$1,350.4193$	100
Slice 19	$1,247.3333$	$2,134.4474$	0	$2,988.2348$	$1,393.4367$	100
Slice 20	$1,252.5$	$2,136.521$	0	$2,913.8931$	$1,358.7706$	100
Slice 21	$1,257.5$	$2,138.5277$	0	$2,672.9585$	$1,246.421$	100
Slice 22	$1,262.75$	$2,140.6348$	0	$2,419.9773$	$1,128.4539$	100
Slice 23	$1,268.25$	$2,142.8422$	0	$2,154.9493$	$1,004.8694$	100
Slice 24	$1,273.518$	$2,144.9565$	0	$2,096.5773$	977.65006	100
Slice 25	$1,279.0754$	$2,147.1869$	0	$2,260.21$	$1,053.9532$	100

file:///G:/SLOPE\%20RESULTS/Section\%2013-13\%20results/section\%2013-13\%20static... 3/22/2016
2 - Translational

Slice 26	$1,285.1541$	$2,149.6265$	0	$2,439.1914$	$1,137.4136$	100
Slice 27	$1,291.2327$	$2,152.0661$	0	$2,618.1728$	$1,220.874$	100
Slice 28	$1,294.636$	$2,153.8057$	0	$1,617.1724$	$1,356.9688$	200
Slice 29	$1,297.34$	$2,157.6674$	0	$1,478.1217$	$1,240.2913$	200
Slice 30	$1,303.84$	$2,166.9503$	0	$1,143.8597$	959.81228	200
Slice 31	$1,309.6451$	$2,175.2409$	0	773.52797	649.06703	200
Slice 32	$1,311.4949$	$2,177.8827$	0	662.10652	429.977	200
Slice 33	$1,315.2802$	$2,183.2886$	0	263.44322	171.08203	200

2 - Translational

Report generated using GeoStudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 133
Date: 3/22/2016
Time: 11:59:24 AM
Tool Version: 8.15.1.11236
File Name: Section 13-13 Seismic Final SSA with key for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 13-13 results\}
Last Solved Date: 3/22/2016
Last Solved Time: 12:00:10 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': $33{ }^{\circ}$
Phi-B. 0°
Tmc 100-25 (A-Bed $20^{\circ}-34^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100-25 (A-Bed $20^{\circ}-34^{\circ}$)
C-Anisotropic Strength Fn.: $100-25^{\circ}$ (A-Bed $20^{\circ}-34^{\circ}$)
Phi-B: 0°
Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 4^{\circ}-12^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 4^{\circ}-12^{\circ}\right)$
C-Anisotropic Strength Fn.: 150-17 ${ }^{\circ}$ (A-Bed $\left.4^{\circ}-12^{\circ}\right)$
Phi-B: 0°
Tmc 100-25 ${ }^{\circ}$ (A-Bed $4^{\circ}-8^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100-25 (A- Bed $4^{\circ}-8^{\circ}$)
C-Anisotropic Strength Fn.: 100 (A-Bed4 $4^{\circ}-8^{\circ}$)
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-50,2,033) \mathrm{ft}$
Right Coordinate: $(2,050,2,352) f$

Slip Surface Block

Left Grid
Upper Left: $(1,111,2,143) \mathrm{ft}$
Lower Left: $(1,134,2,025) \mathrm{ft}$
ower Right: (1,248, 2046)
Lower Right: (1,248, 2,046) ft
X Increments: 10
Y Increments: 10
Starting Angle: 135°
Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: $(1,266.6877,2,201.9943) \mathrm{ft}$
Lower Left: $(1,284.7124,2,069.4062) \mathrm{ft}$
Lower Right: $(1,386.5849,2,091.0405) \mathrm{ft}$
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc $\mathbf{1 0 0}-25^{\circ}\left(\mathrm{A}-\mathrm{Bed} 4^{\circ}-\mathbf{8}^{\circ}\right.$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: (4, 0.625)
Data Point: $(8,0.625)$
Data Point: $(8.1,1)$
Tmc 100-25 (A-Bed $20^{\circ}-34^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: $(-90,1)$

Data Point: $(19.9,1)$
Data Point: ($20,0.625$
Data Point: ($34,0.625$)
Data Point: $(34.1,1)$
100-25 (A-Bed $20^{\circ}-34^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(19.9,1)$
Data Point: $(20,0.5)$
Data Point: $(34,0.5)$
Data Point: $(34.1,1)$
Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 4^{\circ}-\mathbf{1 2}^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.425)$
Data Point: (12, 0.425
Data Point: $(12.1,1)$
100 (A-Bed4응 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: $(4,0.5)$
Data Point: $(8,0.5)$
Data Point: $(8.1,1)$
$150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 4^{\circ}-12^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.75)$
Data Point: $(12,0.75)$
Data Point: (12.1, 1

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-50	2,033
Point 2	118	2,039
Point 3	296	2,045
Point 4	360	2,081
Point 5	373	2,081
Point 6	403	2,097
Point 7	416	2,097
Point 8	437	2,110
Point 9	505	2,110
Point 10	700	2,109
Point 11	831	2,106
Point 12	862	2,117
Point 13	1,060	2,119
Point 14	1,163	2,117
Point 15	1,163	2,121
Point 16	1,192	2,135
Point 17	1,202	2,135
Point 18	1,218	2,146
Point 19	1,234	2,145
Point 20	1,271	2,163
Point 21	1,295	2,174
Point 22	1,327	2,182
Point 23	1,369	2,192
Point 24	1,412	2,200
Point 25	1,429	2,201
Point 26	1,462	2,207
Point 27	1,582	2,236
Point 28	1,631	2,240
Point 29	1,713	2,261
Point 30	1,859	2,311
Point 31	1,895	2,322
Point 32	2,007	2,351
Point 33	2,036	2,353
Point 34	2,050	2,352
Point 35	2,050	2,100

Point 36	-50	$1,914.8161$
Point 37	1,250	2,164
Point 38	1,308	2,188
Point 39	1,335	2,189
Point 40	1,347	2,194
Point 41	1,359	2,194
Point 42	1,410	2,223
Point 43	1,425	2,223
Point 44	1,476	2,249
Point 45	1,586	2,253
Point 46	549	$2,109.7744$
Point 47	863	2,017
Point 48	1,089	2,117
Point 49	-50	1,996
Point 50	625	$2,087.3194$
Point 51	863	1,994
Point 52	2,049	1,580
Point 53	-50	1,580
Point 54	$1,007.64$	2,081
Point 55	2,050	2,230
Point 56	1,260	$2,157.3607$
Point 57	1,168	2,112
Point 58	1,188	2,112
Point 59	1,313	$2,178.5$
59		

file:///G:/SLOPE\%20RESULTS/Section\%2013-13\%20results/Latest\%20updated\%203-22-... 3/22/2016

Point 60	1,276.0361 2,1	88.8352	
Regions			
	Material	Points	Area (ft^{2})
$\begin{aligned} & \text { Region } \\ & 1 \end{aligned}$	Fill	46,50,47,54,48,13,12,11,10	25,797
$\begin{aligned} & \text { Region } \\ & 2 \end{aligned}$	$\begin{aligned} & \text { Tmc } 100-25^{\circ} \\ & \left(\mathrm{A}-\operatorname{Bed} 4^{\circ}-8^{\circ}\right) \end{aligned}$	49,50,46,9,8,7,6,5,4,3,2,1	16,398
$\begin{aligned} & \text { Region } \\ & 3 \end{aligned}$	$\begin{aligned} & \text { Tmc 100-25 } \\ & \left(\text { A-Bed } 20^{\circ}\right. \\ & -34^{\circ} \text {) } \end{aligned}$	47,50,49,36,51	82,160
$\begin{aligned} & \text { Region } \\ & 4 \end{aligned}$	$\begin{aligned} & \text { Tmc } 150-17^{\circ} \\ & \left(\text { A-Bed } 4^{\circ}\right. \\ & -12^{\circ} \text {) } \end{aligned}$	36,51,35,52,53	8.959e+005
$\begin{aligned} & \text { Region } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { Tmc 100- } 25^{\circ} \\ & \left(\mathrm{A}-\mathrm{Bed} 20^{\circ}\right. \\ & \left.-34^{\circ}\right) \end{aligned}$	51,35,55,60,58,57,14,48,54,47	$1.3322 \mathrm{e}+005$
$\begin{aligned} & \text { Region } \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Tmc } 100-25^{\circ} \\ & \left(\mathrm{A}-\text { Bed } 4^{\circ}-8^{\circ}\right) \end{aligned}$	55,34,33,32,31,30,29,28,27,26,25,24,23,22,59,60	49,472
$\begin{aligned} & \hline \text { Region } \\ & 7 \end{aligned}$	Fill	18,19,56,20,37	372.83
$\begin{aligned} & \text { Region } \\ & 8 \end{aligned}$	Fill	22,23,24,25,26,27,28,29,45,44,43,42,41,40,39,38,20,21,59	7,527
Region	Fill	14,57,58,60,59,21,20,56,19,18,17,16,15	1,578.4

Current Slip Surface

Slip Surface: 77,891
Fof S: 1.13
Volume: 3,731.129 ft^{3}
Volume: $3,731.129 \mathrm{ft}^{3}$
Weight: $447,735.48 \mathrm{lbs}$
Resisting Force: $224,668.02 \mathrm{lbs}$
Resisting Force: $224,668.02 \mathrm{lbs}$
Activating Force: $198,819.85 \mathrm{lbs}$
Activating Force: $198,819.85 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 100 slip surfaces
Exit: $(1,151.3679,2,117) \mathrm{ft}$
Entry: $(1,327.7641,2,188.732) \mathrm{ft}$
Radius: 100.80246 ft
Center: $(1,217.6885,2,206.665) \mathrm{ft}$
Slip Slices
Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	$1,154.2759$	$2,115.7955$	0	313.80973	263.31763	200

Slice 2	$1,160.092$	$2,113.3864$	0	730.69628	613.12698	200
Slice 3	$1,165.5$	$2,111.1463$	0	$2,019.3782$	$1,694.4595$	200
Slice 4	$1,170.3$	$2,109.1581$	0	$2,764.4296$	$2,319.6318$	200
Slice 5	$1,174.9$	$2,107.2527$	0	$3,478.4371$	$2,918.7553$	200
Slice 6	$1,179.9$	$2,107.3428$	0	$2,229.6729$	$1,039.7135$	100
Slice 7	$1,185.3$	$2,109.4283$	0	$2,283.6585$	$1,064.8875$	100
Slice 8	1,190	$2,111.2435$	0	$2,330.6461$	$1,086.7981$	100
Slice 9	$1,194.5$	$2,112.9815$	0	$2,250.658$	$1,049.499$	100
Slice 10	$1,199.5$	$2,114.9126$	0	$2,050.6923$	956.25353	100
Slice 11	$1,204.6667$	$2,116.908$	0	$2,033.9059$	948.42592	100
Slice 12	1,210	$2,118.9678$	0	$2,200.2988$	$1,026.0162$	100
Slice 13	$1,215.3333$	$2,121.0276$	0	$2,366.6917$	$1,103.6065$	100
Slice 14	$1,220.6667$	$2,123.0874$	0	$2,498.5673$	$1,165.1011$	100
Slice 15	1,226	$2,125.1472$	0	$2,595.9257$	$1,210.5$	100
Slice 16	$1,231.3333$	$2,127.2071$	0	$2,693.2841$	$1,255.899$	100
Slice 17	$1,236.6667$	$2,129.2669$	0	$2,790.6425$	$1,301.298$	100
Slice 18	1,242	$2,131.3267$	0	$2,888.001$	$1,346.697$	100
Slice 19	$1,247.3333$	$2,133.3865$	0	$2,985.3594$	$1,392.0959$	100
Slice 20	$1,252.5$	$2,135.3819$	0	$2,921.7282$	$1,362.4242$	100
Slice 21	$1,257.5$	$2,137.313$	0	$2,697.1074$	$1,257.6818$	100
Slice 22	$1,262.75$	$2,139.3406$	0	$2,461.2555$	$1,147.7023$	100
Slice 23	$1,268.25$	$2,141.4648$	0	$2,214.1727$	$1,032.4857$	100
Slice 24	$1,273.518$	$2,143.4994$	0	$2,166.1078$	$1,010.0727$	100
Slice 25	$1,279.1968$	$2,145.6926$	0	$2,336.3225$	$1,089.4451$	100

file:///G:/SLOPE\%20RESULTS/Section\%2013-13\%20results/Latest\%20updated\%203-22-... 3/22/2016

2 - Translational
Page 9 of 9

Slice 26	$1,285.518$	$2,148.134$	0	$2,525.7987$	$1,177.7993$	100
Slice 27	$1,291.8394$	$2,150.5753$	0	$2,715.2748$	$1,266.1534$	100
Slice 28	$1,297.3648$	$2,152.7094$	0	$2,880.8969$	$1,343.3843$	100
Slice 29	$1,302.0945$	$2,154.536$	0	$3,022.665$	$1,409.4918$	100
Slice 30	$1,306.2297$	$2,157.9776$	0	$1,559.2192$	$1,308.3402$	200
Slice 31	$1,308.4746$	$2,161.1837$	0	$1,442.9885$	$1,210.8111$	200
Slice 32	$1,310.9746$	$2,164.7541$	0	$1,240.098$	$1,040.5658$	200
Slice 33	$1,315.303$	$2,170.9358$	0	888.81685	745.80589	200
Slice 34	$1,319.9091$	$2,177.514$	0	515.00429	432.13991	200
Slice 35	$1,324.9881$	$2,184.7675$	0	116.32431	75.541893	200

Section 13-13 Static Temporary Final SSA without key for Skyline Ranch.gsz

Section 13-13 Static Temporary Final SSA without key for Skyline Ranch.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/22/2016 12:20:39 PM

Name: Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf Phi': 33°

Name: Tmc 100-25 $\left(\right.$ A-Bed $\left.20^{\circ}-34^{\circ}\right)$ Model: Anisotropic Fn. Unit Weight: 120 pcf Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100-25 (A-Bed $20^{\circ}-34^{\circ}$) C-Anisotropic Strength Fn.: 100-25 (A-Bed $20^{\circ}-34^{\circ}$)

Name: Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\operatorname{Bed} 4^{\circ}-12^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}$ (A-Bed $4^{\circ}-12^{\circ}$)
C-Anisotropic Strength Fn.: 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 4^{\circ}-12^{\circ}\right)$
Name: Tmc 100-25 ${ }^{\circ}$ (A-Bed $4^{\circ}-8^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100-25 ${ }^{\circ}$ (A- Bed $4^{\circ}-8^{\circ}$) C-Anisotropic Strength Fn.: 100 (A- Bed4${ }^{\circ} 8^{\circ}$)

2 - Translational

Report generated using GeoStudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 139
Date: 3/22/2016
Time: 12:20:39 PM
Tool Version: 8.15.1.11236
File Name: Section 13-13 Static Temporary Final SSA without key for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 13-13 results\
Last Solved Date: 3/22/2016
Last Solved Time: 12:25:22 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': $33{ }^{\circ}$
Phi-B. 0°
Tmc 100-25 (A-Bed $20^{\circ}-34^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100-25 (A-Bed $20^{\circ}-34^{\circ}$)
C-Anisotropic Strength Fn.: $100-25^{\circ}$ (A-Bed $20^{\circ}-34^{\circ}$)
Phi-B: 0°
Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 4^{\circ}-12^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 4^{\circ}-12^{\circ}\right)$
C-Anisotropic Strength Fn.: 150-17 ${ }^{\circ}$ (A-Bed $\left.4^{\circ}-12^{\circ}\right)$
Phi-B: 0°
Tmc 100-25 ${ }^{\circ}$ (A-Bed $4^{\circ}-8^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100-25 (A- Bed $4^{\circ}-8^{\circ}$)
C-Anisotropic Strength Fn.: 100 (A-Bed4 $4^{\circ}-8^{\circ}$)
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-50,2,033) \mathrm{ft}$
Right Coordinate: $(2,050,2,352) f$

Slip Surface Block

Left Grid
Upper Left: $(1,111,2,143) \mathrm{ft}$
Lower Left: $(1,134,2,025) \mathrm{ft}$
Ower Right: (1,248, 2,046)
Lower Right: $(1,248,2,046)$ ft
X Increments: 10
Y Increments: 10
Starting Angle: 135°
Ending Angle: 180°
Angle Increments:
Right Grid
Upper Left: $(1,266.6877,2,201.9943) \mathrm{ft}$
Lower Left: $(1,284.7124,2,069.4062) \mathrm{ft}$
Lower Right: $(1,386.5849,2,091.0405) \mathrm{ft}$
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc $\mathbf{1 0 0 - 2 5}{ }^{\circ}\left(\mathrm{A}-\operatorname{Bed} 4^{\circ}-8^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: (4, 0.625)
Data Point: $(8,0.625)$
Data Point: $(8.1,1)$
Tmc 100-25 (A-Bed $20^{\circ}-34^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: $(-90,1)$

Data Point: $(19.9,1)$
Data Point: $(20,0.625)$
Data Point: ($34,0.625$)
Data Point: $(34.1,1)$
100-25 (A-Bed $20^{\circ}-34^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(19.9,1)$
Data Point: $(20,0.5)$
Data Point: $(34,0.5)$
Data Point: $(34.1,1)$
Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 4^{\circ}-\mathbf{1 2}^{\circ}\right.$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.425)$
Data Point: (12, 0.425
Data Point: $(12.1,1)$
100 (A-Bed4응 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: $(4,0.5)$
Data Point: $(8,0.5)$
Data Point: $(8.1,1)$
$150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 4^{\circ}-12^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1

2-Translational

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.75)$
Data Point: $(12,0.75)$
Data Point: (12.1, 1)

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-50	2,033
Point 2	118	2,039
Point 3	296	2,045
Point 4	360	2,081
Point 5	373	2,081
Point 6	403	2,097
Point 7	416	2,097
Point 8	437	2,110
Point 9	505	2,110
Point 10	700	2,109
Point 11	831	2,106
Point 12	862	2,117
Point 13	1,060	2,119
Point 14	1,163	2,117
Point 15	1,327	2,182
Point 16	1,369	2,192
Point 17	1,412	2,200
Point 18	1,429	2,201
Point 19	1,462	2,207
Point 20	1,582	2,236
Point 21	1,631	2,240
Point 22	1,713	2,261
Point 23	1,859	2,311
Point 24	1,895	2,322
Point 25	2,007	2,351
Point 26	2,036	2,353
Point 27	2,050	2,352
Point 28	2,050	2,100
Point 29	-50	$1,914.8161$
Point 30	549	$2,109.7744$
Point 31	863	2,017
Point 32	1,089	2,117
Point 33	-50	1,996
Point 34	625	$2,087.3194$
Point 35	863	1,994

Point 36	2,049	1,580
Point 37	-50	1,580
Point 38	$1,007.64$	2,081
Point 39	2,050	2,230
Point 40	1,168	2,112
Point 41	1,188	2,112
Point 42	1,313	$2,178.5$
Point 43	$1,276.0361$	$2,158.8352$

Regions

	Material	Points	Area (ft^{2})
$\begin{aligned} & \hline \text { Region } \\ & 1 \end{aligned}$	Fill	30,34,31,38,32,13,12,11,10	25,797
$\begin{aligned} & \text { Region } \\ & 2 \end{aligned}$	Tmc 100-25 (A-Bed $4^{\circ}-8^{\circ}$)	33,34,30,9,8,7,6,5,4,3,2,1	16,398
$\begin{aligned} & \text { Region } \\ & 3 \end{aligned}$	$\begin{aligned} & \text { Tmc } 100-25^{\circ} \text { (A-Bed } \\ & \left.20^{\circ}-34^{\circ}\right) \end{aligned}$	31,34,33,29,35	82,160
$\begin{aligned} & \text { Region } \\ & 4 \end{aligned}$	$\begin{aligned} & \text { Tmc } 150-17^{\circ}\left(\mathrm{A} \text {-Bed } 4^{\circ}\right. \\ & \left.-12^{\circ}\right) \end{aligned}$	29,35,28,36,37	$8.959 \mathrm{e}+005$
$\begin{aligned} & \text { Region } \\ & 5 \end{aligned}$	$\begin{aligned} & \text { Tmc } 100-25^{\circ} \text { (A-Bed } \\ & \left.20^{\circ}-34^{\circ}\right) \end{aligned}$	35,28,39,43,41,40,14,32,38,31	$1.3322 \mathrm{e}+005$
$\begin{aligned} & \text { Region } \\ & 6 \end{aligned}$	Tmc 100-25 (A-Bed $4^{\circ}-8^{\circ}$)	39,27,26,25,24,23,22,21,20,19,18,17,16,15,42,43	49,472

Current Slip Surface

Slip Surface: 80,069
F of S: 1.32
Volume: $1,586.6086 \mathrm{ft}^{3}$
Weight: 190,393.03 lbs
Resisting Force: $93,953.979 \mathrm{lb}$
Activating Force: $70,977.484$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 100 slip surfaces
Exit: $(1,191.6678,2,113.9513) \mathrm{ft}$
Entry: (1,322.2122, 2,180.803) ft
Radius: 84.174713 ft
Center: $(1,231.2639,2,197.516) \mathrm{ft}$

2 - Translational

Slice 23	$1,290.2477$	$2,149.334$	0	$1,750.2615$	816.16033	100
Slice 24	$1,294.3082$	$2,151.0813$	0	$1,793.3033$	836.23106	100
Slice 25	$1,298.3686$	$2,152.8285$	0	$1,836.3451$	856.3018	100
Slice 26	$1,302.4291$	$2,154.5757$	0	$1,879.3869$	876.37253	100
Slice 27	$1,306.7043$	$2,158.6554$	0	926.90038	777.76176	200
Slice 28	$1,310.9746$	$2,164.7541$	0	685.61877	575.30246	200
Slice 29	$1,315.303$	$2,170.9358$	0	400.1049	335.72787	200
Slice 30	$1,319.9091$	$2,177.514$	0	57.956299	48.631109	200

1 - Circular Mode of Failure

Report generated using GeoStudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

```
File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 119
Date: 3/22/2016
Time: 3:36:29 PM
Tool Version: 8.15.1.11236
File Name: Section 14-14 Static Final SSA with key for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 14-14 results\}
Last Solved Date: 3/22/2016
Last Solved Time: 3:36:45 PM
```


Project Settings

```
Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1
```


Analysis Settings

1 - Circular Mode of Failure
 Kind: SLOPE/W

Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Fill

Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Tmc 100-25 ${ }^{\circ}$ (A-Bed $12^{\circ}-20^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100-25 (A-Bed $12^{\circ}-20^{\circ}$)
C-Anisotropic Strength Fn.: $100 \mathrm{psf}\left(\mathrm{A}-\mathrm{Bed} 12^{\circ}-20^{\circ}\right)$

Phi-B: 0°
Tmc 150-17 ${ }^{\circ}$ (A-Bed $12^{\circ}-\mathbf{2 0}^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}$ (A-Bed $12^{\circ}-20^{\circ}$)
C-Anisotropic Strength Fn.: 150 psf (A-Bed $12^{\circ}-20^{\circ}$)
Phi-B: 0°

Slip Surface Entry and Exit

Left Projection: Range
Left-Zone Left Coordinate: (-19.3634, 2,101.4383) ft
Left-Zone Right Coordinate: $(250,2,187.1628) \mathrm{ft}$
Left-Zone Increment: 50
Right Projection: Range
Right-Zone Left Coordinate: ($300,2,202.2642$) ft
Right-Zone Right Coordinate: (661.3692, 2,287.5638) ft
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: (-200.4103, 1,933) ft
Right Coordinate: $(812,2,307) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 12^{\circ}-20^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: (-90, 1)
Data Point: $(17.9,1)$
Data Point: $(18,0.425)$
Data Point: $(22,0.425)$
Data Point: $(22.1,1)$
150 psf (A-Bed $12^{\circ}-\mathbf{2 0}^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(11.9,1)$
Data Point: $(12,0.667)$
Data Point: $(20,0.667)$
Data Point: $(20.1,1)$
100 psf (A-Bed $12^{\circ}-\mathbf{2 0}^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(11.9,1)$
Data Point: $(12,0.5)$
Data Point: $(20,0.5)$

Data Point: $(20.1,1)$
Tmc 100-25 ${ }^{\circ}$ (A-Bed $\mathbf{1 2}^{\circ}-\mathbf{2 0}^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: (-90, 1)
Data Point: $(11.9,1)$
Data Point: $(12,0.625)$
Data Point: $(20,0.625)$
Data Point: $(20.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-199	2,107
Point 2	-96	2,106
Point 3	-12	2,101
Point 4	52	2,100
Point 5	101	2,129
Point 6	111	2,129
Point 7	156	2,154
Point 8	176	2,154
Point 9	215	2,176
Point 10	230	2,176
Point 11	273	2,200
Point 12	295	2,200
Point 13	348	2,224
Point 14	358	2,224
Point 15	409	2,255
Point 16	812	2,296

Point 17	812	2,264
Point 18	812	2,122
Point 19	812	1,901
Point 20	-200	1,901
Point 21	-200.4103	1,933
Point 22	812	2,155
Point 23	77	2,075
Point 24	127	2,075
Point 25	812	2,307
Point 26	399	2,168

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Tmc 150-17 ${ }^{\circ}\left(\right.$ A-Bed $\left.12^{\circ}-20^{\circ}\right)$	$21,20,19,18,22$	$1.4477 \mathrm{e}+005$
Region 2	Tmc $100-25^{\circ}\left(\right.$ A-Bed $\left.12^{\circ}-20^{\circ}\right)$	$1,21,22,17,16,25,26,24,23,4,3,2$	$1.1865 \mathrm{e}+005$
Region 3	Fill	$4,23,24,26,25,15,14,13,12,11,10,9,8,7,6,5$	39,768

Current Slip Surface

Slip Surface: 32,293
F of S: 1.87
Volume: 10,691.937 ft^{3}
Weight: 1,283,032.5 lbs

Resisting Moment: 6.6036603e+008 lbs-ft
Activating Moment: $3.5256276 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 50 slip surfaces
Exit: $(52.287117,2,100.1699) \mathrm{ft}$
Entry: $(444.60145,2,259.5937) \mathrm{ft}$
Radius: 758.84435 ft
Center: (-25.892211, 2,854.9764) ft

Slip Slices

	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	58.376228	2,100.8503	0	326.26504	211.87899	200
Slice 2	70.554448	2,102.311	0	983.14483	638.46172	200
Slice 3	82.732669	2,103.972	0	1,609.9659	1,045.5241	200
Slice 4	94.91089	2,105.8346	0	2,206.9897	1,433.2359	200
Slice 5	106	2,107.699	0	2,391.1884	1,552.8559	200
Slice 6	118.5	2,110.0352	0	2,581.8512	1,676.6738	200
Slice 7	133.5	2,113.1003	0	3,150.6971	2,046.0866	200
Slice 8	148.5	2,116.4828	0	3,676.3283	2,387.4355	200
Slice 9	161	2,119.5245	0	3,777.6225	2,453.2168	200
Slice 10	171	2,122.1384	0	3,471.8107	2,254.6202	200
Slice 11	182.5	2,125.3383	0	3,502.6191	2,274.6275	200
Slice 12	195.5	2,129.1774	0	3,858.6928	2,505.8644	200
Slice 13	208.5	2,133.2712	0	4,182.5488	2,716.179	200
Slice 14	222.5	2,137.9805	0	4,040.7658	2,624.104	200
Slice 15	237.16667	2,143.2275	0	3,877.1846	2,517.8731	200
Slice 16	251.5	2,148.691	0	4,115.6046	2,672.7049	200
Slice 17	265.83333	2,154.4903	0	4,314.667	2,801.9775	200
Slice 18	278.5	2,159.8835	0	4,139.6801	2,688.3397	200
Slice 19	289.5	2,164.8054	0	3,604.3878	2,340.7168	200
Slice 20	301.625	2,170.4887	0	3,303.1551	2,145.094	200
Slice 21	314.875	2,176.9885	0	3,226.3732	2,095.2312	200
Slice 22	328.125	2,183.8128	0	3,117.0171	2,024.2146	200

Slice 23	341.375	$2,190.9717$	0	$2,974.789$	$1,931.8506$	200
Slice 24	353	$2,197.5175$	0	$2,598.0916$	$1,687.2204$	200
Slice 25	364.375	$2,204.2222$	0	$2,297.4012$	$1,491.9498$	200
Slice 26	377.125	$2,212.0415$	0	$2,270.4658$	$1,474.4577$	200
Slice 27	389.875	$2,220.2132$	0	$2,208.7276$	$1,434.3645$	200
Slice 28	402.625	$2,228.7511$	0	$2,111.6537$	$1,371.3239$	200
Slice 29	414.93358	$2,237.3484$	0	$1,711.1396$	659.58289	200
Slice 30	426.80073	$2,245.9943$	0	$1,015.6686$	193.015	200
Slice 31	438.66788	$2,254.9994$	0	297.21704	200	

1 - Circular Mode of Failure

Report senatedurg

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 115
Date: 3/22/2016
Time: 3:22:20 PM
Tool Version: 8.15.1.11236
File Name: Section 14-14 Seismic Final SSA with key for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 14-14 results\
Last Solved Date: 3/22/2016
Last Solved Time: 3:26:24 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exi
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Tmc 100-25 ${ }^{\circ}$ (A-Bed $12^{\circ}-20^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40
Phi-Anisotropic Strength Fn.: Tmc 100-25 (A-Bed $12^{\circ}-20^{\circ}$)
C-Anisotropic Strength Fn.: 100 psf (A-Bed $12^{\circ}-20^{\circ}$)
Phi-B: 0°
Tmc 150-17 ${ }^{\circ}$ (A-Bed $12^{\circ}-\mathbf{2 0}^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}$ (A-Bed $12^{\circ}-20^{\circ}$)
C-Anisotropic Strength Fn .: 150 psf (A-Bed $12^{\circ}-20^{\circ}$)
Phi-B: 0°

Slip Surface Entry and Exit
Left Projection: Range
Left-Zone Left Coordinate: (-19.3634, 2,101.4383) ft
Left-Zone Right Coordinate: ($250,2,187.1628$) ft
Left-Zone Increment: 50
Right Projection: Range
Right-Zone Left Coordinate: (300, 2,202.2642) ft
Right-Zone Right Coordinate: ($661.3692,2,287.5638$) ft
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: $(-200.4103,1,933) \mathrm{ft}$
Right Coordinate: $(812,2,307) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 12^{\circ}-\mathbf{2 0}^{\circ}\right.$)
Model: Spline Data Point Functio
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(17.9,1)$
Data Point: $(18,0.425$
Data Point: (22, 0.425$)$
Data Point: $(22.1,1)$
150 psf (A-Bed $\left.12^{\circ}-20^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(11.9,1)$
Data Point: $(12,0.667)$
Data Point: $(20,0.667)$ Data Point: $(20.1,1)$

100 psf (A-Bed $12^{\circ}-20^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(11.9,1)$
Data Point: $(12,0.5)$
Data Point: $(20,0.5)$
Data Point: (20.1, 1

Tmc 100-25 ${ }^{\circ}$ (A-Bed $12^{\circ}-20^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(11.9,1)$
Data Point: $(12,0.625$
Data Point: $(12,0.625)$
Data Point: $(20.1,1)$

Points

	$X(\mathrm{ft})$	$Y(\mathrm{ft})$
Point 1	-199	2,107
Point 2	-96	2,106
Point 3	-12	2,101
Point 4	52	2,100
Point 5	101	2,129
Point 6	111	2,129
Point 7	156	2,154
Point 8	176	2,154
Point 9	215	2,176
Point 10	230	2,176
Point 11	273	2,200
Point 12	295	2,200
Point 13	348	2,224
Point 14	358	2,224
Point 15	409	2,255
Point 16	812	2,296
Point 17	812	2,264
Point 18	812	2,122
Point 19	812	1,901
Point 20	-200	1,901
Point 21	-200.4103	1,933
Point 22	812	2,155
Point 23	77	2,075
Point 24	127	2,075
Point 25	812	2,307
Point 26	399	2,168

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Tmc $150-17^{\circ}(\mathrm{A}$-Bed $\left.12^{\circ}-20^{\circ}\right)$	$21,20,19,18,22$	$1.4477 \mathrm{e}+005$
Region 2	Tmc $100-25^{\circ}(\mathrm{A}$-Bed $\left.12^{\circ}-20^{\circ}\right)$	$1,21,22,17,16,25,26,24,23,4,3,2$	$1.1865 \mathrm{e}+005$
Region 3	Fill	$4,23,24,26,25,15,14,13,12,11,10,9,8,7,6,5$	39,768

Current Slip Surface

Slip Surface: 32,343
F of S: 1.29
Volume: $10,673.463 \mathrm{ft}^{3}$
Weight: 1,280,815.6 Ibs
Resisting Moment: $6.9068626 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
Activating Moment: $5.3349881 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 50 slip surfaces
Exit: (52.344529, 2,100.2039) ft
Entry: $(452.0762,2,260.5582) \mathrm{ft}$
Radius: 836.87766 ft
Center: $(-48.878949,2,930.9373) \mathrm{ft}$
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	58.426462	$2,100.9902$	0	298.35774	193.75579	200
Slice 2	70.59033	$2,102.6538$	0	913.672	593.34553	200
Slice 3	82.754198	$2,104.4998$	0	$1,500.1129$	974.18469	200
Slice 4	94.918066	$2,106.5293$	0	$2,058.0556$	$1,336.517$	200
Slice 5	106	$2,108.5318$	0	$2,218.1618$	$1,440.4911$	200
Slice 6	118.5	$2,111.0045$	0	$2,384.4715$	$1,548.4939$	200
Slice 7	133.5	$2,114.2103$	0	$2,914.7123$	$1,892.8363$	200
Slice 8	148.5	$2,117.7054$	0	$3,404.5314$	$2,210.9286$	200
Slice 9	161	$2,120.8211$	0	$3,489.2712$	$2,265.9592$	200
Slice 10	171	$2,123.478$	0	$3,186.5388$	$2,069.3625$	200
Slice 11	182.5	$2,126.7096$	0	$3,208.6478$	$2,083.7202$	200

Slice 12	195.5	$2,130.5643$	0	$3,543.8568$	$2,301.4075$	200
Slice 13	208.5	$2,134.6499$	0	$3,849.6503$	$2,499.9921$	200
Slice 14	222.5	$2,139.322$	0	$3,711.8753$	$2,410.52$	200
Slice 15	237.16667	$2,144.4998$	0	$3,556.7246$	$2,309.764$	200
Slice 16	251.5	$2,149.8626$	0	$3,788.3182$	$2,460.1626$	200
Slice 17	265.83333	$2,155.5274$	0	$3,984.9675$	$2,587.8681$	200
Slice 18	278.5	$2,160.774$	0	$3,827.5805$	$2,485.6599$	200
Slice 19	289.5	$2,165.5435$	0	$3,330.0726$	$2,162.5744$	200
Slice 20	301.625	$2,171.0308$	0	$3,059.2436$	$1,986.696$	200
Slice 21	314.875	$2,177.2841$	0	$3,005.705$	$1,951.9277$	200
Slice 22	328.125	$2,183.8248$	0	$2,924.8351$	$1,899.4101$	200
Slice 23	341.375	$2,190.6604$	0	$2,816.6197$	$1,829.1342$	200
Slice 24	353	$2,196.8903$	0	$2,487.4426$	$1,615.3641$	200
Slice 25	364.375	$2,203.2481$	0	$2,233.1968$	$1,450.2549$	200
Slice 26	377.125	$2,210.6388$	0	$2,243.3842$	$1,456.8707$	200
Slice 27	389.875	$2,218.3343$	0	$2,224.6931$	$1,444.7326$	200
Slice 28	402.625	$2,226.3445$	0	$2,176.9669$	$1,413.7388$	200
Slice 29	416.17937	$2,235.2288$	0	$1,784.0371$	$1,158.5673$	200
Slice 30	430.5381	$2,245.0461$	0	$1,052.2684$	683.3511	200
Slice 31	444.89684	$2,255.3112$	0	297.19019	192.99757	200

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 117
Date: 3/22/2016
Time: 3:30:27 PM
Tool Version: 8.15.1.11236
File Name: Section 14-14 Static Final SSA with key for Skyline Ranch.gsz
Directory: G:|SLOPE RESULTS\Section 14-14 results\}
Last Solved Date: 3/22/2016
Last Solved Time: 3:30:58 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B. 0°
Tmc 100-25 (A-Bed $12^{\circ}-20^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100-25 (A-Bed $12^{\circ}-20^{\circ}$)
C-Anisotropic Strength Fn.: 100 psf (A-Bed $12^{\circ}-20^{\circ}$
Phi-B: 0°
Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 12^{\circ}-\mathbf{2 0}^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}$ (A-Bed $12^{\circ}-20^{\circ}$)
C-Anisotropic Strength Fn.: 150 psf (A-Bed $12^{\circ}-20^{\circ}$
Phi-B: 0°

Slip Surface Limits
Left Coordinate: (-200.4103, 1,933) ft
Right Coordinate: $(812,2,307)$ ft

Slip Surface Block

Left Grid
Upper Left: $(80,2,122) \mathrm{ft}$
ower Left: (111, 1,991) ft
Lower Right: $(229,2,014)$ ft
X Increments: 10
Y Increments: 10

Starting Angle: 135°
Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: (323.3505, 2,220.2241) ft
Lower Left: $(360.3413,2,059.0196) \mathrm{ft}$ Lower Right: (481.0019, 2,079.2802) ft X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 12^{\circ}-20^{\circ}\right.$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(17.9,1)$
Data Point: $(18,0.425)$
Data Point: (22, 0.425)
Data Point: $(22.1,1)$
150 psf (A-Bed $12^{\circ}-20^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(11.9,1)$
Data Point: $(12,0.667)$
Data Point: $(20,0.667)$
Data Point: $(20.1,1)$
100 psf (A-Bed $12^{\circ}-\mathbf{2 0}^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(11.9,1)$
Data Point: $(12,0.5)$
Data Point: $(20,0.5)$
Data Point: $(20.1,1)$
Tmc 100-25 (A-Bed $12^{\circ}-20^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(11.9,1)$
Data Point: (12, 0.625
Data Point: $(20,0.625$
Data Point: $(20.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-199	2,107
Point 2	-96	2,106
Point 3	-12	2,101
Point 4	52	2,100
Point 5	101	2,129
Point 6	111	2,129
Point 7	156	2,154
Point 8	176	2,154
Point 9	215	2,176
Point 10	230	2,176
Point 11	273	2,200
Point 12	295	2,200
Point 13	348	2,224
Point 14	358	2,224
Point 15	409	2,255
Point 16	812	2,296
Point 17	812	2,264
Point 18	812	2,122
Point 19	812	1,901
Point 20	-200	1,901
Point 21	-200.4103	1,933

Point 22	812	2,155
Point 23	77	2,075
Point 24	127	2,075
Point 25	812	2,307
Point 26	399	2,168

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Tmc $150-17^{\circ}\left(\mathrm{A}\right.$-Bed $\left.12^{\circ}-20^{\circ}\right)$	$21,20,19,18,22$	$1.4477 \mathrm{e}+005$
Region 2	Tmc $100-25^{\circ}\left(\mathrm{A}\right.$-Bed $\left.12^{\circ}-20^{\circ}\right)$	$1,21,22,17,16,25,26,24,23,4,3,2$	$1.1865 \mathrm{e}+005$
Region 3	Fill	$4,23,24,26,25,15,14,13,12,11,10,9,8,7,6,5$	39,768

Current Slip Surface

Slip Surface: 76,807
Fof S: 1.64
Volume: $25,292.21 \mathrm{ft}^{3}$
Weight: 3,035,065.2 lbs
Resisting Force: $1,472,366 \mathrm{lbs}$
Activating Force: $900,131.81 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 50 slip surfaces
Exit: (66.994388, 2,108.8742) ft
Entry: (499.24963, 2,266.6451) ft
Radius: 236.24981 ft
Center: $(239.93286,2,306.0878) \mathrm{ft}$
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	75.495791	$2,105.3528$	0	$1,288.0005$	836.43731	200
Slice 2	92.498597	$2,098.31$	0	$3,743.2141$	$2,430.8717$	200
Slice 3	106	$2,092.7176$	0	$5,268.0856$	$3,421.1348$	200
Slice 4	117.98201	$2,087.7545$	0	$6,537.1969$	$4,245.3053$	200
Slice 5	132.28201	$2,081.8312$	0	$8,527.6566$	$5,537.9249$	200
Slice 6	147.8	$2,081.558$	0	$7,416.861$	$3,458.5391$	100

Slice 7	166	$2,087.6796$	0	$7,245.3415$	$3,378.5582$	100
Slice 8	182.5	$2,093.2293$	0	$7,039.0904$	$3,282.3818$	100
Slice 9	195.5	$2,097.6018$	0	$7,363.3879$	$3,433.6042$	100
Slice 10	208.5	$2,101.9743$	0	$7,687.6854$	$3,584.8266$	100
Slice 11	222.5	$2,106.6832$	0	$7,573.5342$	$3,531.597$	100
Slice 12	237.16667	$2,111.6163$	0	$7,471.3329$	$3,483.9397$	100
Slice 13	251.5	$2,116.4373$	0	$7,819.5301$	$3,646.3068$	100
Slice 14	265.83333	$2,121.2582$	0	$8,167.7274$	$3,808.6738$	100
Slice 15	278.5	$2,125.5186$	0	$8,139.2061$	$3,795.3741$	100
Slice 16	289.5	$2,129.2184$	0	$7,733.9662$	$3,606.4077$	100
Slice 17	301.625	$2,133.2967$	0	$7,615.8702$	$3,551.3386$	100
Slice 18	314.875	$2,137.7533$	0	$7,784.9182$	$3,630.167$	100
Slice 19	328.125	$2,142.2099$	0	$7,953.9662$	$3,708.9953$	100
Slice 20	341.375	$2,146.6665$	0	$8,123.0141$	$3,787.8237$	100
Slice 21	353	$2,150.5765$	0	$8,023.3382$	$3,741.344$	100
Slice 22	364.74619	$2,154.5273$	0	$8,039.7486$	$3,748.9963$	100
Slice 23	378.23856	$2,159.0654$	0	$8,440.9692$	$3,936.0886$	100
Slice 24	391.99237	$2,163.865$	0	$8,773.2329$	$4,091.0257$	100
Slice 25	400.20925	$2,167.6047$	0	$6,433.873$	$5,398.6605$	200
Slice 26	405.20925	$2,172.6047$	0	$6,798.2248$	$4,414.8188$	200
Slice 27	416.5208	$2,183.9163$	0	$6,107.2759$	$3,966.1113$	200
Slice 28	431.56241	$2,198.9579$	0	$4,980.9835$	$3,234.6885$	200
Slice 29	446.60401	$2,213.9995$	0	$3,854.6912$	$2,503.2657$	200
Slice 30	461.64562	$2,229.0411$	0	$2,728.3989$	$1,771.8429$	200

file:///G:/SLOPE\%20RESULTS/Section\%2014-14\%20results/section\%2014-14\%20static... 3/22/2016

2-Translational
Page 7 of 7

Slice 31	476.68723	$2,244.0827$	0	$1,602.1065$	$1,040.4201$	200
Slice 32	491.72883	$2,259.1243$	0	475.81419	308.99735	200

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 115
Date: 3/22/2016
Time: 3:22:20 PM
Tool Version: 8.15.1.11236
File Name: Section 14-14 Seismic Final SSA with key for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 14-14 results\}
Last Solved Date: 3/22/2016
Last Solved Time: 3:22:37 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B. 0°
Tmc 100-25 (A-Bed $12^{\circ}-20^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100-25 (A-Bed $12^{\circ}-20^{\circ}$)
C-Anisotropic Strength Fn.: 100 psf (A-Bed $12^{\circ}-20^{\circ}$
Phi-B: 0°
Tmc 150-17 ${ }^{\circ}$ (A-Bed $\mathbf{1 2}^{\circ}-\mathbf{2 0}^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}$ (A-Bed $12^{\circ}-20^{\circ}$)
C-Anisotropic Strength Fn.: 150 psf (A-Bed $12^{\circ}-20^{\circ}$
Phi-B: 0°

Slip Surface Limits
Left Coordinate: (-200.4103, 1,933) ft
Right Coordinate: $(812,2,307) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: $(80,2,122) \mathrm{ft}$
ower Left: (111, 1,991) ft
Lower Right: $(229,2,014)$ ft
X Increments: 10
Y Increments: 10

Starting Angle: 135°
Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: (323.3505, 2,220.2241) ft
Lower Left: (360.3413, 2,059.0196) ft Lower Right: (481.0019, 2,079.2802) ft X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 12^{\circ}-20^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: $(-90,1)$
Data Point: $(17.9,1)$
Data Point: (18, 0.425)
Data Point: (22, 0.425
Data Point: $(22.1,1)$
150 psf (A-Bed $12^{\circ}-20^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(11.9,1)$
Data Point: (12, 0.667
Data Point: $(20,0.667)$
Data Point: $(20.1,1)$
100 psf (A-Bed $12^{\circ}-20^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(11.9,1)$
Data Point: $(12,0.5$
Data Point: $(20,0.5$
Data Point: $(20.1,1)$
Tmc 100-25 ${ }^{\circ}$ (A-Bed $12^{\circ}-20^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(11.9,1)$
Data Point: $(12,0.625)$
Data Point: $(20,0.625)$
Data Point: $(20.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-199	2,107
Point 2	-96	2,106
Point 3	-12	2,101
Point 4	52	2,100
Point 5	101	2,129
Point 6	111	2,129
Point 7	156	2,154
Point 8	176	2,154
Point 9	215	2,176
Point 10	230	2,176
Point 11	273	2,200
Point 12	295	2,200
Point 13	348	2,224
Point 14	358	2,224
Point 15	409	2,255
Point 16	812	2,296
Point 17	812	2,264
Point 18	812	2,122
Point 19	812	1,901
Point 20	-200	1,901
Point 21	-200.4103	1,933

2-Translational

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Tmc $150-17^{\circ}\left(\mathrm{A}\right.$-Bed $\left.12^{\circ}-20^{\circ}\right)$	$21,20,19,18,22$	$1.4477 \mathrm{e}+005$
Region 2	Tmc $100-25^{\circ}\left(\mathrm{A}\right.$-Bed $\left.12^{\circ}-20^{\circ}\right)$	$1,21,22,17,16,25,26,24,23,4,3,2$	$1.1865 \mathrm{e}+005$
Region 3	Fill	$4,23,24,26,25,15,14,13,12,11,10,9,8,7,6,5$	39,768

Current Slip Surface

Slip Surface: 76,807
Fof S : 1.13
Volume: $25,292.21 \mathrm{ft}^{3}$
Weight: 3,035,065.2 lbs
Resisting Force: $1,429,519.8 \mathrm{lbs}$
Activating Force: $1,268,278.3 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 50 slip surfaces
Exit: (66.994388, 2,108.8742) ft
Entry: (499.24963, 2,266.6451) ft
Radius: 236.24981 ft
Center: $(239.93286,2,306.0878) \mathrm{ft}$
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	75.495791	$2,105.3528$	0	$1,443.3086$	937.2956	200
Slice 2	92.498597	$2,098.31$	0	$4,137.4452$	$2,686.8883$	200
Slice 3	106	$2,092.7176$	0	$5,810.7057$	$3,773.5164$	200
Slice 4	117.98201	$2,087.7545$	0	$7,203.3174$	$4,677.889$	200
Slice 5	132.28201	$2,081.8312$	0	$9,387.4735$	$6,096.2966$	200
Slice 6	147.8	$2,081.558$	0	$7,127.1722$	$3,323.455$	100

Slice 7	166	$2,087.6796$	0	$6,962.1637$	$3,246.5103$	100
Slice 8	182.5	$2,093.2293$	0	$6,763.742$	$3,153.9847$	100
Slice 9	195.5	$2,097.6018$	0	$7,075.729$	$3,299.4666$	100
Slice 10	208.5	$2,101.9743$	0	$7,387.7159$	$3,444.9485$	100
Slice 11	222.5	$2,106.6832$	0	$7,277.898$	$3,393.7396$	100
Slice 12	237.16667	$2,111.6163$	0	$7,179.5763$	$3,347.8914$	100
Slice 13	251.5	$2,116.4373$	0	$7,514.5558$	$3,504.0949$	100
Slice 14	265.83333	$2,121.2582$	0	$7,849.5353$	$3,660.2984$	100
Slice 15	278.5	$2,125.5186$	0	$7,822.0967$	$3,647.5036$	100
Slice 16	289.5	$2,129.2184$	0	$7,432.2399$	$3,465.7104$	100
Slice 17	301.625	$2,133.2967$	0	$7,318.627$	$3,412.7318$	100
Slice 18	314.875	$2,137.7533$	0	$7,481.2578$	$3,488.5678$	100
Slice 19	328.125	$2,142.2099$	0	$7,643.8886$	$3,564.4038$	100
Slice 20	341.375	$2,146.6665$	0	$7,806.5194$	$3,640.2398$	100
Slice 21	353	$2,150.5765$	0	$7,710.6272$	$3,595.5245$	100
Slice 22	364.74619	$2,154.5273$	0	$7,726.4146$	$3,602.8863$	100
Slice 23	378.23856	$2,159.0654$	0	$8,112.4048$	$3,782.8765$	100
Slice 24	391.99237	$2,163.865$	0	$8,410.1981$	$3,921.7398$	100
Slice 25	400.20925	$2,167.6047$	0	$5,548.3739$	$4,655.6385$	200
Slice 26	405.20925	$2,172.6047$	0	$5,990.5138$	$3,890.2852$	200
Slice 27	416.5208	$2,183.9163$	0	$5,378.1001$	$3,492.5791$	200
Slice 28	431.56241	$2,198.9579$	0	$4,379.8255$	$2,844.2919$	200
Slice 29	446.60401	$2,213.9995$	0	$3,381.5508$	$2,196.0047$	200
Slice 30	461.64562	$2,229.0411$	0	$2,383.2761$	$1,547.7176$	200

file:///G:/SLOPE\%20RESULTS/Section\%2014-14\%20results/section\%2014-14\%20seismi... 3/22/2016

2-Translational
Page 7 of 7

Slice 31	476.68723	$2,244.0827$	0	$1,385.0014$	899.43041	200
Slice 32	491.72883	$2,259.1243$	0	386.72667	251.14324	200

file:///G:/SLOPE\%20RESULTS/Section\%2014-14\%20results/section\%2014-14\%20seismi... 3/22/2016

2 - Translational

Report generated using GeoStudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 129
Date: 3/22/2016
Time: 3:43:42 PM
Tool Version: 8.15.1.11236
File Name: Section 14-14 Static Temporary Final SSA without key for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 14-14 results\}
Last Solved Date: 3/22/2016
Last Solved Time: 3:43:58 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Tmc 100-25 ${ }^{\circ}$ (A-Bed $12^{\circ}-20^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100-25 (A-Bed $12^{\circ}-20^{\circ}$)
C-Anisotropic Strength Fn.: 100 psf (A-Bed $12^{\circ}-20^{\circ}$)
Phi-B: 0°
Tmc 150-17 ${ }^{\circ}$ (A-Bed $12^{\circ}-20^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\right.$ Bed $\left.12^{\circ}-20^{\circ}\right)$
C-Anisotropic Strength Fn.: 150 psf (A-Bed $\left.12^{\circ}-20^{\circ}\right)$
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-200.4103,1,933) \mathrm{ft}$
Right Coordinate: $(812,2,264)$ ft

Slip Surface Block

Left Grid
Upper Left: $(74,2,123) \mathrm{ft}$
Lower Left: (105, 1,992) ft
Lower Right: $(223,2,015) \mathrm{ft}$
X Increments: 10
Y Increments: 10
Starting Angle: 135
Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: (672.3505, 2,339.2241)
Lower Left: (709.3413, 2,178.0196) ft
Lower Right: (830.0019, 2,198.2802) ft

2-Translational

Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc 150-17 ${ }^{\circ}$ (A-Bed $12^{\circ}-20^{\circ}$)
Model: Spline Data Point Functio
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(17.9,1)$
Data Point: $(18,0.425)$
Data Point: $(22,0.425)$
Data Point: $(22.1,1)$
150 psf (A-Bed $12^{\circ}-20^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(11.9,1)$
Data Point: $(12,0.667)$
Data Point: $(20,0.667)$
Data Point: $(20.1,1)$
100 psf (A-Bed $\mathbf{1 2}^{\circ}-\mathbf{2 0}^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: (11.9, 1
Data Point: (12, 0.5)

Data Point: $(20,0.5)$
 Data Point: $(20.1,1)$

Tmc 100-25 ${ }^{\circ}$ (A-Bed $12^{\circ}-20^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(11.9,1)$
Data Point: $(12,0.625)$
Data Point: $(20,0.625)$
Data Point: $(20.1,1)$

Points

	$X(\mathrm{ft})$	$Y(\mathrm{ft})$
Point 1	-199	2,107
Point 2	-96	2,106
Point 3	-12	2,101
Point 4	52	2,100
Point 5	732	2,282
Point 6	779	2,297
Point 7	811	2,308
Point 8	812	2,264
Point 9	812	2,122
Point 10	812	1,901
Point 11	-200	1,901
Point 12	-200.4103	1,933
Point 13	812	2,155
Point 14	77	2,075
Point 15	127	2,075
Point 16	665	2,260
Point 17	399	2,168

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Tmc $150-17^{\circ}\left(\mathrm{A}\right.$-Bed $\left.12^{\circ}-20^{\circ}\right)$	$12,11,10,9,13$	$1.4477 \mathrm{e}+005$
Region 2	Tmc $100-25^{\circ}\left(\mathrm{A}\right.$-Bed $\left.12^{\circ}-20^{\circ}\right)$	$1,12,13,8,7,6,5,16,17,15,14,4,3,2$	$1.1922 \mathrm{e}+005$

Current Slip Surface

Slip Surface: 66,983

F of S: 1.62
Volume: $13,462.726 \mathrm{ft}^{3}$
Weight: $1,615,527.1 \mathrm{lbs}$
Resisting Force: 767,036.08 lbs
Activating Force: $474,731.75 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 50 slip surfaces
Exit: $(140.34873,2,079.5641) \mathrm{ft}$
Entry: (810.47325, 2,307.8189) ft
Radius: 331.6586 ft
Center: (417.10062, 2,364.8826) ft

Slip Slices

X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)	
Slice 1	150.32436	$2,075.432$	0	$1,220.9089$	$1,024.4642$	200
Slice 2	171.15	$2,074.8216$	0	$1,656.5548$	772.46419	100
Slice 3	192.85	$2,081.8648$	0	$1,697.821$	791.70693	100
Slice 4	214.55	$2,088.908$	0	$1,739.0872$	810.94967	100
Slice 5	236.25	$2,095.9512$	0	$1,780.3534$	830.19241	100
Slice 6	257.95	$2,102.9944$	0	$1,821.6196$	849.43515	100
Slice 7	279.65	$2,110.0376$	0	$1,862.8857$	868.67789	100
Slice 8	301.35	$2,117.0808$	0	$1,904.1519$	887.92063	100
Slice 9	323.05	$2,124.124$	0	$1,945.4181$	907.16337	100
Slice 10	344.75	$2,131.1672$	0	$1,986.6843$	926.40611	100
Slice 11	366.45	$2,138.2104$	0	$2,027.9505$	945.64885	100
Slice 12	388.15	$2,145.2536$	0	$2,069.2167$	964.89159	100
Slice 13	410.08333	$2,152.3725$	0	$2,115.7312$	986.58168	100
Slice 14	432.25	$2,159.5672$	0	$2,167.4941$	$1,010.7191$	100
Slice 15	454.41667	$2,166.7618$	0	$2,219.257$	$1,034.8565$	100
Slice 16	476.58333	$2,173.9565$	0	$2,271.0199$	$1,058.994$	100
	498.75	$2,181.1511$	0	$2,322.7827$	$1,083.1314$	100

Slice 17						
Slice 18	520.91667	$2,188.3458$	0	$2,374.5456$	$1,107.2688$	100
Slice 19	543.08333	$2,195.5405$	0	$2,426.3085$	$1,131.4062$	100
Slice 20	565.25	$2,202.7351$	0	$2,478.0714$	$1,155.5437$	100
Slice 21	587.41667	$2,209.9298$	0	$2,529.8343$	$1,179.6811$	100
Slice 22	609.58333	$2,217.1245$	0	$2,581.5971$	$1,203.8185$	100
Slice 23	631.75	$2,224.3191$	0	$2,633.36$	$1,227.9559$	100
Slice 24	653.91667	$2,231.5138$	0	$2,685.1229$	$1,252.0934$	100
Slice 25	676.16667	$2,238.7355$	0	$2,715.6418$	$1,266.3246$	100
Slice 26	698.5	$2,245.9843$	0	$2,724.9168$	$1,270.6496$	100
Slice 27	720.83333	$2,253.233$	0	$2,734.1919$	$1,274.9746$	100
Slice 28	743.75	$2,260.6711$	0	$2,731.8423$	$1,273.879$	100
Slice 29	767.25	$2,268.2985$	0	$2,717.868$	$1,267.3627$	100
Slice 30	783.18719	$2,273.4713$	0	$2,719.6877$	$1,268.2112$	100
Slice 31	798.92381	$2,291.3246$	0	758.88378	636.7791	200

1 - Circular Mode of Failure

Reporenad

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 122
Date: 3/23/2016
Time: 9:49:45 AM
Tool Version: 8.15.1.11236
File Name: Section 15-15 Static Final with key SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section $15-15$ results\}
Last Solved Date: 3/24/2016
Last Solved Time: 3:10:59 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exi
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Tmc 150-17 ${ }^{\circ}$ (A-Bed $0^{\circ}-18^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}$ (A- Bed $0^{\circ}-18^{\circ}$
C-Anisotropic Strength Fn.: 150psf-17 (A-Bed $0^{\circ}-18^{\circ}$)
Phi-B: 0°
Tmc $100-25^{\circ}$ (A-Bed $-6^{\circ}-\left(-11^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100-25 ${ }^{\circ}$ (A-Bed - $6^{\circ}-\left(-11^{\circ}\right)$
C-Anisotropic Strength Fn.: 100psf (A-Bed $\left.-6^{\circ}-\left(-11^{\circ}\right)\right)$
Phi-B: 0°
Tmc 150-17 ${ }^{\circ}$ (A-Bed $\left.0^{\circ}-\left(-11^{\circ}\right)\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}$ (A- Bed $0^{\circ}-\left(-11^{\circ}\right)$)
C-Anisotropic Strength Fn.: 150psf-17 ${ }^{\circ}\left(\mathrm{A}-\operatorname{Bed} 0^{\circ}-\left(-11^{\circ}\right)\right)$
Phi-B: 0

Slip Surface Entry and Exit

Left Projection: Range
Left-Zone Left Coordinate: $(116.082,2,040.0973) \mathrm{ft}$
Left-Zone Right Coordinate: (497.0595, 2,100.471) ft
Left-Zone Increment: 50

1 - Circular Mode of Failure

Right Projection: Range
Right-Zone Left Coordinate: $(549.9577,2,124.4788) \mathrm{ft}$
Right-Zone Right Coordinate: ($715.1464,2,174.3322$) ft
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: (-200, 2,024) ft
Right Coordinate: $(811,2,175) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc $150-17^{\circ}$ (A-Bed $\left.0^{\circ}-\left(-11^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.425
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: (-90, 1)
Data Point: $(-11.1,1)$
Data Point: $(-11,0.425)$
Data Point: $(0,0.425)$
Data Point: $(0.9,1)$
150psf-17 ${ }^{\circ}\left(\mathrm{A}-\right.$ Bed $\left.0^{\circ}-18^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

Curve Fit to Data: 100%

Segment Curvature: 0%
Y-Intercept: 0.75
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1$
Data Point: $(0,0.75)$
Data Point: $(18,0.75)$
Data Point: $(18.1,1)$
Tmc $\mathbf{1 0 0}-25^{\circ}$ (A-Bed - $6^{\circ}-\left(-11^{\circ}\right)$)
Model: Spline Data Point Functio
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%

1 - Circular Mode of Failure

Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: (-11.1, 1)
Data Point: $(-11,0.625)$
Data Point: $(-6,0.625$
Data Point: (-5.9, 1)
100psf (A-Bed -6 ${ }^{\circ}-\left(-11^{\circ}\right)$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: (-11.1, 1)
Data Point: (-11, 0.5)
Data Point: $(-6,0.5)$
Data Point: $(-5.9,1)$
$150 p s f-17^{\circ}\left(\mathrm{A}-\operatorname{Bed} 0^{\circ}-\left(-11^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0% Y-Intercept: 0.75
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: (-90, 1)
Data Point: $(-11.1,1)$
Data Point: $(-11,0.75)$
Data Point: $(0,0.75)$
Data Point: $(0.9,1)$
Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-18^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.425
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: (0, 0.425)
Data Point: $(18,0.425)$
Data Point: $(18.1,1)$

Points

1 - Circular Mode of Failure

	X (ft)	$Y(\mathrm{ft})$
Point 1	-200	2,024
Point 2	26	2,032
Point 3	204	2,048
Point 4	316	2,051
Point 5	408	2,053
Point 6	455	2,084
Point 7	469	2,083
Point 8	522	2,116
Point 9	535	2,117
Point 10	588	2,145
Point 11	600	2,145
Point 12	656	2,171
Point 13	746	2,175
Point 14	778	2,173
Point 15	811	2,175
Point 16	811	2,094
Point 17	810	1,700
Point 18	180	1,700
Point 19	-200	1,700
Point 20	407	1,700
Point 21	557	2,128
Point 22	423	2,038
Point 23	453	2,038

file:///G:/SLOPE\%20RESULTS/Section\%2015-15\%20results/section\%2015-15\%20static... 3/24/2016

1 - Circular Mode of Failure
Page 6 of 7

Point 24	727	2,175
Point 25	618	2,120

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Tmc 150-17 $\left(\mathrm{A}\right.$ - Bed $\left.0^{\circ}-\left(-11^{\circ}\right)\right)$	$17,16,25,23,22,5,20$	$1.5639 \mathrm{e}+005$
Region 2	Tmc 150-17 $\left(\mathrm{A}-\right.$ Bed $\left.0^{\circ}-18^{\circ}\right)$	$1,19,18,20,5,4,3,2$	$2.06 \mathrm{e}+005$
Region 3	Tmc $100-25^{\circ}\left(\mathrm{A}\right.$-Bed $-6^{\circ}-\left(-11^{\circ}\right)$	$16,15,14,13,24,25$	10,062
Region 4	Fill	$5,22,23,25,24,12,11,10,21,9,8,7,6$	10,039

Current Slip Surface

Slip Surface: 81,412
Fof S: 1.69
Volume: $3,373.1411 \mathrm{ft}^{3}$
Weight: $404,776.94 \mathrm{lbs}$
Resisting Moment: 87,226,090 lbs-ft
Activating Moment: 51,612,584 lbs-ft
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 10 slip surfaces
Exit: (408.04237, 2,053.0279) ft
Entry: $(597.63425,2,145) \mathrm{ft}$
Radius: 305.36559 ft
Center: ($377.74289,2,356.8866$) ft
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	411.39648	$2,053.3999$	0	199.2744	129.41031	200
Slice 2	418.10472	$2,054.2191$	0	606.71458	394.00506	200
Slice 3	424.81295	$2,055.1897$	0	990.29782	643.10692	200
Slice 4	431.52118	$2,056.3131$	0	$1,350.3367$	876.91891	200
Slice 5	438.22942	$2,057.5911$	0	$1,687.0963$	$1,095.6132$	200
Slice 6	444.93765	$2,059.0256$	0	$2,000.7961$	$1,299.3322$	200
Slice 7	451.64588	$2,060.6189$	0	$2,291.6113$	$1,488.1898$	200
Slice 8	458.5	$2,062.4154$	0	$2,287.2438$	$1,485.3535$	200

Slice 9	465.5	$2,064.4255$	0	$1,994.072$	$1,294.9655$	200
Slice 10	472.3125	$2,066.5547$	0	$1,940.1482$	$1,259.9469$	200
Slice 11	478.9375	$2,068.7973$	0	$2,119.8342$	$1,376.6364$	200
Slice 12	485.5625	$2,071.211$	0	$2,277.95$	$1,479.3181$	200
Slice 13	492.1875	$2,073.8004$	0	$2,414.4406$	$1,567.9561$	200
Slice 14	498.8125	$2,076.5702$	0	$2,529.2118$	$1,642.4893$	200
Slice 15	505.4375	$2,079.526$	0	$2,622.1292$	$1,702.8306$	200
Slice 16	512.0625	$2,082.6736$	0	$2,693.0174$	$1,748.8659$	200
Slice 17	518.6875	$2,086.0198$	0	$2,741.6573$	$1,780.4531$	200
Slice 18	525.25	$2,089.5366$	0	$2,592.079$	$1,683.3158$	200
Slice 19	531.75	$2,093.2281$	0	$2,249.7615$	$1,461.0122$	200
Slice 20	538.66667	$2,097.4004$	0	$2,018.6813$	$1,310.9469$	200
Slice 21	546	$2,102.0957$	0	$1,891.561$	$1,228.394$	200
Slice 22	553.33333	$2,107.0946$	0	$1,737.3579$	$1,128.2534$	200
Slice 23	560.1	$2,111.9803$	0	$1,585.7026$	$1,029.7673$	200
Slice 24	566.3	$2,116.7224$	0	$1,439.3008$	934.69284	200
Slice 25	572.5	$2,121.7237$	0	$1,271.5684$	825.76619	200
Slice 26	578.7	$2,127.0009$	0	$1,081.9922$	702.65394	200
Slice 27	584.9	$2,132.5737$	0	870.01372	564.99351	200
Slice 28	590.40856	$2,137.7743$	0	548.38207	356.12348	200
Slice 29	595.22569	$2,142.556$	0	124.86914	81.090969	200

1 - Circular Mode of Failure

Reporenad

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 123
Date: 3/24/2016
Time: 2:50:53 PM
Tool Version: 8.15.1.11236
File Name: Section 15-15 Seismic Final with key SSA for Skyline Ranch.gsz
Directory: G:|SLOPE RESULTS\Section $15-15$ results
Last Solved Date: 3/24/2016
Last Solved Time: 2:51:08 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exi
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Tmc 150-17 ${ }^{\circ}$ (A-Bed $0^{\circ}-18^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}$ (A- Bed $0^{\circ}-18^{\circ}$
C-Anisotropic Strength Fn.: 150psf-17 (A-Bed $0^{\circ}-18^{\circ}$)
Phi-B: 0°
Tmc 100-25 ${ }^{\circ}$ (A-Bed $-6^{\circ}-\left(-11^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100-25 ${ }^{\circ}$ (A-Bed - $6^{\circ}-\left(-11^{\circ}\right)$
C-Anisotropic Strength Fn.: 100psf (A-Bed $\left.-6^{\circ}-\left(-11^{\circ}\right)\right)$
Phi-B: 0°
Tmc 150-17 ${ }^{\circ}$ (A-Bed $\left.0^{\circ}-\left(-11^{\circ}\right)\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}$ (A- Bed $0^{\circ}-\left(-11^{\circ}\right)$)
C-Anisotropic Strength Fn.: 150psf-17 ${ }^{\circ}\left(\mathrm{A}-\operatorname{Bed} 0^{\circ}-\left(-11^{\circ}\right)\right)$
Phi-B: 0

Slip Surface Entry and Exit

Left Projection: Range
Left-Zone Left Coordinate: $(116.082,2,040.0973) \mathrm{ft}$
Left-Zone Right Coordinate: (497.0595, 2,100.471) ft
Left-Zone Increment: 50

1 - Circular Mode of Failure

Right Projection: Range
Right-Zone Left Coordinate: $(549.9577,2,124.4788) \mathrm{ft}$
Right-Zone Right Coordinate: (714.9781, 2,174.3702) ft
Right-Zone Increment: 5
Radius Increments: 50

Slip Surface Limits

Left Coordinate: (-200, 2,024) ft
Right Coordinate: $(811,2,175) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc $150-17^{\circ}$ (A-Bed $0^{\circ}-\left(-11^{\circ}\right)$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.425
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: (-90, 1)
Data Point: $(-11.1,1)$
Data Point: $(-11,0.425)$
Data Point: $(0,0.425)$
Data Point: $(0.9,1)$
150psf-17 ${ }^{\circ}\left(\mathrm{A}-\right.$ Bed $\left.0^{\circ}-18^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

Curve Fit to Data: 100%

Segment Curvature: 0%
Y-Intercept: 0.75
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1$
Data Point: $(0,0.75)$
Data Point: $(18,0.75)$
Data Point: (18.1, 1)
Tmc 100-25 ${ }^{\circ}$ (A-Bed - $6^{\circ}-\left(-11^{\circ}\right)$)
Model: Spline Data Point Functio
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%

1 - Circular Mode of Failure

Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: (-11.1, 1)
Data Point: $(-11,0.625)$
Data Point: $(-6,0.625$
Data Point: (-5.9, 1)
100psf (A-Bed -6 ${ }^{\circ}-\left(-11^{\circ}\right)$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: (-11.1, 1)
Data Point: (-11, 0.5)
Data Point: $(-6,0.5)$
Data Point: $(-5.9,1)$
$150 p s f-17^{\circ}\left(\mathrm{A}-\operatorname{Bed} 0^{\circ}-\left(-11^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0% Y-Intercept: 0.75
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(-11.1,1)$
Data Point: $(-11,0.75)$
Data Point: $(0,0.75)$
Data Point: $(0.9,1)$
Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-18^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.425
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: (0, 0.425)
Data Point: $(18,0.425)$
Data Point: $(18.1,1)$

Points

1 - Circular Mode of Failure

	X (ft)	$Y(\mathrm{ft})$
Point 1	-200	2,024
Point 2	26	2,032
Point 3	204	2,048
Point 4	316	2,051
Point 5	408	2,053
Point 6	455	2,084
Point 7	469	2,083
Point 8	522	2,116
Point 9	535	2,117
Point 10	588	2,145
Point 11	600	2,145
Point 12	656	2,171
Point 13	746	2,175
Point 14	778	2,173
Point 15	811	2,175
Point 16	811	2,094
Point 17	810	1,700
Point 18	180	1,700
Point 19	-200	1,700
Point 20	407	1,700
Point 21	557	2,128
Point 22	423	2,038
Point 23	453	2,038

file:///G:/SLOPE\%20RESULTS/Section\%2015-15\%20results/section\%2015-15\%20seismi... 3/24/2016

1 - Circular Mode of Failure
Page 6 of 7

Point 24	726	2,175
Point 25	618	2,120

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Tmc 150-17 $\left(\mathrm{A}\right.$ - Bed $\left.0^{\circ}-\left(-11^{\circ}\right)\right)$	$17,16,25,23,22,5,20$	$1.5639 \mathrm{e}+005$
Region 2	Tmc 150-17 $\left(\mathrm{A}-\right.$ Bed $\left.0^{\circ}-18^{\circ}\right)$	$1,19,18,20,5,4,3,2$	$2.06 \mathrm{e}+005$
Region 3	Tmc $100-25^{\circ}\left(\mathrm{A}\right.$-Bed $-6^{\circ}-\left(-11^{\circ}\right)$	$16,15,14,13,24,25$	10,089
Region 4	Fill	$5,22,23,25,24,12,11,10,21,9,8,7,6$	10,014

Current Slip Surface

Slip Surface: 59,072
F of S: 1.22
Volume: $5,332.3803 \mathrm{ft}^{3}$
Weight: 639,885.63 lbs
Resisting Moment: $2.0775189 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
Resitivating Moment: $1.7087178 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 10 slip surfaces
Exit: (408.0629, 2,053.0415) ft
Entry: (665.76589, 2,171.5581) ft
Radius: 497.95078 ft
Center: $(337.47416,2,545.9636) \mathrm{ft}$
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	412.75661	$2,053.7594$	0	240.6821	156.30078	200
Slice 2	422.14403	$2,055.2872$	0	748.01618	485.76739	200
Slice 3	431.53145	2,057	0	$1,225.4595$	795.82272	200
Slice 4	440.91887	$2,058.8998$	0	$1,673.4931$	$1,086.7791$	200
Slice 5	450.30629	$2,060.9887$	0	$2,092.548$	$1,358.9166$	200
Slice 6	458.5	$2,062.9577$	0	$2,165.1899$	$1,406.0908$	200
Slice 7	465.5	$2,064.7659$	0	$1,904.7084$	$1,236.9321$	200
Slice 8	473.41667	$2,066.9505$	0	$1,919.4316$	$1,246.4934$	200

Slice 9	482.25	$2,069.5461$	0	$2,198.9284$	$1,428.0008$	200
Slice 10	491.08333	$2,072.3207$	0	$2,454.5819$	$1,594.0241$	200
Slice 11	499.91667	$2,075.2773$	0	$2,686.5675$	$1,744.6774$	200
Slice 12	508.75	$2,078.4195$	0	$2,895.0316$	$1,880.0555$	200
Slice 13	517.58333	$2,081.7511$	0	$3,080.0916$	$2,000.2349$	200
Slice 14	525.25	$2,084.788$	0	$3,048.0219$	$1,979.4086$	200
Slice 15	531.75	$2,087.4885$	0	$2,808.4051$	$1,823.7996$	200
Slice 16	538.66667	$2,090.4853$	0	$2,695.5171$	$1,750.4893$	200
Slice 17	546	$2,093.7959$	0	$2,704.8535$	$1,756.5524$	200
Slice 18	553.33333	$2,097.2507$	0	$2,699.6877$	$1,753.1977$	200
Slice 19	560.875	$2,100.96$	0	$2,696.7984$	$1,751.3213$	200
Slice 20	568.625	$2,104.9362$	0	$2,694.8414$	$1,750.0505$	200
Slice 21	576.375	$2,109.0862$	0	$2,676.0126$	$1,737.8229$	200
Slice 22	584.125	$2,113.4148$	0	$2,640.273$	$1,714.6133$	200
Slice 23	594	$2,119.2313$	0	$2,267.9321$	$1,472.8123$	200
Slice 24	604	$2,125.3729$	0	$1,850.1048$	$1,201.4721$	200
Slice 25	612	$2,130.5511$	0	$1,697.0741$	$1,102.0928$	200
Slice 26	620	$2,135.9508$	0	$1,527.0723$	991.69232	200
Slice 27	628	$2,141.5808$	0	$1,340.0231$	870.22115	200
Slice 28	636	$2,147.451$	0	$1,135.843$	737.62508	200
Slice 29	644	$2,153.5721$	0	914.44314	593.84632	200
Slice 30	652	$2,159.956$	0	675.73114	438.82493	200
Slice 31	660.88295	$2,167.3867$	0	224.79826	145.9857	200
	200					

file:///G:/SLOPE\%20RESULTS/Section\%2015-15\%20results/section\%2015-15\%20seismi... 3/24/2016

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 122
Date: 3/23/2016
Time: 9:49:45 AM
Tool Version: 8.15.1.11236
File Name: Section 15-15 Static Final with key SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section $15-15$ results
Last Solved Date: 3/24/2016
Last Solved Time: 2:56:43 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B. 0°
Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-18^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-18^{\circ}\right)$
C-Anisotropic Strength Fn.: 150psf-17 ${ }^{\circ}$ (A- Bed $0^{\circ}-18^{\circ}$)
Phi-B: 0°
Tmc 100-25 ${ }^{\circ}$ (A-Bed $-6^{\circ}-\left(-11^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100-25 (A-Bed $\left.-6^{\circ}-\left(-11^{\circ}\right)\right)$
C-Anisotropic Strength Fn.: 100psf (A-Bed $-6^{\circ}-\left(-11^{\circ}\right)$)
Phi-B: 0°
Tmc 150-17 ${ }^{\circ}$ (A-Bed $\left.0^{\circ}-\left(-11^{\circ}\right)\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}$ (A-Bed $\left.0^{\circ}-\left(-11^{\circ}\right)\right)$
C-Anisotropic Strength Fn.: 150psf-17 ${ }^{\circ}$ (A- Bed $\left.0^{\circ}-\left(-11^{\circ}\right)\right)$
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-200,2,024) \mathrm{ft}$
Right Coordinate: $(811,2,175) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: $(341.5832,2,050.0454) \mathrm{ft}$ Lower Left: ($367.0512,1,947.4848$) ft Lower Right: (484.9793, 1,987.7541) ft
Lower Right: (484
X Increments: 10
Y Increments: 10
Starting Angle: 135°
Starting Angle: 135°
Ending Angle: 180°
Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: (520.6643, 2,104.9641) ft
Lower Left: $(549.385,1,991.8817) \mathrm{ft}$
Lower Right: ($678.6285,2,022.7223$) ft
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc $150-17^{\circ}\left(\mathrm{A}-\operatorname{Bed} 0^{\circ}-\left(-11^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.425
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: (-11.1, 1)
Data Point: ($-11,0.425$)
Data Point: $(0,0.425)$
Data Point: $(0.9,1)$
150psf- 17° (A-Bed $0^{\circ}-18^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Y-Intercept: 0.75
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor Data Point: $(-90,1)$

Data Point: $(-0.9,1)$
 Data Point: $(0,0.75)$
 Data Point: $(18,0.75)$
 Data Point: $(18.1,1)$

Tmc 100-25 ${ }^{\circ}$ (A-Bed - $6^{\circ}-\left(-11^{\circ}\right)$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: (-11.1, 1)
Data Point: $(-11,0.625)$
Data Point: $(-6,0.625)$
Data Point: $(-5.9,1)$
100psf (A-Bed -6º-(-11$)) ~$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: (-11.1, 1)
Data Point: (-11, 0.5)
Data Point: $(-6,0.5)$
Data Point: $(-5.9,1)$
150 psf- 17° (A-Bed $\left.0^{\circ}-\left(-11^{\circ}\right)\right)$
Model: Spline Data Point Functio
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Cu
Stercept: 0.75
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: (-11.1, 1)
Data Point: $(-11,0.75)$
Data Point: $(0,0.75)$
Data Point: $(0.9,1)$
Tmc 150-17 ${ }^{\circ}$ (A-Bed $0^{\circ}-18^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.425

Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1$
Data Point: ($0,0.425$)
Data Point: $(18,0.425)$
Data Point: (18.1, 1)

Points

	$X(\mathrm{ft})$	$Y(\mathrm{ft})$
Point 1	-200	2,024
Point 2	26	2,032
Point 3	204	2,048
Point 4	316	2,051
Point 5	408	2,053
Point 6	455	2,084
Point 7	469	2,083
Point 8	522	2,116
Point 9	535	2,117
Point 10	588	2,145
Point 11	600	2,145
Point 12	656	2,171
Point 13	746	2,175
Point 14	778	2,173
Point 15	811	2,175
Point 16	811	2,094
Point 17	810	1,700
Point 18	180	1,700
Point 19	-200	1,700
Point 20	407	1,700
Point 21	557	2,128
Point 22	423	2,038
Point 23	453	2,038
Point 24	727	2,175
Point 25	618	2,120

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Tmc $150-17^{\circ}\left(\mathrm{A}\right.$ - Bed $\left.0^{\circ}-\left(-11^{\circ}\right)\right)$	$17,16,25,23,22,5,20$	$1.5639 \mathrm{e}+005$
Region 2	Tmc $150-17^{\circ}\left(\mathrm{A}-\right.$ - Bed $\left.0^{\circ}-18^{\circ}\right)$	$1,19,18,20,5,4,3,2$	$2.06 \mathrm{e}+005$
Region 3	Tmc $100-25^{\circ}\left(\mathrm{A}\right.$-Bed $-6^{\circ}-\left(-11^{\circ}\right)$	$16,15,14,13,24,25$	10,062
Region 4	Fill	$5,22,23,25,24,12,11,10,21,9,8,7,6$	10,039

Current Slip Surface

Slip Surface: 88,682
Fof S : 1.66
Volume: $16,605.485 \mathrm{ft}^{3}$
Weight: 1,992,658,2 lbs
Resisting Force: 800,243,14
Resisting Force: $800,243.14 \mathrm{lbs}$
F of S Rank (Analysis): 4 of 131,769 slip surfaces
F of S Rank (Analysis): 4 of 131,769 slip surf
F of S Rank (Query): 4 of 10 slip
Exit: ($356.56764,2,051.8819$) ft
Exit: ($356.56764,2,051.8819$) ft
Entry: $(675.4982,2,172.0985) \mathrm{ft}$
Radius: 187.31574 ft
Center: (482.0474, 2,202.1526) ft
Slip Slices

	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	361.54604	$2,049.8198$	0	393.26169	329.98574	200
Slice 2	371.50284	$2,045.6955$	0	$1,052.8474$	883.44389	200
Slice 3	381.45964	$2,041.5713$	0	$1,712.4332$	$1,436.902$	200
Slice 4	391.41644	$2,037.4471$	0	$2,372.0189$	$1,990.3602$	200
Slice 5	402.19742	$2,035.3746$	0	$2,100.8855$	748.46451	155.67179
Slice 6	415.5	$2,035.3509$	0	$2,712.5651$	829.31437	150
Slice 7	428	$2,035.3286$	0	$3,704.9266$	$1,132.7097$	150
Slice 8	438	$2,035.3108$	0	$4,498.8159$	$1,375.426$	150
Slice 9	448	$2,035.293$	0	$5,292.7051$	$1,618.1423$	150
Slice 10	454	$2,035.2823$	0	$5,769.0387$	$1,763.7721$	150
Slice 11	462	$2,035.268$	0	$5,789.9051$	$1,770.1516$	150
Slice 12	474.3	$2,035.2461$	0	$6,128.6467$	$1,873.7153$	150
Slice 13	484.9	$2,035.2272$	0	$6,923.1751$	$2,116.627$	150
Slice 14	495.5	$2,035.2084$	0	$7,717.7035$	$2,359.5387$	150
Slice 15	506.1	$2,035.1895$	0	$8,512.2319$	$2,602.4504$	150
	516.7	$2,035.1706$	0	$9,306.7603$	$2,845.3622$	150

file:///G:/SLOPE\%20RESULTS/Section\%2015-15\%20results/section\%2015-15\%20static... 3/24/2016

Slice 16						
Slice 17	528.5	$2,035.1495$	0	$9,765.4345$	$2,985.593$	150
Slice 18	540.5	$2,035.1282$	0	$10,158.13$	$3,105.652$	150
Slice 19	551.5	$2,035.1086$	0	$10,820.7$	$3,308.2201$	150
Slice 20	562.63546	$2,035.0887$	0	$11,524.163$	$3,523.2901$	150
Slice 21	573.90638	$2,035.0686$	0	$12,268.517$	$3,750.8621$	150
Slice 22	583.77092	$2,041.0984$	0	$6,966.2633$	$5,845.3889$	200
Slice 23	594	$2,055.707$	0	$6,111.3636$	$5,128.043$	200
Slice 24	604.5	$2,070.7025$	0	$5,213.5571$	$4,374.6939$	200
Slice 25	613.5	$2,083.5559$	0	$4,610.1095$	$3,868.3412$	200
Slice 26	622.80168	$2,096.84$	0	$3,986.4346$	$3,345.0158$	200
Slice 27	632.40503	$2,110.5551$	0	$3,342.5322$	$2,804.7175$	200
Slice 28	643.85429	$2,126.9063$	0	$2,574.8625$	$2,160.5662$	200
Slice 29	653.25094	$2,140.3261$	0	$2,149.0112$	$1,395.5842$	200
Slice 30	660.87455	$2,151.2137$	0	$1,431.3264$	929.51426	200
Slice 31	670.62365	$2,165.1369$	0	403.31036	261.91281	200

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 122
Date: 3/23/2016
Time: 10:01:34 AM
Tool Version: 8.15.1.11236
File Name: Section 15-15 Seismic Final with key SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section $15-15$ results \backslash
Last Solved Date: 3/24/2016
Last Solved Time: 2:45:37 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B:
Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-18^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-18^{\circ}\right)$
C-Anisotropic Strength Fn.: 150psf-17 ${ }^{\circ}$ (A- Bed $0^{\circ}-18^{\circ}$)
Phi-B: 0°
Tmc 100-25 ${ }^{\circ}$ (A-Bed $-6^{\circ}-\left(-11^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100-25 (A-Bed $\left.-6^{\circ}-\left(-11^{\circ}\right)\right)$
C-Anisotropic Strength Fn.: 100psf (A-Bed $-6^{\circ}-\left(-11^{\circ}\right)$)
Phi-B: 0°
Tmc 150-17 ${ }^{\circ}$ (A-Bed $\left.0^{\circ}-\left(-11^{\circ}\right)\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}$ (A-Bed $\left.0^{\circ}-\left(-11^{\circ}\right)\right)$
C-Anisotropic Strength Fn.: 150psf-17 ${ }^{\circ}$ (A- Bed $\left.0^{\circ}-\left(-11^{\circ}\right)\right)$
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-200,2,024) \mathrm{ft}$
Right Coordinate: $(811,2,175) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: $(341.5832,2,050.0454) \mathrm{ft}$ Lower Left: ($367.0512,1,947.4848$) ft Lower Right: (484.9793, 1,987.7541) ft
Lower Right: (484
X Increments: 10
Y Increments: 10
Starting Angle: 135°
Starting Angle: 135°
Ending Angle: 180°
Ending Angle: 180°
Right Grid
Upper Left: (520.6643, 2,104.9641) ft
Lower Left: $(549.385,1,991.8817) \mathrm{ft}$
Lower Right: ($678.6285,2,022.7223$) ft
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc $150-17^{\circ}\left(\mathrm{A}-\operatorname{Bed} 0^{\circ}-\left(-11^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.425
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: (-11.1, 1)
Data Point: $(-11,0.425)$
Data Point: $(0,0.425)$
Data Point: $(0.9,1)$
150psf- 17° (A-Bed $0^{\circ}-18^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Y-Intercept: 0.75
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor Data Point: $(-90,1)$

Data Point: $(-0.9,1)$
Data Point: $(0,0.75)$
Data Point: $(18,0.75)$
Data Point: (18.1, 1)
Tmc 100-25 ${ }^{\circ}$ (A-Bed -6°-(-11 $\left.{ }^{\circ}\right)$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: (-11.1, 1)
Data Point: $(-11,0.625)$
Data Point: $(-6,0.625)$
Data Point: $(-5.9,1)$
100psf (A-Bed -6º-(-11$)) ~$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: (-11.1, 1)
Data Point: (-11, 0.5)
Data Point: $(-6,0.5)$
Data Point: $(-5.9,1)$
150 psf- 17° (A-Bed $\left.0^{\circ}-\left(-11^{\circ}\right)\right)$
Model: Spline Data Point Functio
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Cu
Stercept: 0.75
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: (-11.1, 1)
Data Point: $(-11,0.75)$
Data Point: $(0,0.75)$
Data Point: $(0.9,1)$
Tmc 150-17 ${ }^{\circ}$ (A-Bed $0^{\circ}-18^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.425

Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1$
Data Point: ($0,0.425$)
Data Point: $(18,0.425)$
Data Point: $(18.1,1)$

Points

	$X(\mathrm{ft})$	$Y(\mathrm{ft})$
Point 1	-200	2,024
Point 2	26	2,032
Point 3	204	2,048
Point 4	316	2,051
Point 5	408	2,053
Point 6	455	2,084
Point 7	469	2,083
Point 8	522	2,116
Point 9	535	2,117
Point 10	588	2,145
Point 11	600	2,145
Point 12	656	2,171
Point 13	746	2,175
Point 14	778	2,173
Point 15	811	2,175
Point 16	811	2,094
Point 17	810	1,700
Point 18	180	1,700
Point 19	-200	1,700
Point 20	407	1,700
Point 21	557	2,128
Point 22	423	2,038
Point 23	453	2,038
Point 24	726	2,175
Point 25	618	2,120

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Tmc $150-17^{\circ}\left(\mathrm{A}-\right.$ Bed $\left.0^{\circ}-\left(-11^{\circ}\right)\right)$	$17,16,25,23,22,5,20$	$1.5639 \mathrm{e}+005$
Region 2	Tmc $150-17^{\circ}\left(\mathrm{A}-\right.$ - Bed $\left.0^{\circ}-18^{\circ}\right)$	$1,19,18,20,5,4,3,2$	$2.06 \mathrm{e}+005$
Region 3	Tmc $100-25^{\circ}\left(\mathrm{A}\right.$-Bed $-6^{\circ}-\left(-11^{\circ}\right)$	$16,15,14,13,24,25$	10,089
Region 4	Fill	$5,22,23,25,24,12,11,10,21,9,8,7,6$	10,014

Current Slip Surface

Slip Surface: 88,682
F of S : 1.10
Volume: $16,605.638 \mathrm{ft}^{3}$
Weight: 1,992,676,6 lbs
Resisting Force: 755,815,65
Resisting Force: $755,815.65 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Analysis): 1 of 131,769 slip surf
F of S Rank (Query): 1 of 10 slip su
Exit: (356.56764, 2,051.8819) ft
Entry: $(675.50965,2,172.1148) \mathrm{ft}$
Radius: 187.33243 ft
Center: (482.0451, 2,202.1731) ft
Slip Slices

	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	361.54604	$2,049.8198$	0	488.0084	409.48767	200
Slice 2	371.50284	$2,045.6955$	0	$1,246.5371$	$1,045.9688$	200
Slice 3	381.45964	$2,041.5713$	0	$2,005.0657$	$1,682.4499$	200
Slice 4	391.41644	$2,037.4471$	0	$2,763.5944$	$2,318.931$	200
Slice 5	402.19742	$2,035.3746$	0	$2,101.3632$	748.63471	155.67179
Slice 6	415.5	$2,035.3509$	0	$2,713.0825$	829.47257	150
Slice 7	428	$2,035.3286$	0	$3,705.6044$	$1,132.9169$	150
Slice 8	438	$2,035.3108$	0	$4,499.6219$	$1,375.6725$	150
Slice 9	448	$2,035.293$	0	$5,293.6393$	$1,618.428$	150
Slice 10	454	$2,035.2823$	0	$5,770.0498$	$1,764.0813$	150
Slice 11	462	$2,035.268$	0	$5,790.9196$	$1,770.4618$	150
Slice 12	474.3	$2,035.2461$	0	$6,129.716$	$1,874.0422$	150
Slice 13	484.9	$2,035.2272$	0	$6,924.3727$	$2,116.9932$	150
Slice 14	495.5	$2,035.2084$	0	$7,719.0294$	$2,359.9441$	150
Slice 15	506.1	$2,035.1895$	0	$8,513.6861$	$2,602.8951$	150
	516.7	$2,035.1706$	0	$9,308.3429$	$2,845.846$	150

file:///G:/SLOPE\%20RESULTS/Section\%2015-15\%20results/section\%2015-15\%20seismi... 3/24/2016

Slice 16						
Slice 17	528.5	$2,035.1495$	0	$9,767.0912$	$2,986.0995$	150
Slice 18	540.5	$2,035.1282$	0	$10,159.85$	$3,106.1779$	150
Slice 19	551.5	$2,035.1086$	0	$10,822.527$	$3,308.7787$	150
Slice 20	562.63546	$2,035.0887$	0	$11,526.104$	$3,523.8835$	150
Slice 21	573.90638	$2,035.0686$	0	$12,270.578$	$3,751.4923$	150
Slice 22	583.77092	$2,041.0984$	0	$5,736.178$	$4,813.2248$	200
Slice 23	594	$2,055.707$	0	$5,027.2403$	$4,218.3555$	200
Slice 24	604.5	$2,070.7025$	0	$4,282.7215$	$3,593.63$	200
Slice 25	613.5	$2,083.5559$	0	$3,782.304$	$3,173.7299$	200
Slice 26	622.80168	$2,096.84$	0	$3,265.1126$	$2,739.7548$	200
Slice 27	632.40503	$2,110.5551$	0	$2,731.1474$	$2,291.7048$	200
Slice 28	643.93692	$2,127.0243$	0	$2,089.9521$	$1,753.6781$	200
Slice 29	653.33356	$2,140.4441$	0	$1,775.9628$	$1,153.3238$	200
Slice 30	660.87741	$2,151.2178$	0	$1,170.9304$	760.41106	200
Slice 31	670.63224	$2,165.1492$	0	296.82185	192.75836	200

file:///G:/SLOPE\%20RESULTS/Section\%2015-15\%20results/section\%2015-15\%20seismi... 3/24/2016

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 125
Date: 3/23/2016
Time: 9:56:37 AM
Tool Version: 8.15.1.11236
File Name: Section 15-15 Static Temporary Final without key SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 15-15 results\}
Last Solved Date: 3/24/2016
Last Solved Time: 3:14:46 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Tmc $150-17^{\circ}\left(\mathrm{A}-\operatorname{Bed} 0^{\circ}-18^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-18^{\circ}\right.$
C-Anisotropic Strength Fn.: 150 psf- $17^{\circ}\left(\mathrm{A}-\right.$ Bed $\left.0^{\circ}-18^{\circ}\right)$
Phi-B: 0°
Tmc 100-25 ${ }^{\circ}$ (A-Bed $-6^{\circ}-\left(-11^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100-25 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed}-6^{\circ}-\left(-11^{\circ}\right)\right)$
C-Anisotropic Strength Fn.: 100psf (A-Bed $-6^{\circ}-\left(-11^{\circ}\right)$
Phi-B: 0°
Tmc $150-17^{\circ}$ (A-Bed $\left.0^{\circ}-\left(-11^{\circ}\right)\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}$ (A-Bed $0^{\circ}-\left(-11^{\circ}\right)$
C-Anisotropic Strength Fn.: 150 psf-17 $\left(\right.$ A- Bed $\left.0^{\circ}-\left(-11^{\circ}\right)\right)$
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-200,2,024) \mathrm{ft}$
Right Coordinate: $(811,2,175) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: (341.5832, 2,050.0454) ft
Lower Left: (367.0512, 1,947.4848) ft
Lower Right: (484.9793, 1,987.7541) ft

X Increments: 10
Y Increments: 10
Starting Angle: 135°
Ending Angle: 180°
Angle Increments:
Right Grid
Upper Left: $(520.6643,2,104.9641) \mathrm{ft}$
Lower Left: $(549.385,1,991.8817)$ ft
Lower Right: (678.6285, 2,022.7223) ft
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc $150-17^{\circ}\left(\mathrm{A}-\operatorname{Bed} 0^{\circ}-\left(-11^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%

Y-Intercept: 0.425

Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: $(-90,1)$
Data Point: (-11.1, 1)
Data Point: $(-11,0.425)$
Data Point: $(0,0.425)$
Data Point: $(0.9,1)$
$150 p s f-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-18^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.75
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.75)$
Data Point: $(18,0.75)$
Data Point: $(18.1,1)$
Tmc 100-25 ${ }^{\circ}$ (A-Bed $\left.-6^{\circ}-\left(-11^{\circ}\right)\right)$

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: (-11.1, 1)
Data Point: $(-11,0.625)$
Data Point: $(-6,0.625)$
Data Point: (-5.9, 1)
100psf (A-Bed -6․-(-11))
Model: Spline Data Point Functio
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: (-11.1, 1)
Data Point: $(-11,0.5)$
Data Point: $(-6,0.5)$
Data Point: (-5.9, 1
150psf- 17° (A-Bed $\left.0^{\circ}-\left(-11^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.75
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: (-11.1, 1)
Data Point: $(-11,0.75)$
Data Point: $(0,0.75)$
Data Point: $(0.9,1)$
Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-18^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

$$
\text { Curve Fit to Data: } 100 \%
$$

Segment Curvature: 0%
Y-Intercept: 0.425
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.425)$
Data Point: $(18,0.425)$
Data Point: (18.1, 1)

Points

	$X(\mathrm{ft})$	$Y(\mathrm{ft})$
Point 1	-200	2,024
Point 2	26	2,032
Point 3	204	2,048
Point 4	316	2,051
Point 5	408	2,053
Point 6	746	2,175
Point 7	778	2,173
Point 8	811	2,175
Point 9	811	2,094
Point 10	810	1,700
Point 11	180	1,700
Point 12	-200	1,700
Point 13	407	1,700
Point 14	423	2,038
Point 15	453	2,038
Point 16	727	2,175
Point 17	618	2,120

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Tmc 150-17 $\left(\mathrm{A}\right.$ - Bed $\left.0^{\circ}-\left(-11^{\circ}\right)\right)$	$10,9,17,15,14,5,13$	$1.5639 \mathrm{e}+005$
Region 2	Tmc 150-17 $7^{\circ}\left(\right.$ A- Bed $\left.0^{\circ}-18^{\circ}\right)$	$1,12,11,13,5,4,3,2$	$2.06 \mathrm{e}+005$
Region 3	Tmc 100-25 $\left(\mathrm{A}\right.$-Bed $-6^{\circ}-\left(-11^{\circ}\right)$	$9,8,7,6,16,17$	10,062

Current Slip Surface

Slip Surface: 90,116
F of S: 1.46
Volume: $13,960.378 \mathrm{ft}^{3}$
Weight: 1,675,245.3 lbs
Resisting Force: 641,094.52 lbs
Activating Force: $439,573.76 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 10 slip surfaces
Exit: (455.74432, 2,039.3638) ft
Entry: $(742.14439,2,175) \mathrm{ft}$
Radius: 188.37065 ft
Center: $(550.76743,2,208.909) \mathrm{ft}$
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)

Slice 1	460.51654	$2,039.359$	0	285.34128	87.237585	150
Slice 2	470.061	$2,039.3494$	0	855.81547	261.64905	150
Slice 3	479.60545	$2,039.3397$	0	$1,426.2897$	436.06051	150
Slice 4	489.1499	$2,039.3301$	0	$1,996.7638$	610.47197	150
Slice 5	498.69435	$2,039.3205$	0	$2,567.238$	784.88343	150
Slice 6	508.2388	$2,039.3108$	0	$3,137.7122$	959.29489	150
Slice 7	517.78326	$2,039.3012$	0	$3,708.1864$	$1,133.7064$	150
Slice 8	527.32771	$2,039.2916$	0	$4,278.6606$	$1,308.1178$	150
Slice 9	536.87216	$2,039.2819$	0	$4,849.1348$	$1,482.5293$	150
Slice 10	546.41661	$2,039.2723$	0	$5,419.6089$	$1,656.9407$	150
Slice 11	555.96106	$2,039.2626$	0	$5,990.0831$	$1,831.3522$	150
Slice 12	565.50551	$2,039.253$	0	$6,560.5573$	$2,005.7637$	150
Slice 13	575.04997	$2,039.2434$	0	$7,131.0315$	$2,180.1751$	150
Slice 14	584.59442	$2,039.2337$	0	$7,701.5057$	$2,354.5866$	150
Slice 15	594.13887	$2,039.2241$	0	$8,271.9799$	$2,528.998$	150
Slice 16	603.68332	$2,039.2144$	0	$8,842.454$	$2,703.4095$	150
Slice 17	613.22777	$2,039.2048$	0	$9,412.9282$	$2,877.821$	150
Slice 18	622.83928	$2,039.1951$	0	$9,991.8345$	$3,054.8104$	150
Slice 19	632.51783	$2,039.1853$	0	$10,579.173$	$3,234.3778$	150
Slice 20	642.19638	$2,039.1755$	0	$11,166.511$	$3,413.9452$	150
Slice 21	651.95726	$2,046.1994$	0	$5,874.686$	$4,929.4468$	200
Slice 22	661.80045	$2,060.257$	0	$5,276.6277$	$4,427.6163$	200
Slice 23	671.64364	$2,074.3145$	0	$4,678.5693$	$3,925.7858$	200
Slice 24	681.48683	$2,088.372$	0	$4,080.511$	$3,423.9553$	200

2-Translational
Page 7 of 7

Slice 25	691.33002	$2,102.4296$	0	$3,482.4527$	$2,922.1248$	200
Slice 26	701.37635	$2,116.7772$	0	$2,872.0522$	$2,409.938$	200
Slice 27	711.62581	$2,131.415$	0	$2,249.3096$	$1,887.3948$	200
Slice 28	721.87527	$2,146.0527$	0	$1,626.5669$	$1,364.8517$	200
Slice 29	730.7861	$2,158.7787$	0	959.47662	805.09648	200
Slice 30	738.35829	$2,169.5929$	0	248.03868	208.12916	200

1 - Circular Mode of Failure

Renotsertedur Geotudi 2012.cono

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 143
Date: 3/25/2016
Time: 4:29:32 PM
Tool Version: 8.15.1.11236
File Name: Section 17-17 Static Final for low key SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 17-17\Latest Update 3-25-2016
Last Solved Date: 3/25/2016
Last Solved Time: 4:34:30 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exi
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
TQs150-17 ${ }^{\circ}$ (A-Bed $8^{\circ}-21^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40
Phi-Anisotropic Strength Fn.: TQs $150-17^{\circ}\left(\right.$ A-Bed $\left.8^{\circ}-21^{\circ}\right)$
C-Anisotropic Strength Fn.: 150psf-11 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$
Phi-B: 0
TQs 150-11 ${ }^{\circ}$ (A-Bed $8^{\circ}-21^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-11^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$
C-Anisotropic Strength Fn.: 150 psf-11 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$
Phi-B: 0°
TQs150-17 ${ }^{\circ}\left(\mathrm{A}\right.$ - bed 3-13 ${ }^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs150-17 ${ }^{\circ}$ (A- bed 3-13 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 150psf-17 ${ }^{(A-b e d ~ 3-13}{ }^{\circ}$)
Phi-B: 0

Slip Surface Entry and Exit

Left Projection: Rang
Left-Zone Left Coordinate: $(-86,1,940) \mathrm{ft}$
Left-Zone Right Coordinate: ($23,1,964.6667$) ft
Left-Zone Increment: 50

1 - Circular Mode of Failure

Right Projection: Range
Right-Zone Left Coordinate: ($30,1,969.3333$) ft
Right-Zone Right Coordinate: ($126,1,965.7089$) ft
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: (-177, 1,939) ft
Right Coordinate: $(644,2,039) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.425)$
Data Point: (21, 0.425)
Data Point: $(21.1,1)$
150psf-11 ${ }^{\circ}\left(\right.$ A-Bed $\left.8^{\circ}-21^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.667)$
Data Point: $(21,0.667)$
Data Point: $(21.1,1)$
TQs 150-11 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} \mathbf{8}^{\circ}-21^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%

- Circular Mode of Failure

Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(7.9,1)$
Data Point: $(8,0.275)$
Data Point: (21, 0.275
Data Point: $(21.1,1)$
150 psf- $17^{\circ}\left(\mathrm{A}-\right.$ bed $\left.3-13^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: $(3,0.667)$
Data Point: $(13,0.667)$
Data Point: $(13.1,1)$
TQs150-17 ${ }^{\circ}\left(\mathrm{A}-\right.$ bed 3-13$\left.{ }^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: $(3,0.425)$
Data Point: $(13,0.425)$
Data Point: (13.1, 1)

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-177	1,939
Point 2	-92	1,940
Point 3	-32	1,940
Point 4	-7	1,957
Point 5	10	1,956
Point 6	43	1,978
Point 7	75	1,967
Point 8	154	1,965
Point 9	230	1,964
Point 10	276	1,990

Point 11	297	1,990
Point 12	341	2,010
Point 13	351	2,010
Point 14	377	2,022
Point 15	390	2,024
Point 16	423	2,036
Point 17	433	2,038
Point 18	460	2,047
Point 19	482	2,047
Point 20	644	2,039
Point 21	644	1,802
Point 22	299	1,800
Point 23	51	1,800
Point 24	-177	1,798
Point 25	-200	1,801
Point 26	-177	1,842
Point 27	644	1,951
Point 28	244	1,950
Point 29	289	1,950
Point 30	336	1,973
Point 31	644	2,017
Point 32	-27	1,935
Point 33	-12	1,935
Point 34	62	1,972
	37	

file:///G:/SLOPE\%20RESULTS/Section\%2017-17/Latest\%20Update\%203-25-2016/sectio... 3/25/2016

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs $150-11^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$	$24,23,22,21,27,26$	79,110
Region 2	TQs150-17 ${ }^{\circ}\left(\mathrm{A}-\right.$-Bed $\left.8^{\circ}-21^{\circ}\right)$	$26,27,31,30,29,28,9,8,7,34,33,32,3,2,1$	59,521
Region 3	Fill	$9,28,29,30,19,18,17,16,15,14,13,12,11,10$	6,290
Region 4	Fill	$3,32,33,34,6,5,4$	$1,137.5$
Region 5	TQs150-17 $(\mathrm{A}$ - bed 3-13 $)$	$30,31,20,19$	9,966

Current Slip Surface

Slip Surface: 112,377
F of S: 1.94
Volume: $235.2005 \mathrm{ft}^{3}$
Weight: $28,224.06 \mathrm{lbs}$
Resisting Moment: 1,082,510.1 lbs-ft
Activating Moment: $559,103.75 \mathrm{lbs}-\mathrm{ft}$
F of S Rank (Analysis): 1 of 132,651 slip surfaces
Fof S Rank (Query): 1 of 500 slip surfaces
Exit: (10.027233, 1,956.0182) ft
Entry: (47.266956, 1,976.6525) ft
Radius: 42.115532 ft
Center: $(11.034434,1,998.1216) \mathrm{ft}$
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	(ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	10.63784	$1,956.0124$	0	50.669416	32.905103	200
Slice 2	11.859054	$1,956.0186$	0	143.53035	93.209698	200
Slice 3	13.080267	$1,956.0603$	0	230.42213	149.63788	200
Slice 4	14.301481	$1,956.1375$	0	311.483	202.27943	200
Slice 5	15.522694	$1,956.2505$	0	386.82845	251.20933	200
Slice 6	16.743908	$1,956.3995$	0	456.55284	296.48888	200
Slice 7	17.965121	$1,956.5849$	0	520.73075	338.1665	200
Slice 8	19.186335	$1,956.8073$	0	579.41791	376.27839	200
Slice 9	20.407549	$1,957.0672$	0	632.65189	410.84894	200
Slice 10	21.628762	$1,957.3653$	0	680.45247	441.891	200
	22.849976	$1,957.7025$	0	722.82179	469.40596	200

file:///G:/SLOPE\%20RESULTS/Section\%2017-17/Latest\%20Update\%203-25-2016/sectio... 3/25/2016

Slice 11						
Slice 12	24.071189	$1,958.0798$	0	759.74417	493.38363	200
Slice 13	25.292403	$1,958.4983$	0	791.18568	513.80199	200
Slice 14	26.513617	$1,958.9594$	0	817.09342	530.62667	200
Slice 15	27.73483	$1,959.4645$	0	837.39437	543.81026	200
Slice 16	28.956044	$1,960.0155$	0	851.99401	553.29138	200
Slice 17	30.177257	$1,960.6143$	0	860.77431	558.99337	200
Slice 18	31.398471	$1,961.2633$	0	863.59129	560.82274	200
Slice 19	32.619685	$1,961.9652$	0	860.27189	558.6671	200
Slice 20	33.840898	$1,962.7231$	0	850.60992	552.39254	200
Slice 21	35.062112	$1,963.5408$	0	834.36104	541.8404	200
Slice 22	36.283325	$1,964.4225$	0	811.23627	526.823	200
Slice 23	37.504539	$1,965.3736$	0	780.8937	507.1183	200
Slice 24	38.725752	$1,966.4002$	0	742.92769	482.46288	200
Slice 25	39.946966	$1,967.5099$	0	696.85475	452.54277	200
Slice 26	41.16818	$1,968.7123$	0	642.09467	416.98115	200
Slice 27	42.389393	$1,970.0192$	0	577.94494	375.32183	200
Slice 28	43.711159	$1,971.5759$	0	436.96587	283.76896	200
Slice 29	45.133478	$1,973.4335$	0	222.05395	144.20352	200
Slice 30	46.555797	$1,975.5342$	0	-0.64302	-0.41758207	200

1 - Circular Mode of Failure

Renotenad

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 14
Date: 3/25/2016
Time: 4:18:37 PM
Tool Version: 8.15.1.11236
File Name: Section 17-17 Seismic Final for low key SSA for Skyline Ranch.gsz
Directory: G:|SLOPE RESULTS\Section 17-17\Latest Update 3-25-2016
Last Solved Date: 3/25/2016
Last Solved Time: 4:18:53 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exi
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
TQs150-17 ${ }^{\circ}$ (A-Bed $8^{\circ}-21^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40
Phi-Anisotropic Strength Fn.: TQs $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$
C-Anisotropic Strength Fn.: 150psf-11 ${ }^{\circ}$ (A-Bed $8^{\circ}-21^{\circ}$)
Phi-B: $0{ }^{\circ}$
TQs 150-11 ${ }^{\circ}$ (A-Bed $8^{\circ}-21^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-11^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$
C-Anisotropic Strength Fn.: 150 psf-11 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$
Phi-B: 0°
TQs150-17 ${ }^{\circ}\left(\mathrm{A}\right.$ - bed 3-13 ${ }^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs150-17 ${ }^{\circ}$ (A- bed 3-13 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 150psf-17 ${ }^{(A-b e d ~ 3-13}{ }^{\circ}$)
Phi-B: 0

Slip Surface Entry and Exit

Left Projection: Rang
Left-Zone Left Coordinate: $(-86,1,940) \mathrm{ft}$
Left-Zone Right Coordinate: ($23,1,964.6667$) ft
Left-Zone Increment: 50

1 - Circular Mode of Failure

Right Projection: Range
Right-Zone Left Coordinate: (30, 1,969.3333) ft
Right-Zone Right Coordinate: ($126,1,965.7089$) ft
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: (-177, 1,939) ft
Right Coordinate: $(644,2,039) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.425)$
Data Point: (21, 0.425)
Data Point: $(21.1,1)$
150psf-11 ${ }^{\circ}\left(\right.$ A-Bed $\left.8^{\circ}-21^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.667)$
Data Point: $(21,0.667)$
Data Point: $(21.1,1)$
TQs 150-11 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} \mathbf{8}^{\circ}-21^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%

- Circular Mode of Failure

Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(7.9,1)$
Data Point: $(8,0.275)$
Data Point: (21, 0.275
Data Point: $(21.1,1)$
150 psf- $17^{\circ}\left(\mathrm{A}-\right.$ bed $\left.3-13^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: $(3,0.667)$
Data Point: $(13,0.667)$
Data Point: $(13.1,1)$
TQs150-17 ${ }^{\circ}\left(\mathrm{A}-\right.$ bed 3-13$\left.{ }^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: $(3,0.425)$
Data Point: $(13,0.425)$
Data Point: (13.1, 1)

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-177	1,939
Point 2	-92	1,940
Point 3	-32	1,940
Point 4	-7	1,957
Point 5	10	1,956
Point 6	43	1,978
Point 7	75	1,967
Point 8	154	1,965
Point 9	230	1,964
Point 10	276	1,990

Point 11	297	1,990
Point 12	341	2,010
Point 13	351	2,010
Point 14	377	2,022
Point 15	390	2,024
Point 16	423	2,036
Point 17	433	2,038
Point 18	460	2,047
Point 19	482	2,047
Point 20	644	2,039
Point 21	644	1,802
Point 22	299	1,800
Point 23	51	1,800
Point 24	-177	1,798
Point 25	-200	1,801
Point 26	-177	1,842
Point 27	644	1,951
Point 28	244	1,950
Point 29	289	1,950
Point 30	336	1,973
Point 31	644	2,017
Point 32	-27	1,935
Point 33	-12	1,935
Point 34	62	1,972
	37	

file:///G:/SLOPE\%20RESULTS/Section\%2017-17/Latest\%20Update\%203-25-2016/sectio... 3/25/2016

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs $150-11^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$	$24,23,22,21,27,26$	79,110
Region 2	TQs150-17 ${ }^{\circ}\left(\mathrm{A}\right.$-Bed $\left.8^{\circ}-21^{\circ}\right)$	$26,27,31,30,29,28,9,8,7,34,33,32,3,2,1$	59,521
Region 3	Fill	$9,28,29,30,19,18,17,16,15,14,13,12,11,10$	6,290
Region 4	Fill	$3,32,33,34,6,5,4$	$1,137.5$
Region 5	TQs150-17 $(\mathrm{A}$ - bed 3-13 $)$	$30,31,20,19$	9,966

Current Slip Surface

Slip Surface: 61,101
Fof S: 1.30
Volume: $1,273.6586 \mathrm{ft}^{3}$
Weight: $152,839.03 \mathrm{lbs}$
Resisting Moment: $32,573,573 \mathrm{lbs}-\mathrm{ft}$
Activating Moment: $25,018,478 \mathrm{lbs}$-ft
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 500 slip surfaces
Exit: (-31.95441, 1,940.031) ft
Entry: (75.769263, 1,966.9805) ft
Radius: 416.2632 ft
Center: ($-78.214197,2,353.7158$) ft
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	-30.171952	$1,940.2381$	0	97.13462	63.07996	200
Slice 2	-26.607036	$1,940.6679$	0	320.76091	208.30457	200
Slice 3	-23.042121	$1,941.129$	0	539.03122	350.05097	200
Slice 4	-19.477205	$1,941.6214$	0	751.98975	488.34785	200
Slice 5	-15.912289	$1,942.1453$	0	959.67871	623.22264	200
Slice 6	-12.347374	$1,942.7007$	0	$1,162.1384$	754.70149	200
Slice 7	-8.7824579	$1,943.2879$	0	$1,359.4071$	882.80931	200
Slice 8	-5.3	$1,943.8919$	0	$1,408.7329$	914.84183	200
Slice 9	-1.9	$1,944.5114$	0	$1,312.0412$	852.04951	200
Slice 10	1.5	$1,945.1601$	0	$1,212.8783$	787.65237	200
	4.9	$1,945.8382$	0	$1,111.2619$	721.66192	200

file:///G:/SLOPE\%20RESULTS/Section\%2017-17/Latest\%20Update\%203-25-2016/sectio... 3/25/2016

Slice 11						
Slice 12	8.3	$1,946.5459$	0	$1,007.2094$	654.0894	200
Slice 13	11.6258	$1,947.2664$	0	$1,030.6152$	669.28934	200
Slice 14	15.110875	$1,948.0535$	0	$1,267.52$	387.51977	150.075
Slice 15	18.829425	$1,948.927$	0	$1,446.1427$	442.13019	150.075
Slice 16	22.547975	$1,949.8366$	0	$1,619.8731$	495.24491	150.075
Slice 17	26.266525	$1,950.7826$	0	$1,788.7063$	546.86239	150.075
Slice 18	29.985075	$1,951.7652$	0	$1,952.6357$	596.98063	150.075
Slice 19	33.703625	$1,952.7847$	0	$2,111.6534$	645.59722	150.075
Slice 20	37.422175	$1,953.8414$	0	$2,265.75$	692.70929	150.075
Slice 21	41.140725	$1,954.9355$	0	$2,414.9147$	738.31353	150.075
Slice 22	44.9	$1,956.0803$	0	$2,351.8357$	719.02832	150.075
Slice 23	48.7	$1,957.2768$	0	$2,077.8196$	635.25321	150.075
Slice 24	52.5	$1,958.5135$	0	$1,800.5383$	550.4798	150.075
Slice 25	56.3	$1,959.7907$	0	$1,519.9878$	464.7069	150.075
Slice 26	60.1	$1,961.1089$	0	$1,236.1639$	377.93323	150.075
Slice 27	63.625	$1,962.3672$	0	957.73545	292.80911	150.075
Slice 28	66.875	$1,963.5604$	0	685.12496	209.46372	150.075
Slice 29	70.125	$1,964.7845$	0	410.21128	125.41417	150.075
Slice 30	73.375	$1,966.0397$	0	98.022886	82.250967	225
Slice 31	75.384631	$1,966.8278$	0	-39.07695	-32.789455	225

file://G:/SLOPE\%20RESULTS/Section\%2017-17/Latest\%20Update\%203-25-2016/sectio... 3/25/2016

2 - Translational

Report generated using GeoStudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

```File Information
    File Version: 8.15
    Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
    Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
    Last Edited By: Alexander Bykovtsev
    Revision Number: }14
    Date: 3/25/2016
    Time: 4:29:32 PM
    Tool Version: 8.15.1.11236
    File Name: Section 17-17 Static Final for low key SSA for Skyline Ranch.gsz
    Directory: G:\SLOPE RESULTS\Section 17-17\Latest Update 3-25-2016\
    Last Solved Date: 3/25/2016
    Last Solved Time: 4:29:54 PM
Project Settings
    Length(L) Units: Feet
    Time(t) Units: Seconds
    Force(F) Units: Pounds
    Pressure(p) Units: psf
    Strength Units: psf
    Unit Weight of Water: 62.4 pcf
    View: 2D
    Element Thickness: 1
```


Analysis Settings

2 - Translational
Kind: SLOPE/W

```
Method: Janbu
Settings
    PWP Conditions Source: (none)
Slip Surface
    Direction of movement: Right to Left
    Use Passive Mode: No
    Slip Surface Option: Block
    Critical slip surfaces saved: 10
    Resisting Side Maximum Convex Angle: 1 }\mp@subsup{}{}{\circ
    Driving Side Maximum Convex Angle: 5 `
    Restrict Block Crossing: No
    Optimize Critical Slip Surface Location: No
    Tension Crack
        Tension Crack Option: (none)
F of S Distribution
    F of S Calculation Option: Constant
Advanced
    Number of Slices: }3
    F of S Tolerance: 0.01
    Minimum Slip Surface Depth: 0.1 ft
```


Materials

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°

TQs150-17 ${ }^{\circ}$ (A-Bed $8^{\circ}-21^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$

C-Anisotropic Strength Fn.: 150psf-11 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$
Phi-B: 0°
TQs $150-11^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-11^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$
C-Anisotropic Strength Fn.: 150psf-11 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$
Phi-B: 0°
TQs150-17 ${ }^{\circ}\left(\mathrm{A}-\right.$ bed $\left.3-13^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs150-17 ${ }^{\circ}\left(\mathrm{A}-\right.$ bed $\left.3-13^{\circ}\right)$
C-Anisotropic Strength Fn.: 150 psf- $17^{\circ}\left(\mathrm{A}-\right.$ bed $\left.3-13^{\circ}\right)$
Phi-B: 0°

Slip Surface Limits

Left Coordinate: (-177, 1,939) ft
Right Coordinate: $(644,2,039) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: (-71.5929, 1,953.474) ft
Lower Left: (-50.5113, 1,892.0009) ft
Lower Right: (22.7194, 1,911.321) ft
X Increments: 10
Y Increments: 10
Starting Angle: 135°
Ending Angle: 180°

Angle Increments: 2

Right Grid

Upper Left: (29.5713, 1,975.3338) ft
Lower Left: (42.8782, 1,913.6751) ft
Lower Right: (119.5885, 1,939.6366) ft
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs 150-17 ${ }^{\circ}$ (A-Bed $8^{\circ}-21^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(7.9,1)$
Data Point: $(8,0.425)$
Data Point: (21, 0.425)
Data Point: $(21.1,1)$
150 psf- $11^{\circ}\left(\mathrm{A}-\right.$ Bed $\left.8^{\circ}-21^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%

Segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(7.9,1)$
Data Point: $(8,0.667)$
Data Point: $(21,0.667)$
Data Point: (21.1, 1)
TQs $150-11^{\circ}\left(\mathrm{A}-\mathrm{Bed} \mathbf{8}^{\circ}-21^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: (8, 0.275)
Data Point: $(21,0.275)$
Data Point: $(21.1,1)$
150 psf- $17^{\circ}\left(\mathrm{A}-\right.$ bed $\left.3-13^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: $(3,0.667)$
Data Point: $(13,0.667)$
Data Point: $(13.1,1)$
TQs150-17 ${ }^{\circ}\left(\mathrm{A}-\right.$ bed 3-13$\left.{ }^{\circ}\right)$
Model: Spline Data Point Function

Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: $(3,0.425)$
Data Point: $(13,0.425)$
Data Point: $(13.1,1)$

Points

	$X(f t)$	$Y(f t)$
Point 1	-177	1,939
Point 2	-92	1,940
Point 3	-32	1,940
Point 4	-7	1,957
Point 5	10	1,956
Point 6	43	1,978
Point 7	75	1,967
Point 8	154	1,965
Point 9	230	1,964
Point 10	276	1,990
Point 11	297	1,990
Point 12	341	2,010
Point 13	351	2,010
Point 14	377	2,022
Point 15	390	2,024
Point 16	423	2,036
Point 17	433	2,038
Point 18	460	2,047
Point 19	482	2,047

Point 20	644	2,039
Point 21	644	1,802
Point 22	299	1,800
Point 23	51	1,800
Point 24	-177	1,798
Point 25	-200	1,801
Point 26	-177	1,842
Point 27	644	1,951
Point 28	244	1,950
Point 29	289	1,950
Point 30	336	1,973
Point 31	644	2,017
Point 32	-27	1,935
Point 33	-12	1,935
Point 34	62	1,972
	-17	

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs $150-11^{\circ}\left(\right.$ A-Bed $\left.8^{\circ}-21^{\circ}\right)$	$24,23,22,21,27,26$	79,110

file://G:/SLOPE\%20RESULTS/Section\%2017-17/Latest\%20Update\%203-25-2016/section\%2017-17\%20static\%20final\%20fo... 3/25/2016

Region 2	TQs150-17 -21° (A-Bed 8°	$26,27,31,30,29,28,9,8,7,34,33,32,3,2,1$	59,521
Region 3	Fill	$9,28,29,30,19,18,17,16,15,14,13,12,11,10$	6,290
Region 4	Fill	$3,32,33,34,6,5,4$	$1,137.5$
Region 5	TQs150-17 $\left.3-13^{\circ}\right)$	(A- bed	$30,31,20,19$

Current Slip Surface

Slip Surface: 66,992

F of S: 1.66
Volume: $1,230.3528 \mathrm{ft}^{3}$
Weight: $147,642.34 \mathrm{lbs}$
Resisting Force: 73,302.436 lbs
Activating Force: 44,088.634 lbs
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 500 slip surfaces
Exit: (-31.547049, 1,940.308) ft
Entry: (52.033121, 1,975.1474) ft
Radius: 49.716909 ft
Center: (-0.648774, 1,983.8573) ft

Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	$\mathrm{PWP}(\mathrm{psf})$	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	-30.265582	$1,939.7772$	0	260.43337	169.12741	200
Slice 2	-27.70265	$1,938.7156$	0	662.09149	429.96724	200
Slice 3	-25.139717	$1,937.654$	0	$1,063.7496$	690.80708	200
Slice 4	-22.576785	$1,936.5924$	0	$1,465.4077$	951.64691	200
Slice 5	-20.013852	$1,935.5308$	0	$1,867.0659$	$1,212.4867$	200
Slice 6	-17.923033	$1,934.6648$	0	$2,334.1401$	$1,958.5761$	225
Slice 7	-16.046699	$1,934.6648$	0	$1,808.8485$	553.02049	150.075
Slice 8	-13.649765	$1,935.4179$	0	$1,789.2707$	$1,161.966$	200
Slice 9	-10.989859	$1,936.2536$	0	$1,893.2415$	$1,229.4854$	200

$\begin{aligned} & \text { Slice } \\ & 10 \end{aligned}$	-8.329953	1,937.0894	0	1,997.2123	1,297.0048	200
$\begin{aligned} & \text { Slice } \\ & 11 \end{aligned}$	-5.5671332	1,937.9574	0	2,123.5976	649.24894	150.075
$\begin{aligned} & \text { Slice } \\ & 12 \end{aligned}$	-2.7208397	1,938.8517	0	2,003.1636	612.42857	150.075
$\begin{aligned} & \text { Slice } \\ & 13 \end{aligned}$	0.10601357	1,939.7399	0	1,883.5521	575.85968	150.075
$\begin{aligned} & \text { Slice } \\ & 14 \end{aligned}$	2.9328668	1,940.6281	0	1,763.9407	539.29079	150.075
Slice 15	5.7597201	1,941.5163	0	1,644.3293	502.72191	150.075
$\begin{aligned} & \text { Slice } \\ & 16 \end{aligned}$	8.5865734	1,942.4045	0	1,524.7178	466.15302	150.075
Slice 17	11.383003	1,943.2832	0	1,520.2058	464.77355	150.075
$\begin{aligned} & \text { Slice } \\ & 18 \end{aligned}$	14.14901	1,944.1522	0	1,630.7931	498.5835	150.075
$\begin{aligned} & \text { Slice } \\ & 19 \end{aligned}$	16.915017	1,945.0213	0	1,741.3805	532.39345	150.075
$\begin{aligned} & \text { Slice } \\ & 20 \end{aligned}$	19.681023	1,945.8904	0	1,851.9679	566.2034	150.075
$\begin{aligned} & \text { Slice } \\ & 21 \end{aligned}$	22.44703	1,946.7595	0	1,962.5552	600.01335	150.075
$\begin{aligned} & \text { Slice } \\ & 22 \end{aligned}$	25.213037	1,947.6285	0	2,073.1426	633.8233	150.075
$\begin{aligned} & \text { Slice } \\ & 23 \end{aligned}$	27.979043	1,948.4976	0	2,183.73	667.63325	150.075
$\begin{aligned} & \text { Slice } \\ & 24 \end{aligned}$	30.74505	1,949.3667	0	2,294.3173	701.4432	150.075
$\begin{aligned} & \text { Slice } \\ & 25 \end{aligned}$	33.511057	1,950.2358	0	2,404.9047	735.25315	150.075
$\begin{aligned} & \text { Slice } \\ & 26 \end{aligned}$	36.24505	1,952.5997	0	1,343.4384	1,127.2787	225
	38.94703	1,956.4586	0	1,200.0909	1,006.9958	225

file:///G:/SLOPE\%20RESULTS/Section\%2017-17/Latest\%20Update\%203-25-2016/section\%2017-17\%20static\%20final\%20fo... 3/25/2016

Slice 27						
Slice 28	41.64901	$1,960.3174$	0	$1,056.7434$	886.71296	225
Slice 29	43.1364	$1,962.4416$	0	968.49692	812.66541	225
Slice 30	44.732853	$1,964.7216$	0	869.46013	564.63401	200
Slice 31	47.65296	$1,968.8919$	0	477.50066	310.09255	200
Slice 32	50.573067	$1,973.0623$	0	85.541187	55.551096	200

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 139
Date: 3/25/2016
Time: 4:07:47 PM
Tool Version: 8.15.1.11236
File Name: Section 17-17 Seismic Final for low key SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 17-17\Latest Update 3-25-2016
Last Solved Date: 3/25/2016
Last Solved Time: 4:08:38 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pc
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': $33{ }^{\circ}$
Phi-B: 0
TQs150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right.$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs 150-17 ${ }^{\circ}$ (A-Bed $8^{\circ}-21^{\circ}$)
C-Anisotropic Strength Fn.: 150psf-11 ${ }^{\circ}$ (A-Bed $8^{\circ}-21^{\circ}$)
Phi-B: 0°
TQs 150-11 (A-Bed $8^{\circ}-21^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-11^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$
C-Anisotropic Strength Fn.: 150 psf-11 ${ }^{\circ}$ (A-Bed $\left.8^{\circ}-21^{\circ}\right)$
Phi-B: 0°
TQs150-17 ${ }^{\circ}\left(\mathrm{A}-\right.$ bed $\left.3-13^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs150-17 (A- bed 3-13 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 150 psf-17 ${ }^{\circ}\left(\mathrm{A}-\right.$ bed $\left.3-13^{\circ}\right)$
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-177,1,939) \mathrm{ft}$
Right Coordinate: $(644,2,039) \mathrm{ft}$

2-Translational

Slip Surface Block

Left Grid
Upper Left: $(-71.5929,1,953.474) \mathrm{ft}$
Lower Left: ($-50.5113,1,892.0009$) ft
Lower Right: (22.7194, 1,911.321) ft
X Increments: 10
X Increments: 10
Y Increments: 10
Starting Angle: 135°
Starting Angle: 135°
Ending Angle: 180°
Ending Angle: 180°
Right Grid
Upper Left: $(29.5713,1,975.3338) \mathrm{ft}$
Lower Left: (42.8782, 1,913.6751) ft
Lower Right: (119.5885, 1,939.6366) ft
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: ($8,0.425$)
Data Point: ($21,0.425$)
Data Point: $(21.1,1)$
150psf-11 ${ }^{\circ}\left(\right.$ A-Bed $\left.8^{\circ}-21^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: $(-90,1)$

Data Point: $(7.9,1)$
 Data Point: $(8,0.667)$

Data Point: $(21,0.667)$
Data Point: $(21.1,1)$
TQs $150-11^{\circ}$ (A-Bed $8^{\circ}-21^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: ($-90,1$)
Data Point: $(7.9,1)$
Data Point: $(8,0.275)$
Data Point: $(21,0.275)$
Data Point: $(21.1,1)$
$150 p s f-17^{\circ}\left(\mathrm{A}\right.$ - bed $\left.3-13^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: $(3,0.667)$
Data Point: $(13,0.667)$
Data Point: $(13.1,1)$
TQs150-17 ${ }^{\circ}\left(\mathrm{A}-\right.$ bed $\left.3-13^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: $(3,0.425)$
Data Point: $(13,0.425)$
Data Point: (13.1, 1)

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-177	1,939
Point 2	-92	1,940

2 - Translational

Point 3	-32	1,940
Point 4	-7	1,957
Point 5	10	1,956
Point 6	43	1,978
Point 7	75	1,967
Point 8	154	1,965
Point 9	230	1,964
Point 10	276	1,990
Point 11	297	1,990
Point 12	341	2,010
Point 13	351	2,010
Point 14	377	2,022
Point 15	390	2,024
Point 16	423	2,036
Point 17	433	2,038
Point 18	460	2,047
Point 19	482	2,047
Point 20	644	2,039
Point 21	644	1,802
Point 22	299	1,800
Point 23	51	1,800
Point 24	-177	1,798
Point 25	-200	1,801
Point 26	-177	1,842

Point 27	644	1,951
Point 28	244	1,950
Point 29	289	1,950
Point 30	336	1,973
Point 31	644	2,017
Point 32	-27	1,935
Point 33	-12	1,935
Point 34	62	1,972

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs $150-11^{\circ}\left(\mathrm{A}-\right.$ Bed $\left.8^{\circ}-21^{\circ}\right)$	$24,23,22,21,27,26$	79,110
Region 2	TQs150-17 ${ }^{\circ}\left(\mathrm{A}\right.$-Bed $\left.8^{\circ}-21^{\circ}\right)$	$26,27,31,30,29,28,9,8,7,34,33,32,3,2,1$	59,521
Region 3	Fill	$9,28,29,30,19,18,17,16,15,14,13,12,11,10$	6,290
Region 4	Fill	$3,32,33,34,6,5,4$	$1,137.5$
Region 5	TQs150-17 ${ }^{\circ}(\mathrm{A}-$ bed 3-13 $)$	$30,31,20,19$	9,966

Current Slip Surface

Slip Surface: 66,996
F of S: 1.17
Volume: 1,305.1222 ft^{3}
Weight: $156,614.67 \mathrm{lbs}$
Resisting Force: 71,619.411 Ibs
Activating Force: $61,416.48 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 500 slip surfaces
Exit: (-31.547049, 1,940.308) ft
Entry: $(52.673982,1,974.9451) \mathrm{ft}$
Radius: 49.625828 ft
Center: $(-0.12025445,1,983.6043) \mathrm{ft}$
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	-30.265582	$1,939.7772$	0	309.49193	200.98641	200
	-27.70265	$1,938.7156$	0	745.81675	484.33906	200

2-Translational

Slice 2						
Slice 3	-25.139717	$1,937.654$	0	$1,182.1416$	767.69171	200
Slice 4	-22.576785	$1,936.5924$	0	$1,618.4664$	$1,051.0444$	200
Slice 5	-20.013852	$1,935.5308$	0	$2,054.7912$	$1,334.397$	200
Slice 6	-17.923033	$1,934.6648$	0	$2,651.8689$	$2,225.1822$	225
Slice 7	-16.057174	$1,934.6648$	0	$1,755.8349$	536.81261	150.075
Slice 8	-13.667224	$1,935.4231$	0	$1,694.3413$	$1,100.3181$	200
Slice 9	-11.000334	$1,936.2694$	0	$1,793.1051$	$1,164.4561$	200
Slice 10	-8.3334447	$1,937.1156$	0	$1,891.869$	$1,228.5941$	200
Slice 11	-6.8939956	$1,937.5724$	0	$1,937.1796$	$1,258.0192$	200
Slice 12	-5.3889919	$1,938.0499$	0	$2,052.8105$	627.60716	150.075
Slice 13	-2.5909934	$1,938.9378$	0	$1,936.1422$	591.93809	150.075
Slice 14	0.20700514	$1,939.8256$	0	$1,819.474$	556.26901	150.075
Slice 15	3.0050037	$1,940.7135$	0	$1,702.8057$	520.59994	150.075
Slice 16	5.8030022	$1,941.6013$	0	$1,586.1374$	484.93086	150.075
Slice 17	8.6010007	$1,942.4892$	0	$1,469.4691$	449.26179	150.075
Slice 18	11.356879	$1,943.3636$	0	$1,463.6836$	447.49299	150.075
Slice 19	14.070636	$1,944.2248$	0	$1,568.781$	479.62447	150.075
Slice 20	16.784394	$1,945.0859$	0	$1,673.8783$	511.75595	150.075
Slice 21	19.498151	$1,945.947$	0	$1,778.9756$	543.88744	150.075
Slice 22	22.211909	$1,946.8081$	0	$1,884.073$	576.01892	150.075
Slice 23	24.925666	$1,947.6692$	0	$1,989.1703$	608.1504	150.075
Slice 24	27.639424	$1,948.5303$	0	$2,094.2677$	640.28188	150.075
Slice 25	30.353181	$1,949.3915$	0	$2,199.365$	672.41336	150.075

Slice 26	33.066939	$1,950.2526$	0	$2,304.4624$	704.54485	150.075
Slice 27	35.780696	$1,951.1137$	0	$2,409.5597$	736.67633	150.075
Slice 28	38.494454	$1,951.9748$	0	$2,514.657$	768.80781	150.075
Slice 29	41.208211	$1,952.8359$	0	$2,619.7544$	800.93929	150.075
Slice 30	42.782545	$1,953.7328$	0	981.94904	823.95308	225
Slice 31	44.261908	$1,956.9053$	0	819.45343	687.60307	225
Slice 32	46.785723	$1,962.3176$	0	524.94659	440.48249	225
Slice 33	49.204218	$1,967.5041$	0	302.04072	196.14754	200
Slice 34	51.517394	$1,972.4647$	0	-10.633346	-6.9053757	200

1 - Circular Mode of Failure

Renotenad

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 136
Date: 3/25/2016
Time: 3:53:58 PM
Tool Version: 8.15.1.11236
File Name: Section 17-17 Static Final for upper key SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 17-17\Latest Update 3-25-2016
Last Solved Date: 3/25/2016
Last Solved Time: 3:57:45 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exi
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B. 0°
TQs150-17 ${ }^{\circ}$ (A-Bed $8^{\circ}-21^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40
Phi-Anisotropic Strength Fn.: TQs $150-17^{\circ}\left(\right.$ A-Bed $\left.8^{\circ}-21^{\circ}\right)$
C-Anisotropic Strength Fn.: 150psf-11 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$
Phi-B: 0
TQs 150-11 ${ }^{\circ}$ (A-Bed $8^{\circ}-21^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-11^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$
C-Anisotropic Strength Fn.: 150 psf-11 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$
Phi-B: 0°
TQs150-17 ${ }^{\circ}\left(\mathrm{A}\right.$ - bed 3-13 ${ }^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs150-17 ${ }^{\circ}$ (A- bed 3-13 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 150psf-17 ${ }^{(A-b e d ~ 3-13}{ }^{\circ}$)
Phi-B: 0

Slip Surface Entry and Exit

Left Projection: Range
Left-Zone Left Coordinate: $(140.0889,1,965.3522) \mathrm{ft}$
Left-Zone Right Coordinate: ($300,1,991.3636$) f
Left-Zone Increment: 50

1 - Circular Mode of Failure

Right Projection: Range
Right-Zone Left Coordinate: (325, 2,002.7273) ft
Right-Zone Right Coordinate: (554.9691, 2,043.3966) ft
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: $(-177,1,939)$ ft
Right Coordinate: $(644,2,039) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.425)$
Data Point: (21, 0.425)
Data Point: $(21.1,1)$
150psf-11 ${ }^{\circ}\left(\right.$ A-Bed $\left.8^{\circ}-21^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.667)$
Data Point: $(21,0.667)$
Data Point: $(21.1,1)$
TQs 150-11 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} \mathbf{8}^{\circ}-21^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%

Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(7.9,1)$
Data Point: $(8,0.275)$
Data Point: (21, 0.275
Data Point: $(21.1,1)$
150 psf- $17^{\circ}\left(\mathrm{A}-\right.$ bed $\left.3-13^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: $(3,0.667)$
Data Point: $(13,0.667)$
Data Point: (13.1, 1)
TQs150-17 ${ }^{\circ}\left(\mathrm{A}-\right.$ bed 3-13$\left.{ }^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: $(3,0.425)$
Data Point: $(13,0.425)$
Data Point: $(13.1,1)$

Points

	$X(\mathrm{ft})$	$Y(\mathrm{ft})$
Point 1	-177	1,939
Point 2	-92	1,940
Point 3	-32	1,940
Point 4	-7	1,957
Point 5	10	1,956
Point 6	43	1,978
Point 7	75	1,967
Point 8	154	1,965
Point 9	230	1,964
Point 10	276	1,990

Point 11	297	1,990
Point 12	341	2,010
Point 13	351	2,010
Point 14	377	2,022
Point 15	390	2,024
Point 16	423	2,036
Point 17	433	2,038
Point 18	460	2,047
Point 19	482	2,047
Point 20	644	2,039
Point 21	644	1,802
Point 22	299	1,800
Point 23	51	1,800
Point 24	-177	1,798
Point 25	-200	1,801
Point 26	-177	1,842
Point 27	644	1,951
Point 28	244	1,950
Point 29	289	1,950
Point 30	336	1,973
Point 31	644	2,017
Point 32	-27	1,935
Point 33	-12	1,935
Point 34	62	1,972
	37	

file:///G:/SLOPE\%20RESULTS/Section\%2017-17/Latest\%20Update\%203-25-2016/sectio... 3/25/2016

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs $150-11^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$	$24,23,22,21,27,26$	79,110
Region 2	TQs150-17 ${ }^{\circ}\left(\mathrm{A}\right.$-Bed $\left.8^{\circ}-21^{\circ}\right)$	$26,27,31,30,29,28,9,8,7,34,33,32,3,2,1$	59,521
Region 3	Fill	$9,28,29,30,19,18,17,16,15,14,13,12,11,10$	6,290
Region 4	Fill	$3,32,33,34,6,5,4$	$1,137.5$
Region 5	TQs150-17 $(\mathrm{A}$ - bed 3-13 $)$	$30,31,20,19$	9,966

Current Slip Surface

Slip Surface: 56,373
F of S: 2.20
Volume: $7,725.7384 \mathrm{ft}^{3}$
Weight: $927,088.61 \mathrm{lbs}$
Resisting Moment: $1.7022767 \mathrm{e}+008 \mathrm{lbs}$-ft
Activating Moment: 77,536,641 lbs-ft
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 500 slip surfaces
Exit: (210.24346, 1,964.26)
Entry: $(478.83576,2,047) \mathrm{ft}$
Radius: 285.78335 ft
Center: (271.27916, 2,243.4494) ft
Slip Slices

	X (ft)	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	215.1826	$1,963.2711$	0	142.24681	119.35925	225
Slice 2	225.06087	$1,961.4726$	0	349.76389	293.48675	225
Slice 3	231.93782	$1,960.3937$	0	610.84461	512.55949	225
Slice 4	238.08808	$1,959.6317$	0	$1,122.2048$	728.76831	200
Slice 5	246.51295	$1,958.7726$	0	$1,801.5307$	$1,169.9277$	200
Slice 6	254.93782	$1,958.1649$	0	$2,438.1386$	$1,583.3457$	200
Slice 7	263.36269	$1,957.8068$	0	$3,033.4091$	$1,969.9189$	200
Slice 8	271.78756	$1,957.6976$	0	$3,588.5277$	$2,330.4171$	200
Slice 9	281.25	$1,957.8884$	0	$3,810.8886$	$2,474.82$	200
Slice 10	291.75	$1,958.4488$	0	$3,701.0402$	$2,403.4836$	200
	303.53516	$1,959.5685$	0	$3,868.0147$	$2,511.9181$	200

file:///G:/SLOPE\%20RESULTS/Section\%2017-17/Latest\%20Update\%203-25-2016/sectio... 3/25/2016

Slice 11						
Slice 12	314.39194	$1,960.9706$	0	$4,329.8108$	$1,323.756$	150.075
Slice 13	323.03516	$1,962.4261$	0	$4,598.5548$	$1,405.9193$	150.075
Slice 14	331.67839	$1,964.1566$	0	$4,832.5803$	$1,477.4681$	150.075
Slice 15	338.5	$1,965.6962$	0	$4,995.3531$	$1,527.2327$	150.075
Slice 16	346	$1,967.6559$	0	$4,878.8734$	$1,491.6213$	150.075
Slice 17	355.33333	$1,970.3442$	0	$4,773.2702$	$1,459.3352$	150.075
Slice 18	364	$1,973.1644$	0	$4,883.7333$	$1,493.1071$	150.075
Slice 19	372.66667	$1,976.2955$	0	$4,956.8749$	$1,515.4687$	150.075
Slice 20	378.74367	$1,978.6477$	0	$4,496.1241$	$3,772.6961$	225
Slice 21	385.24367	$1,981.424$	0	$4,267.9123$	$3,581.2036$	225
Slice 22	394.125	$1,985.4569$	0	$4,024.6106$	$3,377.0493$	225
Slice 23	402.375	$1,989.5509$	0	$3,859.943$	$3,238.8767$	225
Slice 24	410.625	$1,993.9849$	0	$3,663.2232$	$3,073.8092$	225
Slice 25	418.875	$1,998.7774$	0	$3,433.9022$	$2,881.3861$	225
Slice 26	428	$2,004.5458$	0	$3,060.6204$	$2,568.1655$	225
Slice 27	437.5	$2,011.0443$	0	$2,624.608$	$2,202.3076$	225
Slice 28	446.5	$2,017.7565$	0	$2,228.9149$	$1,870.2817$	225
Slice 29	455.5	$2,025.0458$	0	$1,791.1848$	$1,502.9825$	225
Slice 30	463.95776	$2,032.4557$	0	$1,224.7179$	$1,027.6603$	225
Slice 31	471.87329	$2,039.9716$	0	539.40003	452.61036	225
Slice 32	477.3334	$2,045.4366$	0	71.039899	46.13385	200
	3,					

file://G:/SLOPE\%20RESULTS/Section\%2017-17/Latest\%20Update\%203-25-2016/sectio... 3/25/2016

1 - Circular Mode of Failure

Renotenatedura

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 133
Date: 3/25/2016
Time: 2:09:52 PM
Tool Version: 8.15.1.11236
File Name: Section 17-17 Seismic Final for upper key SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 17-17\Latest Update 3-25-2016
Last Solved Date: 3/25/2016
Last Solved Time: 2:14:27 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exi
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
TQs150-17 ${ }^{\circ}$ (A-Bed $8^{\circ}-21^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40
Phi-Anisotropic Strength Fn.: TQs $150-17^{\circ}\left(\right.$ A-Bed $\left.8^{\circ}-21^{\circ}\right)$
C-Anisotropic Strength Fn.: 150psf-11 ${ }^{\circ}$ (A-Bed $8^{\circ}-21^{\circ}$)
Phi-B: $0{ }^{\circ}$
TQs 150-11 ${ }^{\circ}$ (A-Bed $8^{\circ}-21^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-11^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$
C-Anisotropic Strength Fn.: 150 psf-11 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$
Phi-B: 0°
TQs150-17 ${ }^{\circ}\left(\mathrm{A}\right.$ - bed 3-13 ${ }^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs150-17 ${ }^{\circ}$ (A- bed 3-13 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 150psf-17 ${ }^{(A-b e d ~ 3-13}{ }^{\circ}$)
Phi-B: 0

Slip Surface Entry and Exit

Left Projection: Range
Left-Zone Left Coordinate: $(140.0889,1,965.3522) \mathrm{ft}$
Left-Zone Right Coordinate: ($300,1,991.3636$) f
Left-Zone Increment: 50

1 - Circular Mode of Failure

Right Projection: Range
Right-Zone Left Coordinate: (325, 2,002.7273) ft
Right-Zone Right Coordinate: (554.9691, 2,043.3966) ft
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: (-177, 1,939) ft
Right Coordinate: $(644,2,039) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.425)$
Data Point: (21, 0.425)
Data Point: $(21.1,1)$
150psf-11 ${ }^{\circ}\left(\right.$ A-Bed $\left.8^{\circ}-21^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.667)$
Data Point: $(21,0.667)$
Data Point: $(21.1,1)$
TQs 150-11 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} \mathbf{8}^{\circ}-21^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%

Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(7.9,1)$
Data Point: $(8,0.275)$
Data Point: (21, 0.275
Data Point: $(21.1,1)$
150 psf- $17^{\circ}\left(\mathrm{A}-\right.$ bed $\left.3-13^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: $(3,0.667)$
Data Point: $(13,0.667)$
Data Point: (13.1, 1)
TQs150-17 ${ }^{\circ}\left(\mathrm{A}-\right.$ bed 3-13$\left.{ }^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: $(3,0.425)$
Data Point: $(13,0.425)$
Data Point: $(13.1,1)$

Points

	$X(\mathrm{ft})$	$Y(\mathrm{ft})$
Point 1	-177	1,939
Point 2	-92	1,940
Point 3	-32	1,940
Point 4	-7	1,957
Point 5	10	1,956
Point 6	43	1,978
Point 7	75	1,967
Point 8	154	1,965
Point 9	230	1,964
Point 10	276	1,990

Point 11	297	1,990
Point 12	341	2,010
Point 13	351	2,010
Point 14	377	2,022
Point 15	390	2,024
Point 16	423	2,036
Point 17	433	2,038
Point 18	460	2,047
Point 19	482	2,047
Point 20	644	2,039
Point 21	644	1,802
Point 22	299	1,800
Point 23	51	1,800
Point 24	-177	1,798
Point 25	-200	1,801
Point 26	-177	1,842
Point 27	644	1,951
Point 28	244	1,950
Point 29	289	1,950
Point 30	336	1,973
Point 31	644	2,017
Point 32	-27	1,935
Point 33	-12	1,935
Point 34	62	1,972
	37	

file:///G:/SLOPE\%20RESULTS/Section\%2017-17/Latest\%20Update\%203-25-2016/sectio... 3/25/2016

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs $150-11^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$	$24,23,22,21,27,26$	79,110
Region 2	TQs150-17 ${ }^{\circ}\left(\mathrm{A}-\right.$-Bed $\left.8^{\circ}-21^{\circ}\right)$	$26,27,31,30,29,28,9,8,7,34,33,32,3,2,1$	59,521
Region 3	Fill	$9,28,29,30,19,18,17,16,15,14,13,12,11,10$	6,290
Region 4	Fill	$3,32,33,34,6,5,4$	$1,137.5$
Region 5	TQs150-17 $(\mathrm{A}$ - bed 3-13 $)$	$30,31,20,19$	9,966

Current Slip Surface

Slip Surface: 53,923
F of S: 1.43
Volume: $8,437.7293 \mathrm{ft}^{3}$
Weight: $1,012,527.5 \mathrm{lbs}$
Resisting Moment: $1.9751456 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
Activating Moment: 1.3820597 e+008
Fof S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 500 slip surfaces
Exit: $(206.90261,1,964.3039) \mathrm{ft}$
Entry: (493.11389, 2,046.4512) ft
Radius: 326.7372 ft
Center: (269.77051, 2,284.9358) ft
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	212.67696	$1,963.279$	0	158.24193	132.78075	225
Slice 2	224.22565	$1,961.4411$	0	368.75512	309.42229	225
Slice 3	231.90862	$1,960.4054$	0	621.6594	521.63417	225
Slice 4	239.09009	$1,959.6854$	0	$1,198.7847$	778.49991	200
Slice 5	249.63578	$1,958.8624$	0	$2,013.3632$	$1,307.4934$	200
Slice 6	260.18147	$1,958.382$	0	$2,762.156$	$1,793.7651$	200
Slice 7	270.72716	$1,958.2426$	0	$3,448.2639$	$2,239.3287$	200
Slice 8	281.25	$1,958.4426$	0	$3,722.5916$	$2,417.4793$	200
Slice 9	291.75	$1,958.9812$	0	$3,602.6169$	$2,339.5668$	200
Slice 10	304.06132	$1,960.0806$	0	$3,779.7273$	$2,454.5836$	200
	315.26886	$1,961.4091$	0	$4,283.9685$	$1,309.7406$	150.075

file:///G:/SLOPE\%20RESULTS/Section\%2017-17/Latest\%20Update\%203-25-2016/sectio... 3/25/2016

Slice 11						
Slice 12	323.56132	$1,962.6843$	0	$4,547.0693$	$1,390.1786$	150.075
Slice 13	331.85377	$1,964.1789$	0	$4,781.6767$	$1,461.9053$	150.075
Slice 14	338.5	$1,965.5193$	0	$4,951.2061$	$1,513.7356$	150.075
Slice 15	346	$1,967.257$	0	$4,855.1557$	$1,484.3701$	150.075
Slice 16	355.33333	$1,969.6327$	0	$4,778.64$	$1,460.9769$	150.075
Slice 17	364	$1,972.114$	0	$4,918.3017$	$1,503.6757$	150.075
Slice 18	372.66667	$1,974.8572$	0	$5,026.0973$	$1,536.6321$	150.075
Slice 19	382.68126	$1,978.3878$	0	$4,913.1984$	$1,502.1155$	150.075
Slice 20	389.18126	$1,980.8018$	0	$4,151.4333$	$3,483.4661$	225
Slice 21	395.5	$1,983.4167$	0	$4,053.5684$	$3,401.3478$	225
Slice 22	406.5	$1,988.2448$	0	$3,887.8469$	$3,262.2909$	225
Slice 23	417.5	$1,993.5681$	0	$3,678.7198$	$3,086.8124$	225
Slice 24	428	$1,999.1248$	0	$3,365.697$	$2,824.1551$	225
Slice 25	437.5	$2,004.5851$	0	$3,032.2483$	$2,544.3585$	225
Slice 26	446.5	$2,010.1718$	0	$2,743.7251$	$2,302.2587$	225
Slice 27	455.5	$2,016.176$	0	$2,427.0248$	$2,036.5156$	225
Slice 28	465.5	$2,023.4019$	0	$1,886.4833$	$1,582.9474$	225
Slice 29	476.5	$2,032.0136$	0	$1,128.945$	947.29731	225
Slice 30	487.55694	$2,041.4801$	0	320.67201	269.07577	225

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 136
Date: 3/25/2016
Time: 3:53:58 PM
Tool Version: 8.15.1.11236
File Name: Section 17-17 Static Final for upper key SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 17-17\Latest Update 3-25-2016
Last Solved Date: 3/25/2016
Last Solved Time: 3:54:26 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pc
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': $33{ }^{\circ}$
Phi-B: 0
TQs150-17 ${ }^{\circ}$ (A-Bed $8^{\circ}-21^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$
C-Anisotropic Strength Fn.: 150psf-11 ${ }^{\circ}$ (A-Bed $8^{\circ}-21^{\circ}$)
Phi-B: 0°
TQs 150-11 (A-Bed $8^{\circ}-21^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-11^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$
C-Anisotropic Strength Fn.: 150 psf-11 ${ }^{\circ}$ (A-Bed $\left.8^{\circ}-21^{\circ}\right)$
Phi-B: 0°
TQs150-17 ${ }^{\circ}\left(\mathrm{A}-\right.$ bed $\left.3-13^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs150-17 (A- bed 3-13 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 150 psf-17 ${ }^{\circ}\left(\mathrm{A}\right.$ - bed $\left.3-13^{\circ}\right)$
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-177,1,939) \mathrm{ft}$
Right Coordinate: $(644,2,039) \mathrm{ft}$

2-Translational

Slip Surface Block

Left Grid
Upper Left: $(203.4071,1,966.474) \mathrm{ft}$ Lower Left: (224.4887, 1,905.0009) ft Lower Right: (297.7194, 1,924.321) ft
X Increments: 10
XIncrements: 10
Starting Angle: 135°
Ending Angle: 180°
Angle Increments:
Right Grid
Upper Left: (402.5713, 2,011.3338) ft
Lower Left: $(415.8782,1,949.6751) \mathrm{ft}$
Lower Right: (492.5885, 1,975.6366) ft
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.425)$
Data Point: ($21,0.425$)
Data Point: $(21.1,1)$
150 psf- $11^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: $(-90,1)$

Data Point: $(7.9,1)$
 Data Point: $(8,0.667)$

Data Point: $(21,0.667)$
Data Point: $(21.1,1)$
TQs $150-11^{\circ}\left(\right.$ A-Bed $\left.8^{\circ}-21^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: ($8,0.275$)
Data Point: $(21,0.275)$
Data Point: $(21.1,1)$
$150 p s f-17^{\circ}\left(\mathrm{A}\right.$ - bed $\left.3-13^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: $(3,0.667)$
Data Point: $(13,0.667)$
Data Point: $(13.1,1)$
TQs150-17 ${ }^{\circ}\left(\mathrm{A}-\right.$ bed $\left.3-13^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: $(3,0.425)$
Data Point: $(13,0.425)$
Data Point: $(13.1,1)$

Points

	$X(\mathrm{ft})$	$Y(\mathrm{ft})$
Point 1	-177	1,939
Point 2	-92	1,940

2 - Translational

Point 3	-32	1,940
Point 4	-7	1,957
Point 5	10	1,956
Point 6	43	1,978
Point 7	75	1,967
Point 8	154	1,965
Point 9	230	1,964
Point 10	276	1,990
Point 11	297	1,990
Point 12	341	2,010
Point 13	351	2,010
Point 14	377	2,022
Point 15	390	2,024
Point 16	423	2,036
Point 17	433	2,038
Point 18	460	2,047
Point 19	482	2,047
Point 20	644	2,039
Point 21	644	1,802
Point 22	299	1,800
Point 23	51	1,800
Point 24	-177	1,798
Point 25	-200	1,801
Point 26	-177	1,842

Point 27	644	1,951
Point 28	244	1,950
Point 29	289	1,950
Point 30	336	1,973
Point 31	644	2,017
Point 32	-27	1,935
Point 33	-12	1,935
Point 34	62	1,972

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs $150-11^{\circ}\left(\mathrm{A}\right.$ Bed $\left.8^{\circ}-21^{\circ}\right)$	$24,23,22,21,27,26$	79,110
Region 2	TQs150-17 ${ }^{\circ}\left(\mathrm{A}\right.$-Bed $\left.8^{\circ}-21^{\circ}\right)$	$26,27,31,30,29,28,9,8,7,34,33,32,3,2,1$	59,521
Region 3	Fill	$9,28,29,30,19,18,17,16,15,14,13,12,11,10$	6,290
Region 4	Fill	$3,32,33,34,6,5,4$	$1,137.5$
Region 5	TQs150-17 ${ }^{\circ}(\mathrm{A}$ - bed 3-13 $)$	$30,31,20,19$	9,966

Current Slip Surface

Slip Surface: 53,897
F of S : 1.73
Volume: $9,718.7286 \mathrm{ft}^{3}$
Weight: 1,166,247.4 lbs
Resisting Force: 496,685.99 lbs
Activating Force: $287,333.37 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 500 slip surfaces
Exit: (191.70356, 1,964.5039) ft
Entry: (467.49181, 2,047) ft
Radius: 141.55999 ft
Center: (311.08999, 2,067.624) ft
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	196.49061	$1,962.521$	0	355.02851	297.90429	225
	206.06472	$1,958.5553$	0	931.00138	781.20291	225

file:///G:/SLOPE\%20RESULTS/Section\%2017-17/Latest\%20Update\%203-25-2016/sectio... 3/25/2016

Slice 2						
Slice 3	215.63883	$1,954.5896$	0	$1,506.9742$	$1,264.5015$	225
Slice 4	225.21294	$1,950.6239$	0	$2,082.9471$	$1,747.8002$	225
Slice 5	233.5	$1,947.1912$	0	$2,885.1439$	$2,420.9232$	225
Slice 6	240.5	$1,944.2918$	0	$3,913.5646$	$3,283.8706$	225
Slice 7	248.3357	$1,941.0461$	0	$5,064.7648$	$4,249.8423$	225
Slice 8	256.55951	$1,940.3008$	0	$4,412.2459$	$1,348.9589$	150.075
Slice 9	264.33571	$1,942.4019$	0	$4,675.044$	$1,429.3044$	150.075
Slice 10	272.1119	$1,944.5031$	0	$4,937.8421$	$1,509.6498$	150.075
Slice 11	282.5	$1,947.3099$	0	$4,868.0477$	$1,488.3116$	150.075
Slice 12	293	$1,950.1471$	0	$4,543.0431$	$1,388.9477$	150.075
Slice 13	301.875	$1,952.5451$	0	$4,522.1784$	$1,382.5687$	150.075
Slice 14	311.625	$1,955.1796$	0	$4,728.0718$	$1,445.5166$	150.075
Slice 15	321.375	$1,957.8141$	0	$4,933.9651$	$1,508.4645$	150.075
Slice 16	331.125	$1,960.4485$	0	$5,139.8584$	$1,571.4124$	150.075
Slice 17	338.5	$1,962.4413$	0	$5,295.5982$	$1,619.0268$	150.075
Slice 18	346	$1,964.4678$	0	$5,193.6272$	$1,587.8512$	150.075
Slice 19	355.33333	$1,966.9897$	0	$5,133.8426$	$1,569.5732$	150.075
Slice 20	364	$1,969.3314$	0	$5,323.8015$	$1,627.6495$	150.075
Slice 21	372.66667	$1,971.6732$	0	$5,513.7605$	$1,685.7258$	150.075
Slice 22	383.5	$1,974.6004$	0	$5,522.1008$	$1,688.2756$	150.075
Slice 23	394.125	$1,977.4713$	0	$5,479.6125$	$1,675.2857$	150.075
Slice 24	402.375	$1,979.7005$	0	$5,567.9143$	$1,702.2822$	150.075
Slice 25	410.625	$1,981.9296$	0	$5,656.2161$	$1,729.2788$	150.075

Slice 26	418.875	$1,984.1588$	0	$5,744.5179$	$1,756.2754$	150.075
Slice 27	423.60928	$1,985.438$	0	$5,783.7689$	$1,768.2756$	150.075
Slice 28	428.60928	$1,991.6716$	0	$3,163.5561$	$2,654.5388$	225
Slice 29	437.41836	$2,004.0507$	0	$2,406.3027$	$2,019.1277$	225
Slice 30	446.25509	$2,016.6708$	0	$1,719.1959$	$1,442.5766$	225
Slice 31	455.09181	$2,029.291$	0	$1,032.0891$	866.02559	225
Slice 32	459.75509	$2,035.9508$	0	750.94143	487.66707	200
Slice 33	463.7459	$2,041.6503$	0	311.39534	202.2225	200

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 133
Date: 3/25/2016
Time: 2:09:52 PM
Tool Version: 8.15.1.11236
File Name: Section 17-17 Seismic Final for upper key SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 17-17\Latest Update 3-25-2016
Last Solved Date: 3/25/2016
Last Solved Time: 2:10:09 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': $33{ }^{\circ}$
Phi-B: 0
TQs150-17 ${ }^{\circ}$ (A-Bed $8^{\circ}-21^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-17^{\circ}\left(\right.$ A-Bed $\left.8^{\circ}-21^{\circ}\right)$
C-Anisotropic Strength Fn.: 150psf-11 ${ }^{\circ}$ (A-Bed $8^{\circ}-21^{\circ}$)
Phi-B: 0°
TQs 150-11 (A-Bed $8^{\circ}-21^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-11^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$
C-Anisotropic Strength Fn.: 150 psf-11 ${ }^{\circ}$ (A-Bed $\left.8^{\circ}-21^{\circ}\right)$
Phi-B: 0°
TQs150-17 ${ }^{\circ}\left(\mathrm{A}-\right.$ bed $\left.3-13^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs150-17 (A- bed 3-13 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 150 psf-17 ${ }^{\circ}\left(\mathrm{A}\right.$ - bed $\left.3-13^{\circ}\right)$
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-177,1,939) \mathrm{ft}$
Right Coordinate: $(644,2,039) \mathrm{ft}$

2-Translational

Slip Surface Block

Left Grid
Upper Left: $(203.4071,1,966.474) \mathrm{ft}$ Lower Left: (224.4887, 1,905.0009) ft Lower Right: (297.7194, 1,924.321) ft
X Increments: 10
Y Increments: 10
Starting Angle: 135°
Ending Angle: 180°
Angle Increments:
Right Grid
Upper Left: (402.5713, 2,011.3338) ft
Lower Left: $(415.8782,1,949.6751) \mathrm{ft}$
Lower Right: (492.5885, 1,975.6366) ft
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.425)$
Data Point: ($21,0.425$)
Data Point: $(21.1,1)$
150 psf- $11^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-21^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: $(-90,1)$

Data Point: $(7.9,1)$
 Data Point: $(8,0.667)$

Data Point: $(21,0.667)$
Data Point: $(21.1,1)$
TQs $150-11^{\circ}\left(\right.$ A-Bed $\left.8^{\circ}-21^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.275)$
Data Point: $(21,0.275)$
Data Point: $(21.1,1)$
$150 p s f-17^{\circ}\left(\mathrm{A}\right.$ - bed $\left.3-13^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: $(3,0.667)$
Data Point: $(13,0.667)$
Data Point: $(13.1,1)$
TQs150-17 ${ }^{\circ}\left(\mathrm{A}-\right.$ bed $\left.3-13^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(2.9,1)$
Data Point: $(3,0.425)$
Data Point: $(13,0.425)$
Data Point: $(13.1,1)$

Points

	$X(\mathrm{ft})$	$Y(\mathrm{ft})$
Point 1	-177	1,939
Point 2	-92	1,940

2 - Translational

Point 3	-32	1,940
Point 4	-7	1,957
Point 5	10	1,956
Point 6	43	1,978
Point 7	75	1,967
Point 8	154	1,965
Point 9	230	1,964
Point 10	276	1,990
Point 11	297	1,990
Point 12	341	2,010
Point 13	351	2,010
Point 14	377	2,022
Point 15	390	2,024
Point 16	423	2,036
Point 17	433	2,038
Point 18	460	2,047
Point 19	482	2,047
Point 20	644	2,039
Point 21	644	1,802
Point 22	299	1,800
Point 23	51	1,800
Point 24	-177	1,798
Point 25	-200	1,801
Point 26	-177	1,842

Point 27	644	1,951
Point 28	244	1,950
Point 29	289	1,950
Point 30	336	1,973
Point 31	644	2,017
Point 32	-27	1,935
Point 33	-12	1,935
Point 34	62	1,972

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs $150-11^{\circ}\left(\mathrm{A}-\right.$ Bed $\left.8^{\circ}-21^{\circ}\right)$	$24,23,22,21,27,26$	79,110
Region 2	TQs150-17 ${ }^{\circ}\left(\mathrm{A}\right.$-Bed $\left.8^{\circ}-21^{\circ}\right)$	$26,27,31,30,29,28,9,8,7,34,33,32,3,2,1$	59,521
Region 3	Fill	$9,28,29,30,19,18,17,16,15,14,13,12,11,10$	6,290
Region 4	Fill	$3,32,33,34,6,5,4$	$1,137.5$
Region 5	TQs150-17 ${ }^{\circ}(\mathrm{A}-$ bed 3-13 $)$	$30,31,20,19$	9,966

Current Slip Surface

Slip Surface: 56,054
F of S: 1.13
Volume: 11,237.219 ft^{3}
Weight: 1,348,466.3 lbs
Resisting Force: 541,566.83 lbs
Activating Force: $477,623.83 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 500 slip surfaces
Exit: (216.46483, 1,964.1781) ft
Entry: (496.06625, 2,046.3054) ft
Radius: 140.58973 ft
Center: (338.17312, 2,066.8372) ft
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	223.23242	$1,961.3749$	0	585.73832	491.49281	225
	234.63339	$1,956.6524$	0	$1,837.0901$	$1,541.5016$	225

file:///G:/SLOPE\%20RESULTS/Section\%2017-17/Latest\%20Update\%203-25-2016/sectio... 3/25/2016

2-Translational

Slice 2						
Slice 3	244.98028	$1,952.3666$	0	$3,250.8355$	$2,111.1173$	200
Slice 4	254.84972	$1,948.2786$	0	$5,253.5951$	$4,408.2897$	225
Slice 5	263.16161	$1,944.8357$	0	$6,658.2807$	$5,586.9608$	225
Slice 6	271.65877	$1,944.1877$	0	$4,849.2884$	$1,482.5762$	150.075
Slice 7	282.5	$1,946.8685$	0	$4,823.7311$	$1,474.7626$	150.075
Slice 8	293	$1,949.465$	0	$4,531.5147$	$1,385.4231$	150.075
Slice 9	301.875	$1,951.6596$	0	$4,533.9115$	$1,386.1559$	150.075
Slice 10	311.625	$1,954.0706$	0	$4,761.3463$	$1,455.6896$	150.075
Slice 11	321.375	$1,956.4816$	0	$4,988.781$	$1,525.2234$	150.075
Slice 12	331.125	$1,958.8925$	0	$5,216.2158$	$1,594.7572$	150.075
Slice 13	338.5	$1,960.7162$	0	$5,388.2497$	$1,647.3533$	150.075
Slice 14	346	$1,962.5708$	0	$5,307.4157$	$1,622.6398$	150.075
Slice 15	355.33333	$1,964.8788$	0	$5,272.7576$	$1,612.0438$	150.075
Slice 16	364	$1,967.0219$	0	$5,481.7427$	$1,675.9369$	150.075
Slice 17	372.66667	$1,969.165$	0	$5,690.7278$	$1,739.8301$	150.075
Slice 18	383.5	$1,971.8438$	0	$5,726.8694$	$1,750.8797$	150.075
Slice 19	394.125	$1,974.4712$	0	$5,712.5365$	$1,746.4977$	150.075
Slice 20	402.375	$1,976.5113$	0	$5,820.5726$	$1,779.5276$	150.075
Slice 21	410.625	$1,978.5513$	0	$5,928.6087$	$1,812.5576$	150.075
Slice 22	418.875	$1,980.5914$	0	$6,036.6448$	$1,845.5875$	150.075
Slice 23	428	$1,982.8478$	0	$6,064.0571$	$1,853.9683$	150.075
Slice 24	436.93027	$1,985.0561$	0	$6,075.5153$	$1,857.4714$	150.075
Slice 25	444.79081	$1,986.9998$	0	$6,151.6433$	$1,880.7461$	150.075

Slice 26	452.77213	$1,989.1161$	0	$6,154.1147$	$1,881.5017$	150.075
Slice 27	458.41159	$1,992.5289$	0	$3,020.2274$	$2,534.2717$	225
Slice 28	465.5	$2,002.6522$	0	$2,458.6349$	$2,063.0397$	225
Slice 29	476.5	$2,018.3619$	0	$1,539.0432$	$1,291.4105$	225
Slice 30	485.51656	$2,031.2389$	0	775.10001	650.38613	225
Slice 31	492.54968	$2,041.2832$	0	166.80547	139.96641	225

1 - Circular Mode of Failure

Reportanated

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 110
Date: 3/25/2016
Time: 8:30:04 AM
Tool Version: 8.15.1.11236
File Name: Section 18-18 Static SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 18-18 results\}
Last Solved Date: 3/25/2016
Last Solved Time: 8:33:16 AM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pc
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $\mathbf{1 0 0 - 2 5}{ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-1^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-1^{\circ}\right)$
C-Anisotropic Strength Fn.: 100 psf-25 $5^{\circ}\left(\right.$ A-Bed $\left.0^{\circ}-1^{\circ}\right)$
Phi-B: 0°
Tmc 100-25 ${ }^{\circ}$ (A-Bed $12^{\circ}-2^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100 psf- 25° (A-Bed $12^{\circ}-24^{\circ}$)
C-Anisotropic Strength Fn.: 100 psf (A-Bed $12^{\circ}-24^{\circ}$)
Phi-B: 0°
Tmc 150-17 ${ }^{\circ}$ (A-Bed12${ }^{\circ}-24^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{(}$(A-Bed $\left.12^{\circ}-24^{\circ}\right)$
C-Anisotropic Strength Fn.: 150 psf-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 12^{\circ}-24^{\circ}\right)$

Phi-B: 0°

TQs 100-25 (A-Bed $8^{\circ}-10^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40
Phi-Anisotropic Strength Fn.: TQs 100-25 (A-Bed $8^{\circ}-10^{\circ}$)
C-Anisotropic Strength Fn.: 100psf-25 (A-Bed $8^{\circ}-10^{\circ}$)
Phi-B: 0°

Slip Surface Entry and Exit
Left Projection: Range
Left-Zone Left Coordinate: ($-183.7817,1,893.2287$) ft

Left-Zone Right Coordinate: (-50, 1,932.8947) ft
Left-Zone Increment: 50
Right Projection: Range
Right-Zone Left Coordinate: ($-40,1,937.6316$) ft
Right-Zone Left Coordinate: $(-40,1,937.6316) \mathrm{ft}$
Right-Zone Right Coordinate: $(84.5043,1,951.4673) \mathrm{ft}$
Right-Zone Increment: 10
Radius Increments: 50

Slip Surface Limits

Left Coordinate: $(-200,1,892) \mathrm{ft}$
Right Coordinate: $(811,1,703) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

```
TQs 100-25 (A-Bed 0}
    Model: Spline Data Point Function
    Function: Modifier Factor vs. Inclinatio
        Curve Fit to Data: 100 %
            Segment Curvature: 0%
    Y-Intercept: 0.625
    Data Points: Inclination ('), Modifier Factor
        Data Point: (-90, 1)
        Data Point: (-0.9, 1
        Data Point: (0, 0.625)
        Data Point: (1, 0.625)
        Data Point: (1.1, 1)
100 psf (A-Bed 12 - 24*)
    Model: Spline Data Point Function
    Function: Modifier Factor vs. Inclination
        Curve Fit to Data: 100 %
        Segment Curvature: 0%
    Y-Intercept: 1
    Data Points: Inclination (}\mp@subsup{}{}{\circ}),M\mathrm{ Modifier Facto
        Data Point: (-90, 1)
        Data Point: (11.9, 1)
        Data Point: (12, 0.5
        Data Point: (24, 0.5)
        Data Point: (24.1, 1)
100psf-25 (A-Bed 0}
    Model: Spline Data Point Function
```

Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.444
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: ($0,0.444$)
Data Point: (1, 0.444)
Data Point: $(1.1,1)$
Tmc 100psf-25 ${ }^{\circ}\left(\mathrm{A}-\right.$ Bed $\left.12^{\circ}-24^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(11.9,1)$
Data Point: $(12,0.625)$
Data Point: $(24,0.625)$
Data Point: $(24.1,1)$
Tmc 150-17 ${ }^{\circ}$ (A-Bed12 ${ }^{\circ}-24^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(11.9,1)$
Data Point: $(12,0.425)$
Data Point: ($24,0.425$)
Data Point: $(24.1,1)$
150psf-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 12^{\circ}-24^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(11.9,1)$
Data Point: $(12,0.75)$
Data Point: $(24,0.75)$
Data Point: $(24.1,1)$

100 psf 25° (A-Bed $8^{\circ}-10^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(7.9,1)$
Data Point: $(8,0.444)$
Data Point: $(10,0.444)$
Data Point: $(10.1,1)$
TQs $\mathbf{1 0 0 - 2 5}{ }^{\circ}$ (A-Bed $\mathbf{8}^{\circ}-10^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: ($8,0.625$)
Data Point: $(10,0.625)$
Data Point: $(10.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-134	1,897
Point 2	-102	1,913
Point 3	-92	1,913
Point 4	-35	1,940
Point 5	-7	1,940
Point 6	14	1,953
Point 7	106	1,951
Point 8	232	1,953
Point 9	356	1,957
Point 10	430	1,956
Point 11	444	1,961
Point 12	477	1,961
Point 13	523	1,961
Point 14	556	1,977
Point 15	586	1,977
Point 16	632	2,002
Point 17	682	2,001
Point 18	718	2,000

1 - Circular Mode of Failure

Point 19	810	1,998
Point 20	810	1,975
Point 21	-200	1,885
Point 22	-200	1,718
Point 23	810	1,901
Point 24	-200	1,892
Point 25	353	1,930
Point 26	354	1,939
Point 27	810	1,969
Point 28	811	1,703
Point 29	-200	1,703

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Tmc 100-25 $\left(\mathrm{A}\right.$-Bed $\left.12^{\circ}-24^{\circ}\right)$	$22,23,27,25,21$	$1.1817 \mathrm{e}+005$
Region 2	TQs 100-25 $\left(\mathrm{A}\right.$-Bed 0 $\left.0^{\circ}-1^{\circ}\right)$	$24,21,25,26,9,8,7,6,5,4,3,2,1$	17,412
Region 3	TQs 100-25 $\left(\mathrm{A}\right.$-Bed $\left.8^{\circ}-10^{\circ}\right)$	$25,27,19,18,17,16,15,14,13,12,11,10,9,26$	13,833
Region 4	Tmc 150-17 $\left(\mathrm{A}\right.$-Bed12 $\left.2^{\circ}-24^{\circ}\right)$	$22,23,28,29$	$1.0766 \mathrm{e}+005$

Current Slip Surface

Slip Surface: 9,606

F of $\mathrm{S}: 2.77$
Volume: $1,196.0805 \mathrm{ft}^{3}$
Weight: 143,529.66 lbs
Resisting Moment: 17,939,873 lbs-ft
Activating Moment: 6,484,986.1 lbs-ft
F of S Rank (Analysis): 1 of 28,611 slip surfaces
F of S Rank (Query): 1 of 10 slip surfaces
Exit: ($-135.58029,1,896.8803$) ft
Entry: (-27.657398, 1,940) ft
Radius: 127.50094 ft
Center: ($-123.7261,2,023.829$ ft
Slip Slices

	X (ft)	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	-134.79015	$1,896.8115$	0	23.130741	19.408996	225
Slice 2	-132.22222	$1,896.6239$	0	160.4751	134.6546	225
Slice 3	-128.66667	$1,896.4362$	0	395.45432	331.82557	225
Slice 4	-125.11111	$1,896.3479$	0	614.02221	435.95028	186.42259
Slice 5	-121.55556	$1,896.3589$	0	820.63137	382.66669	99.9
Slice 6	-118	$1,896.4691$	0	$1,006.3444$	844.42322	225
Slice 7	-114.44444	$1,896.6788$	0	$1,179.8474$	990.00949	225
Slice 8	-110.88889	$1,896.9885$	0	$1,338.7653$	$1,123.3574$	225
Slice 9	-107.33333	$1,897.3989$	0	$1,483.3139$	$1,244.6481$	225
Slice 10	-103.77778	$1,897.9111$	0	$1,613.6657$	$1,354.0263$	225
Slice 11	-100.33333	$1,898.5038$	0	$1,632.0637$	$1,369.4641$	225
Slice 12	-97	$1,899.1722$	0	$1,541.747$	$1,293.6794$	225
Slice 13	-93.666667	$1,899.9339$	0	$1,442.1848$	$1,210.1368$	225
Slice 14	-90.21875	$1,900.8235$	0	$1,422.8438$	$1,193.9077$	225
Slice 15	-86.65625	$1,901.8501$	0	$1,480.6904$	$1,242.4467$	225
Slice 16	-83.09375	$1,902.9903$	0	$1,524.7266$	$1,279.3976$	225
Slice 17	-79.53125	$1,904.2476$	0	$1,554.8728$	$1,304.6932$	225
Slice 18	-75.96875	$1,905.6256$	0	$1,571.0094$	$1,318.2334$	225
Slice 19	-72.40625	$1,907.1286$	0	$1,572.9755$	$1,319.8832$	225
Slice 20	-68.84375	$1,908.7615$	0	$1,560.5666$	$1,309.4709$	225
Slice 21	-65.28125	$1,910.5299$	0	$1,533.5312$	$1,286.7855$	225
Slice 22	-61.71875	$1,912.4404$	0	$1,491.5672$	$1,251.5735$	225
Slice 23	-58.15625	$1,914.5002$	0	$1,434.3174$	$1,203.5352$	225
	1,					

Slice 24	-54.59375	$1,916.7182$	0	$1,361.3636$	$1,142.3197$	225
Slice 25	-51.03125	$1,919.1043$	0	$1,272.2201$	$1,067.5194$	225
Slice 26	-47.46875	$1,921.6704$	0	$1,166.3259$	978.66367	225
Slice 27	-43.90625	$1,924.4305$	0	$1,043.035$	875.21029	225
Slice 28	-40.34375	$1,927.4011$	0	901.60582	756.53711	225
Slice 29	-36.78125	$1,930.6026$	0	741.18954	621.93187	225
Slice 30	-33.16435	$1,934.1169$	0	477.79408	400.91683	225
Slice 31	-29.493049	$1,937.985$	0	114.51666	96.090885	225

Section 18-18 Seismic SSA for Skyline Ranch.gsz

Section 18-18 Seismic SSA for Skyline Ranch.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/25/2016 8:12:59 AM

1 - Circular Mode of Failure

Repotenatedura

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 10
Date: 3/25/2016
Time: 8:12:59 AM
Tool Version: 8.15.1.11236
File Name: Section 18-18 Seismic SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 18-18 results\}
Last Solved Date: 3/25/2016
Last Solved Time: 8:16:26 AM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $100-25^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-1^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-1^{\circ}\right)$
C-Anisotropic Strength Fn.: 100 psf- $25^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-1^{\circ}\right)$
Phi-B: 0°
Tmc 100-25 ${ }^{\circ}$ (A-Bed $12^{\circ}-2^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100 psf- 25° (A-Bed $12^{\circ}-24^{\circ}$)
C-Anisotropic Strength Fn.: 100 psf (A-Bed $12^{\circ}-24^{\circ}$)
Phi-B: 0°
Tmc 150-17 ${ }^{\circ}$ (A-Bed12${ }^{\circ}-24^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{(}$(A-Bed $\left.12^{\circ}-24^{\circ}\right)$
C-Anisotropic Strength Fn.: 150psf-17 ${ }^{\circ}$ (A-Bed12 $2^{\circ}-24^{\circ}$)

Phi-B. 0°

TQs $\mathbf{1 0 0 - 2 5}{ }^{\circ}$ (A-Bed $8^{\circ}-10^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40
Phi-Anisotropic Strength Fn.: TQs 100-25 (A-Bed $8^{\circ}-10^{\circ}$)
C-Anisotropic Strength Fn.: 100psf-25 (A-Bed $8^{\circ}-10^{\circ}$)
Phi-B: 0

Slip Surface Entry and Exit
Left Projection: Range
Left-Zone Left Coordinate: ($-183.7817,1,893.2287$) ft

1-Circular Mode of Failure

Left-Zone Increment: 50
Left-Zone Increment: 50
Right Projection: Range
Right-Zone Left Coordin
Right-Zone Left Coordinate: ($-40,1,937.6316$) ft
Right-Zone Right Coordinate: $(84.5043,1,951.4673) \mathrm{ft}$
Right-Zone Increment: 10
Radius Increments: 50

Slip Surface Limits

Left Coordinate: $(-200,1,892) \mathrm{ft}$
Right Coordinate: $(811,1,703) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

```
TQs 100-25 (A-Bed 0}\mp@subsup{0}{}{\circ}-\mp@subsup{1}{}{\circ}
    Model: Spline Data Point Function
    Function: Modifier Factor vs. Inclination
        Curve Fit to Data: 100%
            Segment Curvature: 0%
    Y-Intercept: 0.625
    Data Points: Inclination( (})\mathrm{ ), Modifier Factor
        Data Point: (-90, 1)
        Data Point: (-0.9, 1
        Data Point: (0, 0.625)
        Data Point:(1,0.625)
        Data Point: (1.1, 1)
```

100 psf (A-Bed $12^{\circ}-24^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: $(-90,1)$
Data Point: $(11.9,1)$
Data Point: $(12,0.5)$
Data Point: $(24,0.5)$
Data Point: $(24.1,1)$
$100 \mathrm{psf}-25^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-1^{\circ}\right)$
Model: Spline Data Point Function

1 - Circular Mode of Failure

Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.444
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.444)$
Data Point: (1, 0.444)
Data Point: $(1.1,1)$
Tmc 100psf-25 ${ }^{\circ}$ (A-Bed $12^{\circ}-24^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(11.9,1)$
Data Point: $(12,0.625)$
Data Point: $(24,0.625$
Data Point: $(24.1,1)$
Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 12^{\circ}-24^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(11.9,1)$
Data Point: $(12,0.425)$
Data Point: ($24,0.425$)
Data Point: $(24.1,1)$
150psf-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 12^{\circ}-2^{\circ}{ }^{\circ}\right.$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(11.9,1)$
Data Point: $(12,0.75)$
Data Point: $(24,0.75)$
Data Point: $(24.1,1)$

100 psf 25° (A-Bed $8^{\circ}-10^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(7.9,1)$
Data Point: $(8,0.444)$
Data Point: $(10,0.444)$
Data Point: $(10.1,1)$
TQs $\mathbf{1 0 0 - 2 5}{ }^{\circ}$ (A-Bed $\mathbf{8}^{\circ}-10^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: ($8,0.625$)
Data Point: $(10,0.625)$
Data Point: $(10.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-134	1,897
Point 2	-102	1,913
Point 3	-92	1,913
Point 4	-35	1,940
Point 5	-7	1,940
Point 6	14	1,953
Point 7	106	1,951
Point 8	232	1,953
Point 9	356	1,957
Point 10	430	1,956
Point 11	444	1,961
Point 12	477	1,961
Point 13	523	1,961
Point 14	556	1,977
Point 15	586	1,977
Point 16	632	2,002
Point 17	682	2,001
Point 18	718	2,000

1 - Circular Mode of Failure

Point 19	810	1,998
Point 20	810	1,975
Point 21	-200	1,885
Point 22	-200	1,718
Point 23	810	1,901
Point 24	-200	1,892
Point 25	353	1,930
Point 26	354	1,939
Point 27	810	1,969
Point 28	811	1,703
Point 29	-200	1,703

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Tmc 100-25 $\left(\mathrm{A}\right.$-Bed $\left.12^{\circ}-24^{\circ}\right)$	$22,23,27,25,21$	$1.1817 \mathrm{e}+005$
Region 2	TQs 100-25 $\left(\mathrm{A}\right.$-Bed $\left.0^{\circ}-1^{\circ}\right)$	$24,21,25,26,9,8,7,6,5,4,3,2,1$	17,412
Region 3	TQs 100-25 $\left(\mathrm{A}\right.$-Bed $\left.8^{\circ}-10^{\circ}\right)$	$25,27,19,18,17,16,15,14,13,12,11,10,9,26$	13,833
Region 4	Tmc 150-17 $\left(\mathrm{A}\right.$-Bed12 $\left.2^{\circ}-24^{\circ}\right)$	$22,23,28,29$	$1.0766 \mathrm{e}+005$

Current Slip Surface

Slip Surface: 2,010

F of S : 1.90
Volume: $4,805.593 \mathrm{ft}^{3}$
Weight: $576,671.16 \mathrm{lbs}$
Resisting Moment: 86,314,275 Ibs-ft
Activating Moment: $45,380,337 \mathrm{lbs}$-ft
F of S Rank (Analysis): 1 of 28,611 slip surfaces
Fof S Rank (Query): 1 of 10 slip surfaces
Exit: $(-175.27557,1,893.8731) \mathrm{ft}$
Entry: (33.015783, 1,952.5866) ft
Radius: 191.08825 ft
Center: ($-113.86136,2,074.8234$) ft
Slip Slices

	X (ft)	$\mathrm{Y}(\mathrm{ft})$	PWPP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	-172.13922	$1,892.8685$	0	217.65997	182.6384	225
Slice 2	-165.86654	$1,890.9768$	0	533.00672	447.24575	225
Slice 3	-159.59385	$1,889.3164$	0	806.12499	676.41918	225
Slice 4	-152.71459	$1,887.7658$	0	$1,056.5577$	886.55718	200
Slice 5	-145.22875	$1,886.3654$	0	$1,285.9335$	$1,079.0263$	200
Slice 6	-137.74292	$1,885.2709$	0	$1,468.2738$	$1,232.028$	200
Slice 7	-130.8	$1,884.5145$	0	$1,769.0414$	$1,484.402$	200
Slice 8	-124.4	$1,884.0529$	0	$2,188.773$	$1,836.5986$	200
Slice 9	-118	$1,883.8068$	0	$2,570.0169$	$2,156.5002$	200
Slice 10	-111.6	$1,883.7753$	0	$2,914.5093$	$2,445.5637$	200
Slice 11	-105.2	$1,883.9584$	0	$3,223.7228$	$2,705.0246$	200
Slice 12	-97	$1,884.5467$	0	$3,277.0477$	$2,749.7695$	200
Slice 13	-88.407729	$1,885.4727$	0	$3,297.8835$	$2,767.2528$	200
Slice 14	-81.223188	$1,886.5784$	0	$3,497.5775$	$2,934.816$	200
Slice 15	-74.038646	$1,887.9668$	0	$3,814.555$	$1,778.7562$	100
Slice 16	-66.854105	$1,889.6443$	0	$3,971.664$	$1,852.0174$	100
Slice 17	-59.669564	$1,891.6187$	0	$4,091.4028$	$1,907.8525$	100
Slice 18	-52.485022	$1,893.9$	0	$4,173.3937$	$1,946.0855$	100
Slice 19	-45.300481	$1,896.4998$	0	$4,217.0584$	$1,966.4466$	100
Slice 20	-38.354105	$1,899.324$	0	$3,899.8192$	$3,272.3369$	225
Slice 21	-31.5	$1,902.4393$	0	$3,676.3553$	$3,084.8284$	225
Slice 22	-24.5	$1,905.9637$	0	$3,260.9175$	$2,736.2346$	225
-17.5	$1,909.8604$	0	$2,821.1088$	$2,367.1913$	225	

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 110
Date: 3/25/2016
Time: 8:30:04 AM
Tool Version: 8.15.1.11236
File Name: Section 18-18 Static SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 18-18 results\
Last Solved Date: 3/25/2016
Last Solved Time: 8:30:49 AM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pc
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constan
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $\mathbf{1 0 0 - 2 5}$ (A-Bed $0^{\circ}-1^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}\left(\mathrm{A}-\right.$ Bed $\left.0^{\circ}-1^{\circ}\right)$
C-Anisotropic Strength Fn.: 100 psf- $25^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-1^{\circ}\right)$
Phi-B: 0°
Tmc 100-25 ${ }^{\circ}$ (A-Bed $12^{\circ}-24^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100psf-25 ${ }^{\circ}$ (A-Bed $12^{\circ}-24^{\circ}$)
C-Anisotropic Strength Fn.: 100 psf (A-Bed $12^{\circ}-24^{\circ}$)
Phi-B: 0
Tmc 150-17 ${ }^{\circ}$ (A-Bed12${ }^{\circ}-2^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 12^{\circ}-24^{\circ}\right)$
C-Anisotropic Strength Fn.: 150psf-17 ${ }^{\circ}$ (A-Bed12 ${ }^{\circ}-24^{\circ}$)
C-Anisotr
Phi-B: 0°
TQs 100-25 (A-Bed $8^{\circ}-10^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-10^{\circ}\right)$
C-Anisotropic Strength Fn.: 100psf-25 (A-Bed $8^{\circ}-10^{\circ}$)
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-200,1,892) f$

Right Coordinate: $(811,1,703) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: (-211, 1,912) ft
Lower Left: (-202, 1,842) ft
Lower Right: $(-119,1,858) \mathrm{ft}$
X Increments: 10
Y Increments: 10
Starting Angle: 135°
Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: $(-97,1,935)$ ft
Lower Left: $(-89,1,852) \mathrm{ft}$
Lower Right: $(7,1,872) \mathrm{ft}$
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs $\mathbf{1 0 0 - 2 5}$ (A-Bed $\left.0^{\circ}-1^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.625
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.625)$
Data Point: $(1,0.625)$
Data Point: $(1.1,1)$
100 psf (A-Bed $12^{\circ}-2^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%

Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: (-90, 1)
Data Point: $(11.9,1)$
Data Point: $(12,0.5)$
Data Point: $(24,0.5)$
Data Point: (24.1, 1
100psf-25 ${ }^{\circ}$ (A-Bed $0^{\circ}-1^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.444
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(-0.9,1)$
Data Point: $(0,0.444)$
Data Point: (1, 0.444)
Data Point: (1.1, 1)
Tmc 100psf-25 ${ }^{\circ}$ (A-Bed $12^{\circ}-24^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(11.9,1)$
Data Point: $(12,0.625)$
Data Point: $(24,0.625)$
Data Point: $(24.1,1)$
Tmc 150-17 ${ }^{\circ}$ (A-Bed12 ${ }^{\circ}-\mathbf{2 4}^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$) Modifier Factor
Data Point: $(-90,1)$
Data Point: $(11.9,1)$
Data Point: (12, 0.425
Data Point: $(24,0.425)$
Data Point: $(24.1,1)$
150psf-17 ${ }^{\circ}$ (A-Bed12 ${ }^{\circ}-4^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

2-Translational

Curve Fit to Data: 100%

Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(11.9,1)$
Data Point: $(12,0.75)$
Data Point: $(24,0.75)$
Data Point: $(24.1,1)$
100psf-25 ${ }^{\circ}$ (A-Bed $8^{\circ}-10^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.444)$
Data Point: $(10,0.444)$
Data Point: $(10.1,1)$
TQs 100-25 ${ }^{\circ}$ (A-Bed $8^{\circ}-10^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.625)$
Data Point: ($10,0.625$)
Data Point: $(10.1,1)$

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-134	1,897
Point 2	-102	1,913
Point 3	-92	1,913
Point 4	-35	1,940
Point 5	-7	1,940
Point 6	14	1,953
Point 7	106	1,951
Point 8	232	1,953
Point 9	356	1,957

2-Translational

Point 10	430	1,956
Point 11	444	1,961
Point 12	477	1,961
Point 13	523	1,961
Point 14	556	1,977
Point 15	586	1,977
Point 16	632	2,002
Point 17	682	2,001
Point 18	718	2,000
Point 19	810	1,998
Point 20	810	1,975
Point 21	-200	1,885
Point 22	-200	1,718
Point 23	810	1,901
Point 24	-200	1,892
Point 25	353	1,930
Point 26	354	1,939
Point 27	810	1,969
Point 28	811	1,703
Point 29	-200	1,703

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Tmc $100-25^{\circ}\left(\mathrm{A}\right.$-Bed $\left.12^{\circ}-24^{\circ}\right)$	$22,23,27,25,21$	$1.1817 \mathrm{e}+005$
Region 2	TQs $100-25^{\circ}\left(\mathrm{A}-\right.$ Bed $\left.0^{\circ}-1^{\circ}\right)$	$24,21,25,26,9,8,7,6,5,4,3,2,1$	17,412
Region 3	TQs $100-25^{\circ}\left(\mathrm{A}\right.$-Bed $\left.8^{\circ}-10^{\circ}\right)$	$25,27,19,18,17,16,15,14,13,12,11,10,9,26$	13,833

$\begin{aligned} & \text { Region } \\ & 4 \end{aligned}$	$\begin{aligned} & \text { Tmc 150-17 }{ }^{\circ} \text { (A-Bed } 12^{\circ} \\ & \left.-24^{\circ}\right) \end{aligned}$	22,23,28,29	$1.0766 \mathrm{e}+005$

Current Slip Surface

Slip Surface: 82,576
F of S: 2.10
Volume: $1,528.6087 \mathrm{ft}^{3}$
Weight: $183,433.04 \mathrm{lbs}$
Resisting Force: $108,394.45 \mathrm{lbs}$
Activating Force: $51,627.123 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 10 slip surfaces
Exit: (-131.15023, 1,898.4249) ft
Entry: $(-23.7,1,940) \mathrm{ft}$
Radius: 61.907579 ft
Center: $(-89.489932,1,950.3938) \mathrm{ft}$

Slip Slices
$\mathrm{X}(\mathrm{ft})$ $\mathrm{Y}(\mathrm{ft})$ PWP (psf) Base Normal Stress (psf) Frictional Strength (psf) Cohesive Strength (psf) Slice 1 -129.32834 $1,898.4541$ 0 104.6639 48.80558 99.9 Slice 2 -125.68456 $1,898.5127$ 0 315.51615 147.1276 99.9 Slice 3 -122.04078 $1,898.5712$ 0 526.3684 245.44962 99.9 Slice 4 -118.397 $1,898.6297$ 0 737.22065 343.77164 99.9 Slice 5 -114.75322 $1,898.6882$ 0 948.0729 442.09365 99.9 Slice 6 -111.10945 $1,898.7467$ 0 $1,158.9252$ 540.41567 99.9 Slice 7 -107.46567 $1,898.8052$ 0 $1,369.7774$ 638.73769 99.9 Slice 8 -103.82189 $1,898.8637$ 0 $1,580.6296$ 737.05971 99.9 Slice 9 -100.33333 $1,898.9198$ 0 $1,682.8555$ 784.72842 99.9 Slice 10 -97 $1,898.9733$ 0 $1,676.455$ 781.74381 99.9 Slice 11 -93.666667 $1,899.0268$ 0 $1,670.0545$ 778.75921 99.9 Slice 12 -90.2625 $1,899.0815$ 0 $1,761.9298$ 821.60135 99.9 Slice 13 -86.7875 $1,899.1373$ 0 $1,952.0808$ 910.27022 99.9 -83.3125 $1,899.1931$ 0 $2,142.2318$ 998.9391 99.9

Slice 14						
Slice 15	-79.8375	$1,899.2489$	0	$2,332.3828$	$1,087.608$	99.9
Slice 16	-76.3625	$1,899.3047$	0	$2,522.5339$	$1,176.2769$	99.9
Slice 17	-72.8875	$1,899.3605$	0	$2,712.6849$	$1,264.9457$	99.9
Slice 18	-69.4125	$1,899.4163$	0	$2,902.8359$	$1,353.6146$	99.9
Slice 19	-65.9375	$1,899.4721$	0	$3,092.9869$	$1,442.2835$	99.9
Slice 20	-62.375	$1,901.325$	0	$2,126.7401$	$1,784.5468$	225
Slice 21	-58.725	$1,904.975$	0	$1,962.0909$	$1,646.3897$	225
Slice 22	-55.075	$1,908.625$	0	$1,797.4417$	$1,508.2327$	225
Slice 23	-51.425	$1,912.275$	0	$1,632.7925$	$1,370.0756$	225
Slice 24	-47.775	$1,915.925$	0	$1,468.1433$	$1,231.9185$	225
Slice 25	-44.125	$1,919.575$	0	$1,303.4941$	$1,093.7614$	225
Slice 26	-40.475	$1,923.225$	0	$1,138.8448$	955.60429	225
Slice 27	-36.825	$1,926.875$	0	974.19563	817.4472	225
Slice 28	-33.116667	$1,930.5833$	0	730.45466	612.92423	225
Slice 29	-29.35	$1,934.35$	0	407.62191	342.0354	225
Slice 30	-25.583333	$1,938.1167$	0	84.789167	71.146559	225

Section 18-18 Seismic SSA for Skyline Ranch.gsz

Section 18-18 Seismic SSA for Skyline Ranch.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/25/2016 8:12:59 AM

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.
File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 10
Date: 3/25/2016
Time: 8:12:59 AM
Tool Version: 8.15.1.11236
File Name: Section 18-18 Seismic SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 18-18 results\}
Last Solved Date: 3/25/2016
Last Solved Time: 8:13:12 AM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constan
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $\mathbf{1 0 0 - 2 5} \mathbf{N}^{\circ}\left(\mathrm{A}-\operatorname{Bed} 0^{\circ}-1^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}\left(\mathrm{A}-\right.$ Bed $\left.0^{\circ}-1^{\circ}\right)$
C-Anisotropic Strength Fn.: 100 psf- $25^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-1^{\circ}\right)$
Phi-B: 0°
Tmc 100-25 ${ }^{\circ}$ (A-Bed $12^{\circ}-24^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100psf-25 ${ }^{\circ}$ (A-Bed $12^{\circ}-24^{\circ}$)
C-Anisotropic Strength Fn.: 100 psf (A-Bed $12^{\circ}-24^{\circ}$)
Phi-B: 0
Tmc 150-17 ${ }^{\circ}$ (A-Bed12${ }^{\circ}-2^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 12^{\circ}-24^{\circ}\right)$
C-Anisotropic Strength Fn.: 150psf-17 ${ }^{\circ}$ (A-Bed $12^{\circ}-24^{\circ}$)
Phi-B: 0°
TQs 100-25 (A-Bed $8^{\circ}-10^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}$ (A-Bed $8^{\circ}-10^{\circ}$)
C-Anisotropic Strength Fn.: 100psf-25 (A-Bed $8^{\circ}-10^{\circ}$)
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-200,1,892) f$

Right Coordinate: $(811,1,703) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: $(-211,1,912) \mathrm{ft}$
Lower Left: (-202, 1,842) ft
Lower Right: $(-119,1,858) \mathrm{ft}$
X Increments: 10
Y Increments: 10
Starting Angle: 135°
Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: $(-97,1,935)$ ft
Lower Left: $(-89,1,852) \mathrm{ft}$
Lower Right: $(7,1,872) \mathrm{ft}$
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs $\mathbf{1 0 0 - 2 5}$ (A-Bed $\left.0^{\circ}-1^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.625
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.625)$
Data Point: $(1,0.625)$
Data Point: $(1.1,1)$
100 psf (A-Bed $12^{\circ}-2^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%

Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: (-90, 1)
Data Point: $(11.9,1)$
Data Point: $(12,0.5)$
Data Point: $(24,0.5)$
Data Point: (24.1, 1
100psf-25 ${ }^{\circ}$ (A-Bed $0^{\circ}-1^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.444
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(-0.9,1)$
Data Point: $(0,0.444)$
Data Point: $(1,0.444)$
Data Point: (1.1, 1)
Tmc 100psf-25 ${ }^{\circ}$ (A-Bed $12^{\circ}-24^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%
-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(11.9,1)$
Data Point: $(12,0.625)$
Data Point: $(24,0.625)$
Data Point: $(24.1,1)$
Tmc 150-17 ${ }^{\circ}$ (A-Bed12 ${ }^{\circ}-\mathbf{2 4}^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(11.9,1)$
Data Point: (12, 0.425
Data Point: $(24,0.425)$
Data Point: $(24.1,1)$
150psf-17 ${ }^{\circ}$ (A-Bed12 ${ }^{\circ}-4^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

2-Translational

Curve Fit to Data: 100%

Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(11.9,1)$
Data Point: $(12,0.75)$
Data Point: $(24,0.75)$
Data Point: $(24.1,1)$
100psf-25 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 8^{\circ}-10^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.444)$
Data Point: $(10,0.444)$
Data Point: $(10.1,1)$
TQs 100-25 ${ }^{\circ}$ (A-Bed $8^{\circ}-10^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.625)$
Data Point: $(10,0.625)$
Data Point: (10.1, 1)

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-134	1,897
Point 2	-102	1,913
Point 3	-92	1,913
Point 4	-35	1,940
Point 5	-7	1,940
Point 6	14	1,953
Point 7	106	1,951
Point 8	232	1,953
Point 9	356	1,957

2-Translational

Point 10	430	1,956
Point 11	444	1,961
Point 12	477	1,961
Point 13	523	1,961
Point 14	556	1,977
Point 15	586	1,977
Point 16	632	2,002
Point 17	682	2,001
Point 18	718	2,000
Point 19	810	1,998
Point 20	810	1,975
Point 21	-200	1,885
Point 22	-200	1,718
Point 23	810	1,901
Point 24	-200	1,892
Point 25	353	1,930
Point 26	354	1,939
Point 27	810	1,969
Point 28	811	1,703
Point 29	-200	1,703

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Tmc $100-25^{\circ}\left(\mathrm{A}\right.$-Bed $\left.12^{\circ}-24^{\circ}\right)$	$22,23,27,25,21$	$1.1817 \mathrm{e}+005$
Region 2	TQs $100-25^{\circ}\left(\mathrm{A}-\right.$ Bed $\left.0^{\circ}-1^{\circ}\right)$	$24,21,25,26,9,8,7,6,5,4,3,2,1$	17,412
Region 3	TQs $100-25^{\circ}\left(\mathrm{A}\right.$-Bed $\left.8^{\circ}-10^{\circ}\right)$	$25,27,19,18,17,16,15,14,13,12,11,10,9,26$	13,833

$\begin{aligned} & \text { Region } \\ & 4 \end{aligned}$	$\begin{aligned} & \text { Tmc 150-17 }{ }^{\circ} \text { (A-Bed } 12^{\circ} \\ & \left.-24^{\circ}\right) \end{aligned}$	22,23,28,29	$1.0766 \mathrm{e}+005$

Current Slip Surface

Slip Surface: 82,576
Fof S : 1.42
Volume: $1,528.6087 \mathrm{ft}^{3}$
Weight: $183,433.04 \mathrm{lbs}$
Resisting Force: $102,236.95 \mathrm{lbs}$
Activating Force: 71,915.356 lbs
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 10 slip surfaces
Exit: (-131.15023, 1,898.4249) ft
Entry: $(-23.7,1,940) \mathrm{ft}$
Radius: 61.907579 ft
Center: $(-89.489932,1,950.3938) \mathrm{ft}$

Slip Slices
X (ft) $\mathrm{Y}(\mathrm{ft})$ PWP (psf) Base Normal Stress (psf) Frictional Strength (psf) Cohesive Strength (psf) Slice 1 -129.32834 $1,898.4541$ 0 104.1289 48.556104 99.9 Slice 2 -125.68456 $1,898.5127$ 0 314.62741 146.71317 99.9 Slice 3 -122.04078 $1,898.5712$ 0 525.12593 244.87024 99.9 Slice 4 -118.397 $1,898.6297$ 0 735.62444 343.02731 99.9 Slice 5 -114.75322 $1,898.6882$ 0 946.12295 441.18438 99.9 Slice 6 -111.10945 $1,898.7467$ 0 $1,156.6215$ 539.34145 99.9 Slice 7 -107.46567 $1,898.8052$ 0 $1,367.12$ 637.49852 99.9 Slice 8 -103.82189 $1,898.8637$ 0 $1,577.6185$ 735.65559 99.9 Slice 9 -100.33333 $1,898.9198$ 0 $1,679.6729$ 783.24432 99.9 Slice 10 -97 $1,898.9733$ 0 $1,673.2831$ 780.26472 99.9 Slice 11 -93.666667 $1,899.0268$ 0 $1,666.8933$ 777.28513 99.9 Slice 12 -90.2625 $1,899.0815$ 0 $1,758.6145$ 820.05539 99.9 Slice 13 -86.7875 $1,899.1373$ 0 $1,948.4465$ 908.57551 99.9 -83.3125 $1,899.1931$ 0 $2,138.2785$ 997.09563 99.9

Slice 14						
Slice 15	-79.8375	$1,899.2489$	0	$2,328.1105$	$1,085.6158$	99.9
Slice 16	-76.3625	$1,899.3047$	0	$2,517.9425$	$1,174.1359$	99.9
Slice 17	-72.8875	$1,899.3605$	0	$2,707.7745$	$1,262.656$	99.9
Slice 18	-69.4125	$1,899.4163$	0	$2,897.6065$	$1,351.1761$	99.9
Slice 19	-65.9375	$1,899.4721$	0	$3,087.4386$	$1,439.6962$	99.9
Slice 20	-62.375	$1,901.325$	0	$1,841.9307$	$1,545.5634$	225
Slice 21	-58.725	$1,904.975$	0	$1,696.8622$	$1,423.8365$	225
Slice 22	-55.075	$1,908.625$	0	$1,551.7938$	$1,302.1096$	225
Slice 23	-51.425	$1,912.275$	0	$1,406.7253$	$1,180.3827$	225
Slice 24	-47.775	$1,915.925$	0	$1,261.6569$	$1,058.6558$	225
Slice 25	-44.125	$1,919.575$	0	$1,116.5884$	936.92891	225
Slice 26	-40.475	$1,923.225$	0	971.51994	815.20202	225
Slice 27	-36.825	$1,926.875$	0	826.45148	693.47513	225
Slice 28	-33.116667	$1,930.5833$	0	611.69717	513.27487	225
Slice 29	-29.35	$1,934.35$	0	327.25701	274.60124	225
Slice 30	-25.583333	$1,938.1167$	0	42.816852	35.927605	225

1 - Circular Mode of Failure

Reporenad

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 16
Date: 3/25/2016
Time: 3:10:06 PM
Tool Version: 8.15.1.11777
File Name: Section 19 SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 19-19 results\Latest Update 3-25-16\}
Last Solved Date: 3/25/2016
Last Solved Time: 3:12:52 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-7^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-7^{\circ}\right)$
C-Anisotropic Strength Fn .: 150 psf- $17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-7^{\circ}\right)$
Phi-B: 0°
Shear Layer
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 150 psf
Phi': 11
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Tmc 100-25 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40
Phi-Anisotropic Strength Fn.: Tmc 100 psf- $25^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
C-Anisotropic Strength Fn.: $100 \mathrm{psf}\left(\mathrm{A}-\mathrm{BedO} 0^{\circ}-5^{\circ}\right)$
Phi-B: 0
Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}$ (A-Bed0 ${ }^{\circ}-5^{\circ}$)
C-Anisotropic Strength Fn.: 150psf-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{BedO}^{\circ}-5^{\circ}\right)$
Phi-B: 0°

1 - Circular Mode of Failure

Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-13^{\circ}\right)$
C-Anisotropic Strength Fn.: 100psf-25 (A-Bed $6^{\circ}-13^{\circ}$)
Phi-B: 0°

Slip Surface Entry and Exit

Left Projection: Range
Left-Zone Left Coordinate: ($(-143,1,955.5472) \mathrm{ft}$
Left-Zone Right Coordinate: $(117,2,000) \mathrm{ft}$
Left-Zone Increment: 50
Right Projection: Range
Right-Zone Left Coordinate: $(144,2,007.5862) \mathrm{ft}$
Right-Zone Right Coordinate: $(446.0769,2,094.1331) \mathrm{ft}$
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: $(-201,1,955) \mathrm{ft}$
Right Coordinate: $(810,2,090) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

150psf-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}{ }^{\circ} 7^{\circ}\right)$

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: $(6,0.75)$
Data Point: $(7,0.75)$
Data Point: $(7.1,1)$
TQs $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-\mathbf{7}^{\circ}\right)$

1 - Circular Mode of Failure

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: $(6,0.425)$
Data Point: $(7,0.425)$
Data Point: $(7.1,1)$
TQs $100-25^{\circ}$ (A-Bed $6^{\circ}-13^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: $(6,0.625)$
Data Point: $(13,0.625)$
Data Point: $(13.1,1)$
100 psf (A-Bed0응 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.5
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.5)$
Data Point: $(5,0.5)$
Data Point: $(5.1,1)$
Tmc 100psf- $25^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.625
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.625)$
Data Point: $(5,0.625)$
Data Point: $(5.1,1)$

150psf- 17° (A-Bed0 ${ }^{\circ}-5^{\circ}$)

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.75
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(-0.9,1)$
Data Point: ($0,0.75$)
Data Point: $(5,0.75)$
Data Point: $(5.1,1)$
Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.425
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.425)$
Data Point: (5, 0.425)
Data Point: $(5.1,1)$
$100 \mathrm{psf}-25^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-13^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: $(6,0.444)$
Data Point: $(13,0.444)$
Data Point: $(13.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	59	1,960
Point 2	11	1,957
Point 3	31	1,968
Point 4	45	1,976
Point 5	69	1,976
Point 6	125	2,004
Point 7	136	2,004

Point 8	194	2,030
Point 9	205	2,030
Point 10	259	2,057
Point 11	333	2,057
Point 12	550	2,091
Point 13	603	2,090
Point 14	715	2,088
Point 15	810	2,090
Point 16	810	2,016
Point 17	642	2,006
Point 18	466	1,993
Point 19	312	1,983
Point 20	-201	1,955
Point 21	810	1,803
Point 22	-200	1,803
Point 23	-200.75	1,920
Point 24	810	1,990
Point 25	810	2,087
Point 26	810	2,085
Point 27	654	$2,089.0893$
Point 28	629	2,089
Point 29	88	1,956
Point 30	138	1,956
Point 31	358	2,067

file:///G:/SLOPE\%20RESULTS/Section\%2019-19\%20results/Latest\%20Update\%203-25-... 3/25/2016

Point 32	82.1967	$1,962.1088$
Point 33	167	1,970
Point 34	271	2,023
Point 35	273	2,024
Point 36	414	2,095
Point 37	316	$2,045.9574$
Point 38	356	2,046
Point 39	451	2,094
Point 40	374	2,055
Point 41	380	2,058

Regions

	Material	Points	Area (ft^{2})
Region 1	Tmc 100-25 ${ }^{\circ}$ (A-Bed0 ${ }^{\circ} 5^{\circ}$)	20,23,24,16,17,18,19,33,30,29,32,1,2	26,270
Region 2	Tmc 150-170 (A -Bed0 ${ }^{\circ} 5^{\circ}$)	23,22,21,24	1.5359e+005
Region 3	TQs 150-17 ${ }^{(}$(A -Bed6 ${ }^{\circ} \mathrm{7}^{\circ}$)	19,18,17,16,26,34,33	32,238
Region 4	Shear Layer	26,25,35,34	744.5
Region 5	TQs 150-17 ${ }^{\circ}$ (A - $\mathrm{Bed6}^{\circ} \mathrm{7}^{\circ}$)	15,14,27,40,38,37,35,25	8,477.5
Region 6	TQs 150-17 ${ }^{(}$($\mathrm{CBed6}{ }^{\circ} \mathrm{7}^{\circ}$)	13,12,39,41,28	3,375.5
Region 7	Shear Layer	27,28,41,40	694.11
Region 8	TQs 100-25 ${ }^{\circ}$ (A-Bed $6^{\circ}-13^{\circ}$)	2,1,32,5,4,3	769.03
Region 9	Fill	5,32,29,30,33,34,35,37,31,11,10,9,8,7,6	9,276.8
Region 10	Fill	37,38,40,41,39,36,31	1,921.5

Current Slip Surface

Slip Surface: 73,962
Fof S: 1.95
Volume: $4,985.6137 \mathrm{ft}^{3}$
Volume: $4,985.6137 \mathrm{ft}^{3}$
Weight: $598,273.65 \mathrm{lbs}$
Weight: $598,273.65 \mathrm{lbs}$
Resisting Moment: $1.7198055 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
Resisting Moment: $1.7198055 \mathrm{e}+008 \mathrm{lb}$
Activating Moment: $88,332,379 \mathrm{lbs}-\mathrm{ft}$
Activating Moment: $88,332,379 \mathrm{lbs}$-ft
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 300 slip surfaces
Exit: $(11.062112,1,957.0342) \mathrm{ft}$
Entry: $(274.42074,2,057) \mathrm{ft}$
://G:/SLOPE\%20RESULTS/Section\%2019-19\%20results/Latest\%20Update\%203-25-... 3/25/2016

1 - Circular Mode of Failure
Page 8 of 9

Radius: 425.87562 ft
Center: $(0.11326597,2,382.769) \mathrm{ft}$

Slip Slices						
	X (ft)	Y (ft)	$\begin{aligned} & \text { PWP } \\ & \text { (psf) } \end{aligned}$	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
$\begin{aligned} & \text { Slice } \\ & 1 \\ & \hline \end{aligned}$	11.485152	1,957.0455	0	23.214728	19.47947	225
$\begin{aligned} & \text { Slice } \\ & 2 \\ & \hline \end{aligned}$	16.681144	1,957.2426	0	340.67392	158.85886	100
$\begin{aligned} & \text { Slice } \\ & 3 \end{aligned}$	26.227048	1,957.7217	0	901.97821	420.59934	100
$\begin{aligned} & \text { Slice } \\ & 4 \end{aligned}$	36.208551	1,958.458	0	1,467.9654	684.52352	100
$\begin{aligned} & \text { Slice } \\ & 5 \end{aligned}$	43.208551	1,959.0833	0	1,815.9215	1,523.7391	225
Slice 6	49	1,959.7277	0	1,894.3848	883.36615	99.9
$\begin{aligned} & \text { Slice } \\ & 7 \end{aligned}$	57	1,960.7291	0	1,768.574	824.69962	99.9
Slice 8	65	1,961.885	0	1,625.9435	758.18992	99.9
Slice 9	74.487111	1,963.4749	0	1,748.9389	815.54359	99.9
$\begin{aligned} & \hline \text { Slice } \\ & 10 \\ & \hline \end{aligned}$	84.476799	1,965.3583	0	2,047.0582	1,329.3752	200
Slice 11	93.481955	1,967.2801	0	2,318.6769	1,505.7664	200
$\begin{aligned} & \text { Slice } \\ & 12 \end{aligned}$	102.48711	1,969.407	0	2,563.4837	1,664.7458	200
Slice 13	111.49227	1,971.7423	0	2,781.578	1,806.3779	200
Slice 14	120.49742	1,974.2893	0	2,973.0171	1,930.6999	200
$\begin{aligned} & \hline \text { Slice } \\ & 15 \\ & \hline \end{aligned}$	130.5	1,977.3853	0	2,854.8839	1,853.9833	200
$\begin{aligned} & \text { Slice } \\ & 16 \end{aligned}$	140.14286	1,980.5968	0	2,684.1928	1,743.1352	200
$\begin{aligned} & \text { Slice } \\ & 17 \end{aligned}$	148.42857	1,983.5785	0	2,741.7028	1,780.4826	200
$\begin{aligned} & \text { Slice } \\ & 18 \\ & \hline \end{aligned}$	156.71429	1,986.756	0	2,777.1612	1,803.5096	200
$\begin{aligned} & \text { Slice } \\ & 19 \\ & \hline \end{aligned}$	165	1,990.134	0	2,790.4633	1,812.148	200
$\begin{aligned} & \text { Slice } \\ & 20 \end{aligned}$	173.28571	1,993.7179	0	2,781.4751	1,806.311	200
$\begin{aligned} & \hline \text { Slice } \\ & 21 \\ & \hline \end{aligned}$	181.57143	1,997.5132	0	2,750.0323	1,785.8919	200

file:///G:/SLOPE\%20RESULTS/Section\%2019-19\%20results/Latest\%20Update\%203-25-... 3/25/2016

1 - Circular	ode of Failu						Page
Slice 22	189.85714	2,001.5265	0	2,695.9395	1,750.7636	200	
$\begin{aligned} & \text { Slice } \\ & 23 \end{aligned}$	199.5	2,006.5028	0	2,350.3947	1,526.3642	200	
$\begin{aligned} & \text { Slice } \\ & 24 \\ & \hline \end{aligned}$	209.5	2,011.9584	0	2,000.7209	1,299.2834	200	
$\begin{aligned} & \text { Slice } \\ & 25 \end{aligned}$	218.5	2,017.1876	0	1,906.7696	1,238.2706	200	
$\begin{aligned} & \text { Slice } \\ & 26 \end{aligned}$	227.5	2,022.7176	0	1,783.8154	1,158.4232	200	
$\begin{aligned} & \text { Slice } \\ & 27 \\ & \hline \end{aligned}$	236.5	2,028.5627	0	1,631.3352	1,059.4015	200	
$\begin{aligned} & \text { Slice } \\ & 28 \\ & \hline \end{aligned}$	245.5	2,034.7387	0	1,448.7448	940.82588	200	
$\begin{aligned} & \text { Slice } \\ & 29 \end{aligned}$	254.5	2,041.2636	0	1,235.3954	802.27518	200	
$\begin{aligned} & \text { Slice } \\ & 30 \end{aligned}$	262.85519	2,047.6381	0	827.0096	537.06631	200	
$\begin{aligned} & \hline \text { Slice } \\ & 31 \\ & \hline \end{aligned}$	270.56556	2,053.8303	0	232.37144	150.90378	200	

file:///G:/SLOPE\%20RESULTS/Section\%2019-19\%20results/Latest\%20Update\%203-25-... 3/25/2016

Section 19 SSA for Skyline Ranch.gsz

1 - Circular Mode of Failure Seismic

Report generated using Geostudio 2012. Copyright © 1991-2015 GEO-SOPE International Ltd

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 16
Date: 3/25/2016
Time: 3:10:06 PM
Tool Version: 8.15.1.11777
File Name: Section 19 SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 19-19 results\Latest Update 3-25-16\}
Last Solved Date: 3/25/2016
Last Solved Time: 3:14:40 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pc
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure Seismic
Kind: SLOPE/W
Parent: 1 - Circular Mode of Failure
Method: Bishop
Settings
PWP Conditions Source: (none)
Initial Slip Surface Source: Parent Analysis
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Critical Slip Surfaces from Other
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No

Tension Crack
Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constan
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-7^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40
Phi-Anisotropic Strength Fn.: TQs $150-17^{\circ}$ (A-Bed6 $6^{\circ}-7^{\circ}$
C-Anisotropic Strength Fn .: 150 psf- $1^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}-7^{\circ}\right)$
Phi-B: 0°
Shear Layer
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 150 psf
Phi': $11{ }^{\circ}$
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33
Phi-B: 0°
Tmc 100-25 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100psf-25 ${ }^{\circ}$ (A-Bed0 ${ }^{\circ}-5^{\circ}$)
C-Anisotropic Strength Fn.: 100 psf (A-BedO ${ }^{\circ}-5^{\circ}$)
Phi-B: 0°
Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}-5^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{BedO}^{\circ}-5^{\circ}\right)$

1 - Circular Mode of Failure Seismic

Phi-B: 0°
TQs $\mathbf{1 0 0 - 2 5 ^ { \circ }}$ (A-Bed $6^{\circ}-13^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs 100-25 (A-Bed $6^{\circ}-13^{\circ}$)
C-Anisotropic Strength Fn.: 100psf-25 (A-Bed $6^{\circ}-13^{\circ}$)
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-201,1,955) \mathrm{ft}$
Right Coordinate: $(810,2,090) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

150psf- 17° (A-Bed6 ${ }^{\circ}-7^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: $(6,0.75)$
Data Point: $(7,0.75)$
Data Point: $(7.1,1)$
TQs 150-17 ${ }^{\circ}$ (A-Bed6 $6^{\circ}-\mathbf{7}^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: ($6,0.425$)
Data Point: (7, 0.425)

1 - Circular Mode of Failure Seismic

TQs 100-25 ${ }^{\circ}$ (A-Bed $6^{\circ}-13^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \% Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: $(6,0.625)$
Data Point: $(13,0.625)$
Data Point: $(13.1,1)$

100 psf (A-Bedo ${ }^{\circ}-5^{\circ}$)

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%
Y-Intercept: 0.5
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: ($-0.9,1$
Data Point: $(0,0.5)$
Data Point: $(5,0.5)$
Data Point: $(5.1,1)$
Tmc 100psf- 25° (A-Bed0 ${ }^{\circ}-5^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.625
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: (-90, 1)
Data Point: $(-0.9,1)$
Data Point: $(0,0.625)$
Data Point: ($5,0.625$)
Data Point: $(5.1,1)$
150psf-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}-5^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.75
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: (-90, 1)
Data Point: (-0.9, 1

Data Point: $(0,0.75)$
 Data Point: $(5,0.75)$
 Data Point: $(5.1,1)$

Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.425
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(-0.9,1)$
Data Point: $(0,0.425)$
Data Point: (5, 0.425)
Data Point: (5.1, 1)
$100 p s f-25^{\circ}\left(\right.$ A-Bed $\left.6^{\circ}-13^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: $(6,0.444)$
Data Point: (13, 0.444)
Data Point: $(13.1,1)$

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	59	1,960
Point 2	11	1,957
Point 3	31	1,968
Point 4	45	1,976
Point 5	69	1,976
Point 6	125	2,004
Point 7	136	2,004
Point 8	194	2,030
Point 9	205	2,030
Point 10	259	2,057
Point 11	333	2,057
Point 12	550	2,091
Point 13	603	2,090
Point 14	715	2,088
Point 15	810	2,090

Point 16	810	2,016
Point 17	642	2,006
Point 18	466	1,993
Point 19	312	1,983
Point 20	-201	1,955
Point 21	810	1,803
Point 22	-200	1,803
Point 23	-200.75	1,920
Point 24	810	1,990
Point 25	810	2,087
Point 26	810	2,085
Point 27	654	$2,089.0893$
Point 28	629	2,089
Point 29	88	1,956
Point 30	138	1,956
Point 31	358	2,067
Point 32	82.1967	$1,962.1088$
Point 33	167	1,970
Point 34	271	2,023
Point 35	273	2,024
Point 36	414	2,095
Point 37	316	$2,045.9574$
Point 38	356	2,046
Point 39	451	2,094

file:///G:/SLOPE\%20RESULTS/Section\%2019-19\%20results/Latest\%20Update\%203-25-... 3/25/2016

Point 40	374	2,055
Point 41	380	2,058

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Tmc $100-25^{\circ}\left(\mathrm{A}-\right.$ Bed0 $\left.0^{\circ}-5^{\circ}\right)$	$20,23,24,16,17,18,19,33,30,29,32,1,2$	26,270
Region 2	Tmc $150-17^{\circ}\left(\mathrm{A}\right.$-BedO $\left.0^{\circ}-5^{\circ}\right)$	$23,22,21,24$	$1.5359 \mathrm{e}+005$
Region 3	TQs $150-17^{\circ}\left(\mathrm{A}\right.$-Bed6 $\left.6^{\circ}-7^{\circ}\right)$	$19,18,17,16,26,34,33$	32,238
Region 4	Shear Layer	$26,25,35,34$	744.5
Region 5	TQs 150-17 $\left(\mathrm{A}\right.$-Bed6 $\left.6^{\circ}-7^{\circ}\right)$	$15,14,27,40,38,37,35,25$	$8,477.5$
Region 6	TQs 150-17 $\left(\mathrm{A}\right.$-Bed6 $\left.6^{\circ}-7^{\circ}\right)$	$13,12,39,41,28$	$3,375.5$
Region 7	Shear Layer	$27,28,41,40$	694.11
Region 8	TQs 100-25 $\left(\mathrm{A}\right.$-Bed $\left.6^{\circ}-13^{\circ}\right)$	$2,1,32,5,4,3$	769.03
Region 9	Fill	$5,32,29,30,33,34,35,37,31,11,10,9,8,7,6$	$9,276.8$
Region 10	Fill	$37,38,40,41,39,36,31$	$1,921.5$

Current Slip Surface
Slip Surface:
Fof $\mathrm{S}: 1.33$
Volume: $4,985.6138 \mathrm{ft}^{3}$
Weight: 598,273.65 lbs
Resisting Moment: $1.635034 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
Activating Moment: $1.2270073 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
F of S Rank (Analysis): 1 of 1 slip surfaces
F of S Rank (Query): 1 of 1 slip surfaces
Exit: (11.062112, 1,957.0342) ft
Entry: $(274.42074,2,057)$ ft
Radius: 425.87562 ft
Center: $(0.11326597,2,382.769) \mathrm{ft}$
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	11.485152	$1,957.0455$	0	21.700369	18.208771	225
Slice 2	16.681144	$1,957.2426$	0	338.32928	157.76554	100
Slice 3	26.227048	$1,957.7217$	0	894.59485	417.15643	100
Slice 4	36.208551	$1,958.458$	0	$1,452.6829$	677.39714	100
Slice 5	43.208551	$1,959.0833$	0	$1,776.4992$	$1,490.6599$	225

Slice 6	49	$1,959.7277$	0	$1,868.6313$	871.35709	99.9
Slice 7	57	$1,960.7291$	0	$1,740.5085$	811.61246	99.9
Slice 8	65	$1,961.885$	0	$1,596.3436$	744.38722	99.9
Slice 9	74.487111	$1,963.4749$	0	$1,712.8834$	798.73067	99.9
Slice 10	84.476799	$1,965.3583$	0	$1,980.6949$	$1,286.2783$	200
Slice 11	93.481955	$1,967.2801$	0	$2,237.1954$	$1,452.8517$	200
Slice 12	102.48711	$1,969.407$	0	$2,466.2917$	$1,601.6286$	200
Slice 13	111.49227	$1,971.7423$	0	$2,668.3053$	$1,732.8177$	200
Slice 14	120.49742	$1,974.2893$	0	$2,843.5097$	$1,846.5968$	200
Slice 15	130.5	$1,977.3853$	0	$2,720.1762$	$1,766.5031$	200
Slice 16	140.14286	$1,980.5968$	0	$2,547.7601$	$1,654.5347$	200
Slice 17	148.42857	$1,983.5785$	0	$2,594.7472$	$1,685.0485$	200
Slice 18	156.71429	$1,986.756$	0	$2,620.4747$	$1,701.7561$	200
Slice 19	165	$1,990.134$	0	$2,625.0033$	$1,704.697$	200
Slice 20	173.28571	$1,993.7179$	0	$2,608.3675$	$1,693.8937$	200
Slice 21	181.57143	$1,997.5132$	0	$2,570.5769$	$1,669.3522$	200
Slice 22	189.85714	$2,001.5265$	0	$2,511.6151$	$1,631.0619$	200
Slice 23	199.5	$2,006.5028$	0	$2,178.8795$	$1,414.9809$	200
Slice 24	209.5	$2,011.9584$	0	$1,844.0994$	$1,197.5722$	200
Slice 25	218.5	$2,017.1876$	0	$1,749.7803$	$1,136.3206$	200
Slice 26	227.5	$2,022.7176$	0	$1,629.0525$	$1,057.9191$	200
Slice 27	236.5	$2,028.5627$	0	$1,481.7076$	962.23216	200
Slice 28	245.5	$2,034.7387$	0	$1,307.5028$	849.10223	200
Slice 29	254.5	$2,041.2636$	0	$1,106.1616$	718.34975	200

file:///G:/SLOPE\%20RESULTS/Section\%2019-19\%20results/Latest\%20Update\%203-25-... 3/25/2016

1 - Circular Mode of Failure Seismic Page 9 of 9

Slice 30	262.85519	$2,047.6381$	0	728.36017	473.00262	200
Slice 31	270.56556	$2,053.8303$	0	183.77153	119.34263	200

Section 19 SSA for Skyline Ranch.gsz

2 - Translational Below Key
 Report generated using Geostudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 16
Date: 3/25/2016
Time: 3:10:06 PM
Tool Version: 8.15.1.11777
File Name: Section 19 SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 19-19 results\Latest Update 3-25-16\}
Last Solved Date: 3/25/2016
Last Solved Time: 3:14:40 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational Below Key
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-7^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs 150-17 ${ }^{\circ}\left(\mathrm{A}-\right.$ Bed $\left.6^{\circ}-7^{\circ}\right)$
C-Anisotropic Strength Fn.: 150psf-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}-7^{\circ}\right)$
Phi-B: 0°
Shear Layer
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 150 psf
Phi': 11°
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Tmc 100-25 ${ }^{\circ}$ (A-Bed0 $0^{\circ}-5^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100 psf- $25^{\circ}\left(\mathrm{A}-\mathrm{Bed0} 0^{\circ}-5^{\circ}\right)$
C-Anisotropic Strength Fn.: $100 \mathrm{psf}\left(\mathrm{A}-\mathrm{BedO} 0^{\circ}-5^{\circ}\right)$
Phi-B: 0
Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}-5^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}$ (A-Bed0 $0^{\circ}-5^{\circ}$)
C-Anisotropic Strength Fn.: 150 psf- $17^{\circ}\left(\mathrm{A}-\mathrm{BedO} 0^{\circ}-5^{\circ}\right)$

Phi-B: 0°
TQs 100-25 ${ }^{\circ}$ (A-Bed $6^{\circ}-13^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs 100-25 (A-Bed $6^{\circ}-13^{\circ}$)
C-Anisotropic Strength Fn.: 100psf-25 (A-Bed $6^{\circ}-13^{\circ}$)
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-201,1,955) \mathrm{ft}$
Right Coordinate: $(810,2,090) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: $(66,1,973) \mathrm{ft}$
Lower Left: $(68,1,898) \mathrm{ft}$
Lower Right: ($276,1,938$) ft
X Increments: 10
Y Increments: 10
Starting Angle: 135
Ending Angle: 180
Angle Increments:
Right Grid
Upper Left: $(311,2,024) \mathrm{ft}$
Lower Left: $(332,1,933) \mathrm{ft}$
Lower Right: $(460,1,948) \mathrm{ft}$
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

150psf- $17^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}-7^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%

Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: $(6,0.75$
Data Point: $(7,0.75)$
Data Point: $(7.1,1)$
TQs $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-7^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: $(6,0.425)$
Data Point: (7, 0.425)
Data Point: $(7.1,1)$
TQs $\mathbf{1 0 0 - 2 5}$ (A-Bed $6^{\circ}-13^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: $(6,0.625)$
Data Point: $(13,0.625)$
Data Point: $(13.1,1)$

100 psf (A-Bed0o․․)

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.5
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.5)$
Data Point: $(5,0.5)$
Data Point: $(5.1,1)$
Tmc 100psf- 25° (A-Bed0 ${ }^{\circ}-5^{\circ}$)
Model: Spline Data Point Function

Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.625
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.625)$
Data Point: $(5,0.625)$
Data Point: $(5.1,1)$
$150 p s f-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.75
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(-0.9,1)$
Data Point: $(0,0.75)$
Data Point: (5, 0.75
Data Point: $(5.1,1)$
Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.425
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.425)$
Data Point: (5, 0.425)
Data Point: $(5.1,1)$
100psf-25 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-13^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: ($6,0.444$)
Data Point: $(13,0.444$
Data Point: $(13.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	59	1,960
Point 2	11	1,957
Point 3	31	1,968
Point 4	45	1,976
Point 5	69	1,976
Point 6	125	2,004
Point 7	136	2,004
Point 8	194	2,030
Point 9	205	2,030
Point 10	259	2,057
Point 11	333	2,057
Point 12	550	2,091
Point 13	603	2,090
Point 14	715	2,088
Point 15	810	2,090
Point 16	810	2,016
Point 17	642	2,006
Point 18	466	1,993
Point 19	312	1,983
Point 20	-201	1,955
Point 21	810	1,803
Point 22	-200	1,803
Point 23	-200.75	1,920
Point 24	810	1,990
Point 25	810	2,087
Point 26	810	2,085
Point 27	654	$2,089.0893$
Point 28	629	2,089
Point 29	88	1,956
Point 30	138	1,956
Point 31	358	2,067
Point 32	82.1967	$1,962.1088$
Point 33	167	1,970
Point 34	271	2,023
Point 35	273	2,024
Point 36	414	2,095
Point 37	316	$2,045.9574$
Point 38	356	2,046
Point 39	451	2,094
Point 40	374	2,055
Point 41	380	2,058

Regions

	Material	Points	Area (ft^{2})
Region 1	Tmc 100-25 ${ }^{\circ}$ (A -Bed0 ${ }^{\circ} 5^{\circ}$)	20,23,24,16,17,18,19,33,30,29,32,1,2	26,270
Region 2	Tmc 150-17 ${ }^{\circ}$ (A-Bed0 ${ }^{\circ} 5^{\circ}$)	23,22,21,24	$1.5359 \mathrm{e}+005$
Region 3	TQs 150-17 ${ }^{\circ}$ (A-Bed6 ${ }^{\circ} 7^{\circ}$)	19,18,17,16,26,34,33	32,238
Region 4	Shear Layer	26,25,35,34	744.5
Region 5	TQs 150-170 (A-Bed6 ${ }^{\circ} 7^{\circ}$)	15,14,27,40,38,37,35,25	8,477.5
Region 6	TQs 150-17 ${ }^{\circ}$ (A-Bed6 ${ }^{\circ} \mathbf{7}^{\circ}$)	13,12,39,41,28	3,375.5
Region 7	Shear Layer	27,28,41,40	694.11
Region 8	TQs 100-25 ${ }^{\circ}$ (A-Bed $6^{\circ}-13^{\circ}$)	2,1,32,5,4,3	769.03
Region 9	Fill	5,32,29,30,33,34,35,37,31,11,10,9,8,7,6	9,276.8
Region 10	Fill	37,38,40,41,39,36,31	1,921.5

Current Slip Surface

Slip Surface: 109,511
Fof $\mathrm{S}: 1.91$
Volume: $17,572.776 \mathrm{ft}^{3}$
Weight: $2,108,733.1 \mathrm{lbs}$
Resisting Force: 892,277.22 lbs
Activating Force: $466,878.37 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 300 slip surfaces
Exit: (70.045537, 1,976.5228) ft
Entry: (444.30533, 2,094.1809) ft
Radius: 190.20752 ft
Center: (229.43379, 2,123.5955) ft
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	78.522769	$1,973.0114$	0	$1,132.4216$	735.40318	200
Slice 2	93.333333	$1,970.2467$	0	$2,055.832$	$1,335.0729$	200
Slice 3	106	$1,971.7402$	0	$2,614.2742$	$1,697.7295$	200
Slice 4	118.66667	$1,973.2337$	0	$3,172.7165$	$2,060.3862$	200
Slice 5	130.5	$1,974.629$	0	$3,377.1123$	$2,193.1224$	200
Slice 6	142.72551	$1,976.0704$	0	$3,558.6593$	$2,311.0204$	200
Slice 7	156.17653	$1,977.6564$	0	$4,071.4041$	$2,644.0007$	200
Slice 8	169.62755	$1,979.2424$	0	$4,584.1488$	$2,976.981$	200

Slice 9	183.07857	$1,980.8283$	0	$5,096.8935$	$3,309.9614$	200
Slice 10	191.90204	$1,981.8687$	0	$5,548.0244$	$1,696.2013$	168.75
Slice 11	199.5	$1,982.7645$	0	$5,553.279$	$1,697.8078$	168.75
Slice 12	211.75	$1,984.2089$	0	$5,780.6734$	$1,767.3292$	168.75
Slice 13	225.25	$1,985.8006$	0	$6,388.2225$	$1,953.0756$	168.75
Slice 14	238.75	$1,987.3924$	0	$6,995.7715$	$2,138.822$	168.75
Slice 15	252.25	$1,988.9841$	0	$7,603.3206$	$2,324.5684$	168.75
Slice 16	265	$1,990.4874$	0	$7,823.7713$	$2,391.9669$	168.75
Slice 17	272	$1,991.3128$	0	$7,726.5603$	$2,362.2465$	168.75
Slice 18	280.16667	$1,992.2757$	0	$7,613.1474$	$2,327.5727$	168.75
Slice 19	294.5	$1,993.9657$	0	$7,414.0962$	$2,266.7167$	168.75
Slice 20	308.83333	$1,995.6557$	0	$7,215.045$	$2,205.8606$	168.75
Slice 21	324.5	$1,997.5029$	0	$6,997.4774$	$2,139.3435$	168.75
Slice 22	338.75	$1,999.1831$	0	$7,070.4818$	$2,161.6632$	168.75
Slice 23	350.25	$2,000.539$	0	$7,452.5744$	$2,278.4807$	168.75
Slice 24	357	$2,001.3349$	0	$7,676.8462$	$2,347.0474$	168.75
Slice 25	366	$2,002.396$	0	$8,070.1007$	$2,467.2774$	168.75
Slice 26	377	$2,003.693$	0	$8,565.1407$	$2,618.6263$	168.75
Slice 27	380.65	$2,004.1234$	0	$8,729.4039$	$2,668.8466$	168.75
Slice 28	387.2948	$2,012.7615$	0	$4,980.3847$	$4,179.039$	225
Slice 29	399.2844	$2,029.8844$	0	$4,159.1546$	$3,489.9451$	225
Slice 30	405.68846	$2,039.0303$	0	$5,332.3913$	$1,036.5119$	150
Slice 31	410.04886	$2,045.2576$	0	$3,421.8405$	$2,871.2651$	225
Slice 32	417.43289	$2,055.8031$	0	$2,782.5531$	$2,334.8392$	225

2 - Translational Below Key
Page 9 of 9

Slice 33	421.77934	$2,062.0105$	0	$3,337.5479$	648.75359	150
Slice 34	431.55828	$2,075.9763$	0	$1,265.6468$	$1,062.0038$	225
Slice 35	442.3645	$2,091.4091$	0	127.77485	82.97796	200

Section 19 SSA for Skyline Ranch.gsz

2 - Translational Below Key Seismic
 Report generated using Geostudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 16
Date: 3/25/2016
Time: 3:10:06 PM
Tool Version: 8.15.1.11777
File Name: Section 19 SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 19-19 results\Latest Update 3-25-16\}
Last Solved Date: 3/25/2016
Last Solved Time: 3:14:40 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational Below Key Seismic
Kind: SLOPE/W
Parent: 2 - Translational Below Key
Method: Janbu
Settings
PWP Conditions Source: (none)
Initial Slip Surface Source: Parent Analysis
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Critical Slip Surfaces from Other
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: $1{ }^{\circ}$
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No

Tension Crack
Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constan
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-7^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40
Phi-Anisotropic Strength Fn.: TQs $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-7^{\circ}\right)$
C-Anisotropic Strength Fn.: 150psf-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}-7^{\circ}\right)$
Phi-B: 0°
Shear Layer
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 150 psf
Phi': $11{ }^{\circ}$
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33
Phi-B: 0°
Tmc 100-25 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100psf-25 ${ }^{\circ}$ (A-Bed0 ${ }^{\circ}-5^{\circ}$)
C-Anisotropic Strength Fn.: 100 psf (A-BedO ${ }^{\circ}-5^{\circ}$)
Phi-B: 0°
Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}-5^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{BedO}^{\circ}-5^{\circ}\right)$

2 - Translational Below Key Seismic

Phi-B: 0°
TQs $\mathbf{1 0 0 - 2 5 ^ { \circ }}$ (A-Bed $6^{\circ}-13^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs 100-25 (A-Bed $6^{\circ}-13^{\circ}$)
C-Anisotropic Strength Fn.: 100psf-25 (A-Bed $6^{\circ}-13^{\circ}$)
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-201,1,955) \mathrm{ft}$
Right Coordinate: ($810,2,090$) ft

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

150psf- 17° (A-Bed6 ${ }^{\circ}-7^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: $(6,0.75)$
Data Point: $(7,0.75)$
Data Point: $(7.1,1)$
TQs $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}{ }^{\circ} \mathbf{7}^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: ($6,0.425$)
Data Point: (7, 0.425)

2 - Translational Below Key Seismic

TQs 100-25 ${ }^{\circ}$ (A-Bed $6^{\circ}-13^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \% Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: $(6,0.625)$
Data Point: $(13,0.625)$
Data Point: $(13.1,1)$

100 psf (A-Bedo ${ }^{\circ}-5^{\circ}$)

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%
Y-Intercept: 0.5
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: ($-0.9,1$
Data Point: $(0,0.5)$
Data Point: $(5,0.5)$
Data Point: $(5.1,1)$
Tmc 100psf- 25° (A-Bed0 ${ }^{\circ}-5^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.625
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: (-90, 1)
Data Point: $(-0.9,1)$
Data Point: $(0,0.625)$ Data Point: ($5,0.625$) Data Point: $(5.1,1)$

150psf-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}-5^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.75
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: (-0.9, 1

Data Point: ($0,0.75$)
 Data Point: $(5,0.75)$
 Data Point: $(5.1,1)$

Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.425
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(-0.9,1)$
Data Point: $(0,0.425)$
Data Point: (5, 0.425)
Data Point: (5.1, 1)
$100 p s f-25^{\circ}\left(\right.$ A-Bed $\left.6^{\circ}-13^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: $(6,0.444)$
Data Point: (13, 0.444)
Data Point: $(13.1,1)$

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	59	1,960
Point 2	11	1,957
Point 3	31	1,968
Point 4	45	1,976
Point 5	69	1,976
Point 6	125	2,004
Point 7	136	2,004
Point 8	194	2,030
Point 9	205	2,030
Point 10	259	2,057
Point 11	333	2,057
Point 12	550	2,091
Point 13	603	2,090
Point 14	715	2,088
Point 15	810	2,090

Point 16	810	2,016
Point 17	642	2,006
Point 18	466	1,993
Point 19	312	1,983
Point 20	-201	1,955
Point 21	810	1,803
Point 22	-200	1,803
Point 23	-200.75	1,920
Point 24	810	1,990
Point 25	810	2,087
Point 26	810	2,085
Point 27	654	$2,089.0893$
Point 28	629	2,089
Point 29	88	1,956
Point 30	138	1,956
Point 31	358	2,067
Point 32	82.1967	$1,962.1088$
Point 33	167	1,970
Point 34	271	2,023
Point 35	273	2,024
Point 36	414	2,095
Point 37	316	$2,045.9574$
Point 38	356	2,046
Point 39	451	2,094

file:///G:/SLOPE\%20RESULTS/Section\%2019-19\%20results/Latest\%20Update\%203-25-... 3/25/2016

Point 40	374	2,055
Point 41	380	2,058

Regions

	Material	Points	Area (ft^{2})
Region 1	Tmc 100-25 ${ }^{\circ}$ (A -Bed0 ${ }^{\circ} 5^{\circ}$)	20,23,24,16,17,18,19,33,30,29,32,1,2	26,270
Region 2	Tmc 150-170 (A -Bed0 ${ }^{\circ}-5^{\circ}$)	23,22,21,24	$1.5359 \mathrm{e}+005$
Region 3	TQs 150-17 ${ }^{(A-B e d 6}{ }^{\circ} 7^{\circ}$)	19,18,17,16,26,34,33	32,238
Region 4	Shear Layer	26,25,35,34	744.5
Region 5	TQs 150-17 ${ }^{\text {(A-Bed6 }}{ }^{\circ} 7^{\circ}$)	15,14,27,40,38,37,35,25	8,477.5
Region 6	TQs 150-17 ${ }^{(A-B e d 6}{ }^{\circ}-7^{\circ}$)	13,12,39,41,28	3,375.5
Region 7	Shear Layer	27,28,41,40	694.11
Region 8	TQs 100-25 ${ }^{\circ}$ (A-Bed $6^{\circ}-13^{\circ}$)	2,1,32,5,4,3	769.03
Region 9	Fill	5,32,29,30,33,34,35,37,31,11,10,9,8,7,6	9,276.8
Region 10	Fill	37,38,40,41,39,36,31	1,921.5

Current Slip Surface

Slip Surface: 1
F of S : 1.18
Volume: $17,572.776 \mathrm{ft}^{3}$
Weight: $2,108,733.1 \mathrm{lbs}$
Resisting Force: $850,911.89 \mathrm{lbs}$
Activating Force: $723,551.56 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 1 slip surfaces
F of S Rank (Query): 1 of 1 slip surfaces
Exit: (70.045537, 1,976.5228) ft
Entry: (444.30533, 2,094.1809) ft
Radius: 190.20752 ft
Center: $(229.43379,2,123.5955) \mathrm{ft}$
Slip Slices

X (ft)	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)	
Slice 1	78.522769	$1,973.0114$	0	$1,296.8419$	842.17901	200
Slice 2	93.333333	$1,970.2467$	0	$2,000.202$	$1,298.9464$	200
Slice 3	106	$1,971.7402$	0	$2,545.5017$	$1,653.0681$	200
Slice 4	118.66667	$1,973.2337$	0	$3,090.8016$	$2,007.19$	200
Slice 5	130.5	$1,974.629$	0	$3,290.3871$	$2,136.8024$	200

Slice 6	142.72551	$1,976.0704$	0	$3,467.6616$	$2,251.9258$	200
Slice 7	156.17653	$1,977.6564$	0	$3,968.3394$	$2,577.0697$	200
Slice 8	169.62755	$1,979.2424$	0	$4,469.0171$	$2,902.2136$	200
Slice 9	183.07857	$1,980.8283$	0	$4,969.6949$	$3,227.3576$	200
Slice 10	191.90204	$1,981.8687$	0	$5,478.1816$	$1,674.8482$	168.75
Slice 11	199.5	$1,982.7645$	0	$5,483.3761$	$1,676.4363$	168.75
Slice 12	211.75	$1,984.2089$	0	$5,708.1669$	$1,745.1618$	168.75
Slice 13	225.25	$1,985.8006$	0	$6,308.7598$	$1,928.7814$	168.75
Slice 14	238.75	$1,987.3924$	0	$6,909.3526$	$2,112.4011$	168.75
Slice 15	252.25	$1,988.9841$	0	$7,509.9455$	$2,296.0207$	168.75
Slice 16	265	$1,990.4874$	0	$7,727.8721$	$2,362.6476$	168.75
Slice 17	272	$1,991.3128$	0	$7,631.7739$	$2,333.2674$	168.75
Slice 18	280.16667	$1,992.2757$	0	$7,519.6597$	$2,298.9907$	168.75
Slice 19	294.5	$1,993.9657$	0	$7,322.8875$	$2,238.8314$	168.75
Slice 20	308.83333	$1,995.6557$	0	$7,126.1154$	$2,178.6721$	168.75
Slice 21	324.5	$1,997.5029$	0	$6,911.0389$	$2,112.9166$	168.75
Slice 22	338.75	$1,999.1831$	0	$6,983.2075$	$2,134.9808$	168.75
Slice 23	350.25	$2,000.539$	0	$7,360.9253$	$2,250.4607$	168.75
Slice 24	357	$2,001.3349$	0	$7,582.629$	$2,318.2423$	168.75
Slice 25	366	$2,002.396$	0	$7,971.381$	$2,437.0957$	168.75
Slice 26	377	$2,003.693$	0	$8,460.7531$	$2,586.7118$	168.75
Slice 27	380.65	$2,004.1234$	0	$8,623.1354$	$2,636.3571$	168.75
Slice 28	387.2948	$2,012.7615$	0	$3,960.2784$	$3,323.0681$	225
Slice 29	399.2844	$2,029.8844$	0	$3,298.6628$	$2,767.9067$	225
	257					

file:///G:/SLOPE\%20RESULTS/Section\%2019-19\%20results/Latest\%20Update\%203-25-... 3/25/2016

2 - Translational Below Key Seismic
Page 9 of 9

Slice 30	405.68846	$2,039.0303$	0	$4,883.5655$	949.26896	150
Slice 31	410.04886	$2,045.2576$	0	$2,704.6534$	$2,269.4736$	225
Slice 32	417.43289	$2,055.8031$	0	$2,189.6181$	$1,837.3078$	225
Slice 33	421.77934	$2,062.0105$	0	$3,035.4$	590.022	150
Slice 34	431.55828	$2,075.9763$	0	967.53849	811.86119	225
Slice 35	442.3645	$2,091.4091$	0	53.789956	34.931606	200

3 - Translational Upper Clay
 merald

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 16
Date: 3/25/2016
Time: 3:19:32 PM
Tool Version: 8.15.1.11777
File Name: Section 19 SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 19-19 results\Latest Update 3-25-16\}
Last Solved Date: 3/25/2016
Last Solved Time: 3:19:54 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

3 - Translational Upper Clay
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constan Advanced

Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-7^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-7^{\circ}\right)$
C-Anisotropic Strength Fn .: 150 psf- $17^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}-7^{\circ}\right.$
Phi-B: 0°
Shear Layer
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 150 psf
Phi': 11°
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Tmc 100-25 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': $40{ }^{\circ}$
Phi-Anisotropic Strength Fn.: Tmc 100psf-25 (A-Bed0 $0^{\circ}-5^{\circ}$
C-Anisotropic Strength Fn.: $100 \mathrm{psf}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Phi-B: 0
Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}-5^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}$ (A-Bed0 $0^{\circ}-5^{\circ}$)
C-Anisotropic Strength Fn.: 150 psf- $17^{\circ}\left(\mathrm{A}-\mathrm{BedO} 0^{\circ}-5^{\circ}\right)$

Phi-B: 0°
TQs 100-25 ${ }^{\circ}$ (A-Bed $\left.6^{\circ}-13^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}\left(\right.$ A-Bed $\left.6^{\circ}-13^{\circ}\right)$
C-Anisotropic Strength Fn.: 100psf-25 (A-Bed $6^{\circ}-13^{\circ}$)
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-201,1,955) \mathrm{ft}$
Right Coordinate: $(810,2,090) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: $(268,2,056.1838) \mathrm{ft}$
Lower Left: ($270,2,035.5966$) ft
Lower Right: $(378,2,049) \mathrm{ft}$
X Increments: 10
Y Increments: 10
Starting Angle: $135{ }^{\circ}$
Ending Angle: 180°
Angle Increments:
Right Grid
Upper Left: $(379.3498,2,068) \mathrm{ft}$
Lower Left: $(381,2,050) \mathrm{ft}$
Lower Right: $(584,2,075) \mathrm{ft}$
X Increments: 10
Y Increments: 10
Starting Angle: 45
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

150psf- $-17^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}-7^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%

Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: $(6,0.75$
Data Point: $(7,0.75)$
Data Point: $(7.1,1)$
TQs $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-7^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: $(6,0.425)$
Data Point: (7, 0.425)
Data Point: $(7.1,1)$
TQs $\mathbf{1 0 0 - 2 5}$ (A-Bed $6^{\circ}-13^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: $(6,0.625)$
Data Point: $(13,0.625)$
Data Point: $(13.1,1)$
100 psf (A-Bed0o․ ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.5
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.5)$
Data Point: $(5,0.5)$
Data Point: $(5.1,1)$
Tmc 100psf-25 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Spline Data Point Function

Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.625
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.625)$
Data Point: $(5,0.625)$
Data Point: $(5.1,1)$
$150 p s f-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.75
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(-0.9,1)$
Data Point: $(0,0.75)$
Data Point: (5, 0.75
Data Point: $(5.1,1)$
Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.425
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.425)$
Data Point: (5, 0.425)
Data Point: $(5.1,1)$
100psf-25 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-13^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: ($6,0.444$)
Data Point: $(13,0.444$
Data Point: $(13.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	59	1,960
Point 2	11	1,957
Point 3	31	1,968
Point 4	45	1,976
Point 5	69	1,976
Point 6	125	2,004
Point 7	136	2,004
Point 8	194	2,030
Point 9	205	2,030
Point 10	259	2,057
Point 11	333	2,057
Point 12	550	2,091
Point 13	603	2,090
Point 14	715	2,088
Point 15	810	2,090
Point 16	810	2,016
Point 17	642	2,006
Point 18	466	1,993
Point 19	312	1,983
Point 20	-201	1,955
Point 21	810	1,803
Point 22	-200	1,803
Point 23	-200.75	1,920
Point 24	810	1,990
Point 25	810	2,087
Point 26	810	2,085
Point 27	654	$2,089.0893$
Point 28	629	2,089
Point 29	88	1,956
Point 30	138	1,956
Point 31	358	2,067
Point 32	82.1967	$1,962.1088$
Point 33	167	1,970
Point 34	271	2,023
Point 35	273	2,024
Point 36	414	2,095
Point 37	316	$2,045.9574$
Point 38	356	2,046
Point 39	451	2,094
Point 40	374	2,055
Point 41	380	2,058

Regions

	Material	Points	Area (ft^{2})
Region 1	Tmc 100-25 ${ }^{\circ}$ (A-Bed0 ${ }^{\circ} 5^{\circ}$)	20,23,24,16,17,18,19,33,30,29,32,1,2	26,270
Region 2	Tmc 150-170 (A -Bed0 ${ }^{\circ} 5^{\circ}$)	23,22,21,24	$1.5359 \mathrm{e}+005$
Region 3	TQs 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-7^{\circ}\right.$)	19,18,17,16,26,34,33	32,238
Region 4	Shear Layer	26,25,35,34	744.5
Region 5	TQs 150-170 (A-Bed6 ${ }^{\circ} 7^{\circ}$)	15,14,27,40,38,37,35,25	8,477.5
Region 6	TQs 150-17 ${ }^{\circ}$ (A-Bed6 ${ }^{\circ} 7^{\circ}$)	13,12,39,41,28	3,375.5
Region 7	Shear Layer	27,28,41,40	694.11
Region 8	TQs 100-25 ${ }^{\circ}$ (A-Bed 60-13 ${ }^{\circ}$)	2,1,32,5,4,3	769.03
Region 9	Fill	5,32,29,30,33,34,35,37,31,11,10,9,8,7,6	9,276.8
Region 10	Fill	37,38,40,41,39,36,31	1,921.5

Current Slip Surface

Slip Surface: 45,149
F of S: 1.73
Volume: $1,446.3483 \mathrm{ft}^{3}$
Weight: $173,561.79 \mathrm{lbs}$
Resisting Force: $84,158.986 \mathrm{lbs}$
Activating Force: $48,538.805 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 300 slip surfaces
Exit: (339.06665, 2,059.4267) ft
Entry: (425.14631, 2,094.6987) ft
Radius: 52.408887 ft
Center: (371.26663, 2,103.5168) ft
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	340.11149	$2,058.9939$	0	177.87364	115.51249	200
Slice 2	342.6207	$2,057.9545$	0	468.34829	304.14893	200
Slice 3	345.54944	$2,056.7414$	0	807.38839	524.32415	200
Slice 4	348.47817	$2,055.5283$	0	$1,146.4285$	744.49937	200
Slice 5	351.4069	$2,054.3152$	0	$1,485.4686$	964.67458	200
Slice 6	354.33563	$2,053.102$	0	$1,824.5087$	$1,184.8498$	200
Slice 7	356.9	$2,052.6722$	0	$1,553.8778$	$1,009.1$	200
Slice 8	359.43641	$2,053.0797$	0	$1,638.8191$	$1,064.2615$	200

Slice 9	362.30922	$2,053.5413$	0	$1,749.124$	$1,135.8944$	200
Slice 10	365.18204	$2,054.0029$	0	$1,859.4289$	$1,207.5272$	200
Slice 11	368.05485	$2,054.4645$	0	$1,969.7338$	$1,279.1601$	200
Slice 12	370.92767	$2,054.9261$	0	$2,080.0387$	$1,350.7929$	200
Slice 13	373.80048	$2,055.3877$	0	$2,190.3435$	$1,422.4257$	200
Slice 14	376.42767	$2,055.8098$	0	$2,391.2045$	464.80306	150
Slice 15	378.80922	$2,056.1924$	0	$2,486.4548$	483.31785	150
Slice 16	381.47428	$2,056.6206$	0	$2,593.0438$	504.03666	150
Slice 17	384.42284	$2,057.0944$	0	$2,710.9715$	526.95948	150
Slice 18	387.3714	$2,057.5681$	0	$2,828.8992$	549.8823	150
Slice 19	390.31996	$2,058.0419$	0	$2,946.8269$	572.80512	150
Slice 20	393.26852	$2,058.5156$	0	$3,064.7545$	595.72793	150
Slice 21	396.21708	$2,058.9894$	0	$3,182.6822$	618.65075	150
Slice 22	399.16564	$2,059.4631$	0	$3,300.6099$	641.57357	150
Slice 23	400.97346	$2,060.1763$	0	$2,819.1823$	547.99354	150
Slice 24	402.78183	$2,062.759$	0	$1,775.5906$	$1,489.8974$	225
Slice 25	405.73149	$2,066.9715$	0	$1,581.7606$	$1,327.2548$	225
Slice 26	408.68116	$2,071.1841$	0	$1,387.9307$	$1,164.6121$	225
Slice 27	412.078	$2,076.0353$	0	$1,297.1631$	842.38757	200
Slice 28	415.39329	$2,080.77$	0	999.75259	649.24692	200
Slice 29	418.17987	$2,084.7496$	0	683.33531	443.76314	200
Slice 30	420.96644	$2,088.7293$	0	366.91804	238.27936	200
Slice 31	423.75302	$2,092.7089$	0	50.500762	32.795578	200
	0,					

file:///G:/SLOPE\%20RESULTS/Section\%2019-19\%20results/Latest\%20Update\%203-25-... 3/25/2016

\section*{3 - Translational Upper Clay Seismic

Reporseration

Reporseration

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 16
Date: 3/25/2016
Time: 3:19:32 PM
Tool Version: 8.15.1.11777
File Name: Section 19 SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 19-19 results\Latest Update 3-25-16\}
Last Solved Date: 3/25/2016
Last Solved Time: 3:19:54 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: ps
Strength Units: psf
Unit Weight of Water: 62.4 pc
View: 2D
Element Thickness: 1

Analysis Settings

3 - Translational Upper Clay Seismic
Kind: SLOPE/W
Parent: 3 - Translational Upper Clay
Method: Janbu
Settings
PWP Conditions Source: (none)
Initial Slip Surface Source: Parent Analysis
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Critical Slip Surfaces from Other
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No

Tension Crack
Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constan
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-7^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40
Phi-Anisotropic Strength Fn.: TQs $150-17^{\circ}$ (A-Bed6 $6^{\circ}-7^{\circ}$
C-Anisotropic Strength Fn .: 150 psf- $1^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}-7^{\circ}\right)$
Phi-B: 0°
Shear Layer
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 150 psf
Phi': $11{ }^{\circ}$
Phi-B: 0
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33
Phi-B: 0°
Tmc 100-25 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100psf-25 ${ }^{\circ}$ (A-Bed0 ${ }^{\circ}-5^{\circ}$)
C-Anisotropic Strength Fn.: 100 psf (A-BedO ${ }^{\circ}-5^{\circ}$)
Phi-B: 0°
Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}-5^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{BedO}^{\circ}-5^{\circ}\right)$

3 - Translational Upper Clay Seismic

C-Anisotropic Strength Fn.: 150psf-17 ${ }^{\circ}$ (A-Bedo ${ }^{\circ}-5^{\circ}$ Phi-B: 0°

TQs 100-25 ${ }^{\circ}$ (A-Bed $6^{\circ}-13^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-13^{\circ}\right)$
C-Anisotropic Strength Fn.: 100psf-25 (A-Bed $6^{\circ}-13^{\circ}$)
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-201,1,955) \mathrm{ft}$
Right Coordinate: $(810,2,090) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

150psf- 17° (A-Bed6 ${ }^{\circ}-7^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: $(6,0.75)$
Data Point: $(7,0.75)$
Data Point: $(7.1,1)$
TQs $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-\mathbf{7}^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: ($6,0.425$)
Data Point: (7, 0.425)

3 - Translational Upper Clay Seismic

Data Point: $(7.1,1)$
TQs 100-25 ${ }^{\circ}$ (A-Bed $6^{\circ}-13^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: $(6,0.625)$
Data Point: $(13,0.625)$
Data Point: $(13.1,1)$

100 psf (A-Bedo ${ }^{\circ}-5^{\circ}$)

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \% Segment Curvature: 0%
Y-Intercept: 0.5
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.5)$
Data Point: $(5,0.5)$
Data Point: $(5.1,1)$
Tmc 100psf-25 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.625
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(-0.9,1)$
Data Point: $(0,0.625)$ Data Point: ($5,0.625$) Data Point: $(5.1,1)$

150psf-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
-Intercept: 0.75
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: $(-90,1)$
Data Point: (-0.9, 1

Data Point: $(0,0.75)$
 Data Point: $(5,0.75)$
 Data Point: $(5.1,1)$

Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.425
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(-0.9,1)$
Data Point: $(0,0.425)$
Data Point: (5, 0.425)
Data Point: $(5.1,1)$
100psf-25 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-13^{\circ}\right.$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: $(6,0.444)$
Data Point: (13, 0.444)
Data Point: $(13.1,1)$

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	59	1,960
Point 2	11	1,957
Point 3	31	1,968
Point 4	45	1,976
Point 5	69	1,976
Point 6	125	2,004
Point 7	136	2,004
Point 8	194	2,030
Point 9	205	2,030
Point 10	259	2,057
Point 11	333	2,057
Point 12	550	2,091
Point 13	603	2,090
Point 14	715	2,088
Point 15	810	2,090

Point 16	810	2,016
Point 17	642	2,006
Point 18	466	1,993
Point 19	312	1,983
Point 20	-201	1,955
Point 21	810	1,803
Point 22	-200	1,803
Point 23	-200.75	1,920
Point 24	810	1,990
Point 25	810	2,087
Point 26	810	2,085
Point 27	654	$2,089.0893$
Point 28	629	2,089
Point 29	88	1,956
Point 30	138	1,956
Point 31	358	2,067
Point 32	82.1967	$1,962.1088$
Point 33	167	1,970
Point 34	271	2,023
Point 35	273	2,024
Point 36	414	2,095
Point 37	316	$2,045.9574$
Point 38	356	2,046
Point 39	451	2,094

file:///G:/SLOPE\%20RESULTS/Section\%2019-19\%20results/Latest\%20Update\%203-25-... 3/25/2016

Point 40	374	2,055
Point 41	380	2,058

Regions

	Material	Points	Area (ft^{2})
Region 1	Tmc 100-25 ${ }^{\circ}$ (A-Bed0 ${ }^{\circ} 5^{\circ}$)	20,23,24,16,17,18,19,33,30,29,32,1,2	26,270
Region 2	Tmc 150-170 (A -Bed0 ${ }^{\circ}-5^{\circ}$)	23,22,21,24	$1.5359 \mathrm{e}+005$
Region 3	TQs 150-17 ${ }^{(A-B e d 6}{ }^{\circ} 7^{\circ}$)	19,18,17,16,26,34,33	32,238
Region 4	Shear Layer	26,25,35,34	744.5
Region 5	TQs 150-17 ${ }^{(A-B e d 6}{ }^{\circ}-7^{\circ}$)	15,14,27,40,38,37,35,25	8,477.5
Region 6	TQs 150-17 ${ }^{(A-B e d 6}{ }^{\circ} 7^{\circ}$)	13,12,39,41,28	3,375.5
Region 7	Shear Layer	27,28,41,40	694.11
Region 8	TQs 100-25 ${ }^{\circ}$ (A-Bed $6^{\circ}-13^{\circ}$)	2,1,32,5,4,3	769.03
Region 9	Fill	5,32,29,30,33,34,35,37,31,11,10,9,8,7,6	9,276.8
Region 10	Fill	37,38,40,41,39,36,31	1,921.5

Current Slip Surface
slip Surface:
Fof S : 1.21
Volume: $1,446.3483 \mathrm{ft}^{3}$
Weight: $173,561.79 \mathrm{lbs}$
Resisting Force: $81,242.323 \mathrm{lbs}$
Activating Force: $66,989.512 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 1 slip surfaces
F of S Rank (Query): 1 of 1 slip surfaces
Exit: (339.06665, 2,059.4267) ft
Entry: (425.14631, 2,094.6987) ft
Radius: 52.408887 ft
Center: (371.26663, 2,103.5168) ft
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	340.11149	$2,058.9939$	0	219.33856	142.44013	200
Slice 2	342.6207	$2,057.9545$	0	534.6041	347.17597	200
Slice 3	345.54944	$2,056.7414$	0	902.57992	586.14225	200
Slice 4	348.47817	$2,055.5283$	0	$1,270.5553$	825.10823	200
Slice 5	351.4069	$2,054.3152$	0	$1,638.5314$	$1,064.0747$	200

Slice 6	354.33563	$2,053.102$	0	$2,006.5072$	$1,303.041$	200
Slice 7	356.9	$2,052.6722$	0	$1,509.7522$	980.44452	200
Slice 8	359.43641	$2,053.0797$	0	$1,592.6802$	$1,034.2986$	200
Slice 9	362.30922	$2,053.5413$	0	$1,700.3708$	$1,104.2337$	200
Slice 10	365.18204	$2,054.0029$	0	$1,808.0615$	$1,174.1689$	200
Slice 11	368.05485	$2,054.4645$	0	$1,915.7521$	$1,244.104$	200
Slice 12	370.92767	$2,054.9261$	0	$2,023.4428$	$1,314.0391$	200
Slice 13	373.80048	$2,055.3877$	0	$2,131.1335$	$1,383.9742$	200
Slice 14	376.42767	$2,055.8098$	0	$2,367.4456$	460.18481	150
Slice 15	378.80922	$2,056.1924$	0	$2,461.9802$	478.56048	150
Slice 16	381.47428	$2,056.6206$	0	$2,567.7687$	499.12367	150
Slice 17	384.42284	$2,057.0944$	0	$2,684.8105$	521.8743	150
Slice 18	387.3714	$2,057.5681$	0	$2,801.8524$	544.62493	150
Slice 19	390.31996	$2,058.0419$	0	$2,918.8942$	567.37555	150
Slice 20	393.26852	$2,058.5156$	0	$3,035.936$	590.12618	150
Slice 21	396.21708	$2,058.9894$	0	$3,152.9779$	612.87681	150
Slice 22	399.16564	$2,059.4631$	0	$3,270.0197$	635.62744	150
Slice 23	400.97346	$2,060.1763$	0	$2,619.1381$	509.10888	150
Slice 24	402.78183	$2,062.759$	0	$1,472.0275$	$1,235.1778$	225
Slice 25	405.73149	$2,066.9715$	0	$1,306.9878$	$1,096.693$	225
Slice 26	408.68116	$2,071.1841$	0	$1,141.948$	958.20819	225
Slice 27	412.078	$2,076.0353$	0	$1,089.2551$	707.37052	200
Slice 28	415.39329	$2,080.77$	0	830.36721	539.24677	200
Slice 29	418.17987	$2,084.7496$	0	554.93442	360.37862	200

file:///G:/SLOPE\%20RESULTS/Section\%2019-19\%20results/Latest\%20Update\%203-25-... 3/25/2016

3 - Translational Upper Clay Seismic Page 9 of 9

Slice 30	420.96644	$2,088.7293$	0	279.50165	181.51049	200
Slice 31	423.75302	$2,092.7089$	0	4.0688543	2.6423449	200

Section 19 SSA for Skyline Ranch.gsz

Name: TQs $150-17^{\circ}\left(\right.$ A-Bed $\left.6^{\circ}-7^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs 150-17 ${ }^{\circ}$ (A-Bed6 $6^{\circ} 7^{\circ}$) C-Anisotropic Strength Fn.: 150 psf- $17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-7^{\circ}\right)$

Name: Shear Layer
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 150 psf
Phi': 11°
Name: Fill
Model: Mohr-Coulomb
Unit Weight: 120 pc
Cohesion': 200 psf
Phi': 33°
Name: Tmc $100-25^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100psf-25 ${ }^{\circ}$ (A-Bed0 $0^{\circ}-5^{\circ}$) C-Anisotropic Strength Fn.: $100 \mathrm{psf}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$

Name: Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': $40{ }^{\circ}$
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}$ (A-Bed0 $\left.0^{\circ}-5^{\circ}\right)$ C-Anisotropic Strength Fn.: 150 psf- $17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$

Name: TQs $100-25^{\circ}\left(\right.$ A-Bed $\left.6^{\circ}-13^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pc
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}$ (A-Bed $6^{\circ}-13^{\circ}$ C-Anisotropic Strength Fn.: 100psf-25 (A-Bed $6^{\circ}-13^{\circ}$)

4 - Translational Lower Clay
 Report ane

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 16
Date: 3/25/2016
Time: 3:10:06 PM
Tool Version: 8.15.1.11777
File Name: Section 19 SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 19-19 results\Latest Update 3-25-16\}
Last Solved Date: 3/25/2016
Last Solved Time: 3:14:06 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pc
View: 2D
Element Thickness: 1

Analysis Settings

4 - Translational Lower Clay
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constan Advanced

Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-7^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-7^{\circ}\right)$
C-Anisotropic Strength Fn.: 150psf-17 (A-Bed6 ${ }^{\circ}-7^{\circ}$
Phi-B: 0°
Shear Layer
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 150 psf
Phi': 11°
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33
Phi-B: 0°
Tmc 100-25 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': $40{ }^{\circ}$
Phi-Anisotropic Strength Fn.: Tmc 100psf-25 (A-Bed0 $0^{\circ}-5^{\circ}$
C-Anisotropic Strength Fn.: $100 \mathrm{psf}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Phi-B: 0
Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}-5^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}$ (A-Bed0 $0^{\circ}-5^{\circ}$)
C-Anisotropic Strength Fn.: 150 psf- $17^{\circ}\left(\mathrm{A}-\mathrm{BedO} 0^{\circ}-5^{\circ}\right)$

4 - Translational Lower Clay

Phi-B: 0°
TQs 100-25 ${ }^{\circ}$ (A-Bed $6^{\circ}-13^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs 100-25 (A-Bed $6^{\circ}-13^{\circ}$)
C-Anisotropic Strength Fn.: 100psf-25 (A-Bed $6^{\circ}-13^{\circ}$)
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-201,1,955) \mathrm{ft}$
Right Coordinate: $(810,2,090) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: $(235,2,030.1838) \mathrm{ft}$
Lower Left: $(237,2,009.5966) \mathrm{ft}$
Lower Right: $(439,2,033) \mathrm{ft}$
X Increments: 10
Y Increments: 10
Starting Angle: 135
Ending Angle: 180°
Angle Increments:
Right Grid
Upper Left: $(447,2,053) \mathrm{ft}$
Lower Left: $(450,2,033) \mathrm{ft}$
Lower Right: $(552,2,049)$ ft
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

150psf- $17^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}-7^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%

Segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: $(6,0.75$
Data Point: (7, 0.75
Data Point: $(7.1,1)$
TQs $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-\mathbf{7}^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: $(6,0.425)$
Data Point: ($7,0.425$)
Data Point: $(7.1,1)$
TQs $\mathbf{1 0 0 - 2 5}$ (A-Bed $6^{\circ}-13^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: $(6,0.625)$
Data Point: $(13,0.625)$
Data Point: $(13.1,1)$

100 psf (A-Bed0o․ ${ }^{\circ}$)

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.5
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.5)$
Data Point: $(5,0.5)$
Data Point: $(5.1,1)$
Tmc 100psf-25 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Spline Data Point Function

Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.625
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.625)$
Data Point: $(5,0.625)$
Data Point: $(5.1,1)$
150psf-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{BedO}^{\circ}-5^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.75
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.75)$
Data Point: (5, 0.75
Data Point: $(5.1,1)$
Tmc $\mathbf{1 5 0 - 1 7}{ }^{\circ}$ (A-Bed0 ${ }^{\circ}-5^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.425
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: ($-0.9,1$
Data Point: $(0,0.425)$
Data Point: $(5,0.425)$
Data Point: $(5.1,1)$
100psf-25 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-13^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: ($6,0.444$)
Data Point: $(13,0.444$
Data Point: (13.1, 1)

Points
\qquad $\mathrm{X}(\mathrm{ft})$ $\mathrm{Y}(\mathrm{ft})$ Point 1 59 1,960 Point 2 11 1,957 Point 3 31 1,968 Point 4 45 1,976 Point 5 69 1,976 Point 6 125 2,004 Point 7 136 2,004 Point 8 194 2,030 Point 9 205 2,030 Point 10 259 2,057 Point 11 333 2,057 Point 12 550 2,091 Point 13 603 2,090 Point 14 715 2,088 Point 15 810 2,090 Point 16 810 2,016 Point 17 642 2,006 Point 18 466 1,993 Point 19 312 1,983 Point 20 -201 1,955 Point 21 810 1,803 Point 22 -200 1,803 Point 23 -200.75 1,920 Point 24 810 1,990 Point 25 810 2,087 Point 26 810 2,085 Point 27 654 $2,089.0893$ Point 28 629 2,089 Point 29 88 1,956 Point 30 138 1,956 Point 31 358 2,067 Point 32 82.1967 $1,962.1088$ Point 33 167 1,970 Point 34 271 2,023 Point 35 273 2,024 Point 36 414 2,095 Point 37 316 $2,045.9574$ Point 38 356 2,046 Point 39 451 2,094 Point 40 374 2,055 Point 41 380 2,058

file:///G:/SLOPE\%20RESULTS/Section\%2019-19\%20results/Latest\%20Update\%203-25-... 3/25/2016

Regions

	Material	Points	Area (ft^{2})
Region 1	Tmc 100-25 ${ }^{\circ}$ (A - $\mathrm{Bed} 0^{\circ}-5^{\circ}$)	20,23,24,16,17,18,19,33,30,29,32,1,2	26,270
Region 2	Tmc 150-17 ${ }^{(}$(- Bed0 ${ }^{\circ} 5^{\circ}$)	23,22,21,24	1.5359e+005
Region 3	TQs 150-170 (A-Bed6 ${ }^{\circ}-7^{\circ}$)	19,18,17,16,26,34,33	32,238
Region 4	Shear Layer	26,25,35,34	744.5
Region 5	TQs 150-170 (A-Bed6 ${ }^{\circ} 7^{\circ}$)	15,14,27,40,38,37,35,25	8,477.5
Region 6	TQs 150-17 ${ }^{\circ}$ (A-Bed6 ${ }^{\circ} 7^{\circ}$)	13,12,39,41,28	3,375.5
Region 7	Shear Layer	27,28,41,40	694.11
Region 8	TQs 100-25 ${ }^{\circ}$ (A-Bed $6^{\circ}-13^{\circ}$)	2,1,32,5,4,3	769.03
Region 9	Fill	5,32,29,30,33,34,35,37,31,11,10,9,8,7,6	9,276.8
Region 10	Fill	37,38,40,41,39,36,31	1,921.5

Current Slip Surface

Slip Surface: 60,791
F of S: 2.09
Volume: $10,128.773 \mathrm{ft}^{3}$
Weight: $1,215,452.8 \mathrm{lbs}$
Resisting Force: $419,685.86 \mathrm{lbs}$
Activating Force: $201,121.49 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 300 slip surfaces
Exit: (171.44737, 2,019.8902) ft
Entry: (492.41156, 2,092.7451) ft
Radius: 143.01965 ft
Center: $(319.5266,2,110.9588) \mathrm{ft}$
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	177.08553	$2,019.8902$	0	303.294	196.96143	200
Slice 2	188.36184	$2,019.8902$	0	909.882	590.88428	200
Slice 3	199.5	$2,019.8902$	0	$1,213.176$	787.84571	200
Slice 4	210.16667	$2,019.8902$	0	$1,523.176$	989.16206	200
Slice 5	220.5	$2,019.8902$	0	$2,143.176$	$1,391.7948$	200
Slice 6	230.83333	$2,019.8902$	0	$2,763.176$	$1,794.4275$	200
Slice 7	241.75	$2,020.5282$	0	$3,219.6852$	$2,090.888$	200
Slice 8	253.25	$2,021.8042$	0	$3,738.6295$	$2,427.8944$	200

Slice 9	265.99429	$2,023.2182$	0	$3,908.0864$	$2,537.941$	200
Slice 10	278.36929	$2,024.5913$	0	$3,841.3179$	746.67656	150
Slice 11	289.125	$2,025.7847$	0	$3,699.5756$	719.12465	150
Slice 12	299.875	$2,026.9775$	0	$3,557.9086$	691.58738	150
Slice 13	310.625	$2,028.1703$	0	$3,416.2416$	664.0501	150
Slice 14	320.25	$2,029.2382$	0	$3,289.4003$	639.39464	150
Slice 15	328.75	$2,030.1813$	0	$3,177.3845$	617.62098	150
Slice 16	338.75	$2,031.2909$	0	$3,318.775$	645.10452	150
Slice 17	350.25	$2,032.5669$	0	$3,713.5719$	721.84525	150
Slice 18	357	$2,033.3158$	0	$3,945.3005$	766.88873	150
Slice 19	366	$2,034.3144$	0	$4,349.2889$	845.41612	150
Slice 20	377	$2,035.5349$	0	$4,857.569$	944.21577	150
Slice 21	385.66667	$2,036.4965$	0	$5,258.0321$	$1,022.0579$	150
Slice 22	397	$2,037.754$	0	$5,781.7147$	$1,123.8515$	150
Slice 23	408.33333	$2,039.0115$	0	$6,305.3972$	$1,225.6451$	150
Slice 24	420.16667	$2,040.3245$	0	$6,466.1769$	$1,256.8975$	150
Slice 25	432.5	$2,041.693$	0	$6,264.0539$	$1,217.6087$	150
Slice 26	444.83333	$2,043.0614$	0	$6,061.9308$	$1,178.32$	150
Slice 27	454.85	$2,044.1728$	0	$5,896.2761$	$1,146.12$	150
Slice 28	459.1524	$2,045.2461$	0	$5,046.1015$	980.86276	150
Slice 29	467.07953	$2,056.5672$	0	$2,717.3001$	$2,280.0855$	225
Slice 30	475.52445	$2,068.6278$	0	$2,517.4828$	489.34909	150
Slice 31	484.45311	$2,081.3792$	0	786.55519	659.99817	225
	350					

file:///G:/SLOPE\%20RESULTS/Section\%2019-19\%20results/Latest\%20Update\%203-25-... 3/25/2016

Section 19 SSA for Skyline Ranch.gsz

Section 19 SSA for Skyline Ranch.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/25/2016 3:10:06 PM

4 - Translational Lower Clay Seismic
 Report generated using Geostudio 2012. Copvist © 1991-2015 GEO-SLOPE International Lid

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 16
Date: 3/25/2016
Time: 3:10:06 PM
Tool Version: 8.15.1.11777
File Name: Section 19 SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 19-19 results\Latest Update 3-25-16\}
Last Solved Date: 3/25/2016
Last Solved Time: 3:14:40 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

4 - Translational Lower Clay Seismic
Kind: SLOPE/W
Parent: 4 - Translational Lower Clay
Method: Janbu
Settings
PWP Conditions Source: (none)
Initial Slip Surface Source: Parent Analysis
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Critical Slip Surfaces from Other
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: $1{ }^{\circ}$
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No

Tension Crack
Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constan
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-7^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40
Phi-Anisotropic Strength Fn.: TQs $150-17^{\circ}$ (A-Bed6ㅇ${ }^{\circ}$
C-Anisotropic Strength Fn .: 150 psf- $1^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}-7^{\circ}\right)$
Phi-B: 0°
Shear Layer
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 150 psf
Phi': $11{ }^{\circ}$
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33
Phi-B: 0°
Tmc 100-25 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100psf-25 ${ }^{\circ}\left(\mathrm{A}-\mathrm{BedO}^{\circ}-5^{\circ}\right)$
C-Anisotropic Strength Fn.: 100 psf (A-BedO ${ }^{\circ}-5^{\circ}$)
Phi-B: 0°
Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}-5^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$

4 - Translational Lower Clay Seismic

Phi-B. 0°
TQs $\mathbf{1 0 0 - 2 5}{ }^{\circ}$ (A-Bed $6^{\circ}-13^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs 100-25 (A-Bed $\left.6^{\circ}-13^{\circ}\right)$
C-Anisotropic Strength Fn.: 100psf-25 (A-Bed $6^{\circ}-13^{\circ}$)
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-201,1,955) \mathrm{ft}$
Right Coordinate: $(810,2,090) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

150psf-17 ${ }^{\circ}\left(\right.$ A-Bed6 $\left.{ }^{\circ}-7^{\circ}\right)$
Model: Spline Data Point Functio
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: $(6,0.75)$
Data Point: $(7,0.75)$
Data Point: $(7.1,1)$
TQs $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-\mathbf{7}^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: ($6,0.425$)
Data Point: (7, 0.425)

4 - Translational Lower Clay Seismic

TQs 100-25 ${ }^{\circ}$ (A-Bed $6^{\circ}-13^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \% Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: $(6,0.625)$
Data Point: $(13,0.625)$
Data Point: $(13.1,1)$

100 psf (A-Bed0oº $)$

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \% Segment Curvature: 0%
Y-Intercept: 0.5
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: $(-90,1)$
Data Point: (-0.9, 1
Data Point: $(0,0.5)$
Data Point: $(5,0.5)$
Data Point: $(5.1,1)$
Tmc 100psf-25 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.625
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(-0.9,1)$
Data Point: $(0,0.625)$ Data Point: ($5,0.625$) Data Point: $(5.1,1)$

150psf-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
-Intercept: 0.75
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: $(-90,1)$
Data Point: (-0.9, 1

Data Point: $(0,0.75)$
 Data Point: $(5,0.75)$
 Data Point: (5.1, 1)

Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.425
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.425)$
Data Point: (5, 0.425)
Data Point: $(5.1,1)$
$100 p s f-25^{\circ}\left(\right.$ A-Bed $\left.6^{\circ}-13^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: $(6,0.444)$
Data Point: $(13,0.444)$
Data Point: $(13.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	59	1,960
Point 2	11	1,957
Point 3	31	1,968
Point 4	45	1,976
Point 5	69	1,976
Point 6	125	2,004
Point 7	136	2,004
Point 8	194	2,030
Point 9	205	2,030
Point 10	259	2,057
Point 11	333	2,057
Point 12	550	2,091
Point 13	603	2,090
Point 14	715	2,088
Point 15	810	2,090

Point 16	810	2,016
Point 17	642	2,006
Point 18	466	1,993
Point 19	312	1,983
Point 20	-201	1,955
Point 21	810	1,803
Point 22	-200	1,803
Point 23	-200.75	1,920
Point 24	810	1,990
Point 25	810	2,087
Point 26	810	2,085
Point 27	654	$2,089.0893$
Point 28	629	2,089
Point 29	88	1,956
Point 30	138	1,956
Point 31	358	2,067
Point 32	82.1967	$1,962.1088$
Point 33	167	1,970
Point 34	271	2,023
Point 35	273	2,024
Point 36	414	2,095
Point 37	316	$2,045.9574$
Point 38	356	2,046
Point 39	451	2,094

file:///G:/SLOPE\%20RESULTS/Section\%2019-19\%20results/Latest\%20Update\%203-25-... 3/25/2016

Point 40	374	2,055
Point 41	380	2,058

Regions

	Material	Points	Area (ft^{2})
Region 1	Tmc 100-25 ${ }^{\circ}$ (A-Bed0 ${ }^{\circ} 5^{\circ}$)	20,23,24,16,17,18,19,33,30,29,32,1,2	26,270
Region 2	Tmc 150-170 (A -Bed0 ${ }^{\circ}-5^{\circ}$)	23,22,21,24	$1.5359 \mathrm{e}+005$
Region 3	TQs 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}{ }^{\circ} 7^{\circ}\right.$)	19,18,17,16,26,34,33	32,238
Region 4	Shear Layer	26,25,35,34	744.5
Region 5	TQs 150-17 ${ }^{\circ}$ (A-Bed6 ${ }^{\circ} 7^{\circ}$)	15,14,27,40,38,37,35,25	8,477.5
Region 6	TQs 150-17 ${ }^{\circ}$ (A-Bed6 ${ }^{\circ} 7^{\circ}$)	13,12,39,41,28	3,375.5
Region 7	Shear Layer	27,28,41,40	694.11
Region 8	TQs 100-25 ${ }^{\circ}$ (A-Bed $6^{\circ}-13^{\circ}$)	2,1,32,5,4,3	769.03
Region 9	Fill	5,32,29,30,33,34,35,37,31,11,10,9,8,7,6	9,276.8
Region 10	Fill	37,38,40,41,39,36,31	1,921.5

Current Slip Surface

Slip Surface: 1
F of S : 1.12
Volume: $10,128.773 \mathrm{ft}^{3}$
Weight: $1,215,452.8 \mathrm{lbs}$
Resisting Force: 402,601.72 lbs
Activating Force: 359, 261.89 lbs
F of S Rank (Analysis): 1 of 1 slip surfaces
F of S Rank (Query): 1 of 1 slip surfaces
Exit: (171.44737, 2,019.8902) ft
Entry: (492.41156, 2,092.7451) ft
Radius: 143.01965 ft
Center: $(319.5266,2,110.9588) \mathrm{ft}$
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	177.08553	$2,019.8902$	0	303.294	196.96143	200
Slice 2	188.36184	$2,019.8902$	0	909.882	590.88428	200
Slice 3	199.5	$2,019.8902$	0	$1,213.176$	787.84571	200
Slice 4	210.16667	$2,019.8902$	0	$1,523.176$	989.16206	200
Slice 5	220.5	$2,019.8902$	0	$2,143.176$	$1,391.7948$	200

Slice 6	230.83333	$2,019.8902$	0	$2,763.176$	$1,794.4275$	200
Slice 7	241.75	$2,020.5282$	0	$3,119.8364$	$2,026.0455$	200
Slice 8	253.25	$2,021.8042$	0	$3,624.0923$	$2,353.513$	200
Slice 9	265.99429	$2,023.2182$	0	$3,788.7528$	$2,460.4448$	200
Slice 10	278.36929	$2,024.5913$	0	$3,800.4981$	738.74199	150
Slice 11	289.125	$2,025.7847$	0	$3,660.0101$	711.43389	150
Slice 12	299.875	$2,026.9775$	0	$3,519.5966$	684.14027	150
Slice 13	310.625	$2,028.1703$	0	$3,379.1832$	656.84667	150
Slice 14	320.25	$2,029.2382$	0	$3,253.4642$	632.40938	150
Slice 15	328.75	$2,030.1813$	0	$3,142.4397$	610.8284	150
Slice 16	338.75	$2,031.2909$	0	$3,282.5791$	638.06873	150
Slice 17	350.25	$2,032.5669$	0	$3,673.8825$	714.13042	150
Slice 18	357	$2,033.3158$	0	$3,903.5601$	758.77522	150
Slice 19	366	$2,034.3144$	0	$4,303.9741$	836.60782	150
Slice 20	377	$2,035.5349$	0	$4,807.7564$	934.53317	150
Slice 21	385.66667	$2,036.4965$	0	$5,204.6759$	$1,011.6865$	150
Slice 22	397	$2,037.754$	0	$5,723.7245$	$1,112.5793$	150
Slice 23	408.33333	$2,039.0115$	0	$6,242.773$	$1,213.4722$	150
Slice 24	420.16667	$2,040.3245$	0	$6,402.13$	$1,244.448$	150
Slice 25	432.5	$2,041.693$	0	$6,201.7955$	$1,205.5069$	150
Slice 26	444.83333	$2,043.0614$	0	$6,001.4611$	$1,166.5659$	150
Slice 27	454.85	$2,044.1728$	0	$5,837.2721$	$1,134.6508$	150
Slice 28	459.1524	$2,045.2461$	0	$4,505.4158$	875.76412	150
Slice 29	467.07953	$2,056.5672$	0	$1,996.5612$	$1,675.3138$	225

file:///G:/SLOPE\%20RESULTS/Section\%2019-19\%20results/Latest\%20Update\%203-25-... 3/25/2016
4- Translational Lower Clay Seismic

Slice 30	475.52445	$2,068.6278$	0	$2,211.7987$	429.93011	150
Slice 31	484.45311	$2,081.3792$	0	531.9321	446.34403	225

Section 19 SSA for Skyline Ranch.gsz

Section 19 SSA for Skyline Ranch.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/25/2016 2:28:52 PM

5 - Translational Temporary upper clay
 Reporter

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 159
Date: 3/25/2016
Time: 2:28:52 PM
Tool Version: 8.15.1.11777
File Name: Section 19 SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 19-19 results\Latest Update 3-25-16\}
Last Solved Date: 3/25/2016
Last Solved Time: 2:29:16 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pc
View: 2D
Element Thickness: 1

Analysis Settings

5 - Translational Temporary upper clay Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constan Advanced

Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $\mathbf{1 5 0 - 1 7}{ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-7^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs 150-17 ${ }^{\circ}\left(\mathrm{A}-\right.$ Bed $\left.6^{\circ}-7^{\circ}\right)$
C-Anisotropic Strength Fn.: 150psf-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}-7^{\circ}\right)$
Phi-B: 0°
Shear Layer
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 150 psf
Phi': 11°
Phi-B: $0{ }^{\circ}$
Tmc 100-25 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100 psf- $25^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
C-Anisotropic Strength Fn.: 100 psf (A-Bed0 $0^{\circ}-5^{\circ}$
Phi-B: 0°
Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
C-Anisotropic Strength Fn.: 150psf-17 (A-Bed0 ${ }^{\circ}-5^{\circ}$)
Phi-B: 0°
TQs $100-25^{\circ}$ (A-Bed $\left.6^{\circ}-13^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°

5 - Translational Temporary upper clay

Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}\left(\right.$ A-Bed $\left.6^{\circ}-13^{\circ}\right)$
C-Anisotropic Strength Fn.: 100psf-25 (A-Bed $6^{\circ}-13^{\circ}$)
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-201,1,955) \mathrm{ft}$
Right Coordinate: $(810,2,090) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: $(360,2,068)$
Lower Left: $(359,2,048) \mathrm{ft}$
Lower Right: (407, 2,053) ft
X Increments: 10
Y Increments: 10
Starting Angle: 135°
Ending Angle: 180
Angle Increments:
Right Grid
Upper Left: $(416,2,073) \mathrm{ft}$
Lower Left: $(417,2,054) \mathrm{ft}$
Lower Right: $(570,2,072) \mathrm{ft}$
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

150psf-17 ${ }^{\circ}\left(\right.$ A-Bed6 $\left.{ }^{\circ}-7^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: $(6,0.75)$
Data Point: $(7,0.75)$

5 - Translational Temporary upper clay

TQs 150-17 ${ }^{\circ}\left(\right.$ A-Bed $\left.6^{\circ} \mathbf{7}^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \% Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: $(6,0.425)$
Data Point: $(7,0.425)$
Data Point: $(7.1,1)$
TQs 100-25 (A-Bed $6^{\circ}-13^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: $(6,0.625)$
Data Point: $(13,0.625$
Data Point: $(13.1,1)$
100 psf (A-Bed0 ${ }^{\circ}-5^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \% Segment Curvature: 0%
Y-Intercept: 0.5
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor Data Point: $(-90,1)$
Data Point: ($-0.9,1$)
Data Point: $(0,0.5)$
Data Point: $(0,0.5)$
Data Point: $(5.1,1)$
Tmc 100psf- $25^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%
Y-Intercept: 0.625
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: (-0.9, 1

Data Point: ($0,0.625$)
 Data Point: (5, 0.625)
 Data Point: $(5.1,1)$

150psf-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.75
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(-0.9,1)$
Data Point: $(0,0.75)$
Data Point: $(5,0.75)$
Data Point: $(5.1,1)$
Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}-5^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.425
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.425)$
Data Point: $(5,0.425)$
Data Point: $(5.1,1)$
100psf-25 (A-Bed $6^{\circ}-13^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: $(6,0.444)$
Data Point: $(13,0.444)$
Data Point: $(13.1,1)$

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	59	1,960
Point 2	11	1,957
Point 3	31	1,968

Point 4	45	1,976
Point 5	69	1,976
Point 6	125	2,004
Point 7	136	2,004
Point 8	194	2,030
Point 9	205	2,030
Point 10	259	2,057
Point 11	333	2,057
Point 12	550	2,091
Point 13	603	2,090
Point 14	715	2,088
Point 15	810	2,090
Point 16	810	2,016
Point 17	642	2,006
Point 18	466	1,993
Point 19	312	1,983
Point 20	-201	1,955
Point 21	810	1,803
Point 22	-200	1,803
Point 23	-200.75	1,920
Point 24	810	1,990
Point 25	810	2,087
Point 26	810	2,085
Point 27	654	$2,089.0893$

file:///G:/SLOPE\%20RESULTS/Section\%2019-19\%20results/Latest\%20Update\%203-25-... 3/25/2016

Point 28	629	2,089
Point 29	88	1,956
Point 30	138	1,956
Point 31	358	2,067
Point 32	82.1967	$1,962.1088$
Point 33	167	1,970
Point 34	271	2,023
Point 35	273	2,024
Point 36	414	2,095
Point 37	316	$2,045.9574$
Point 38	356	2,046
Point 39	451	2,094
Point 40	374	2,055
Point 41	380	2,058

Regions

	Material	Points	Area (ft^{2})
Region 1	Tmc 100-25 ${ }^{\circ}$ (A-Bed0 ${ }^{\circ} 5^{\circ}$)	20,23,24,16,17,18,19,33,30,29,32,1,2	26,270
Region 2	Tmc 150-17 ${ }^{\circ}$ (A-Bed0 ${ }^{\circ} 5^{\circ}$)	23,22,21,24	$1.5359 \mathrm{e}+005$
Region 3	TQs 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}{ }^{\circ} 7^{\circ}\right.$)	19,18,17,16,26,34,33	32,238
Region 4	Shear Layer	26,25,35,34	744.5
Region 5	TQs 150-17 ${ }^{\circ}$ (A-Bed6 ${ }^{\circ} 7^{\circ}$)	15,14,27,40,38,37,35,25	8,477.5
Region 6	TQs 150-17 ${ }^{\circ}$ (A-Bed6 ${ }^{\circ}-7^{\circ}$)	13,12,39,41,28	3,375.5
Region 7	Shear Layer	27,28,41,40	694.11
Region 8	TQs 100-25 ${ }^{\circ}$ (A-Bed $6^{\circ}-13^{\circ}$)	2,1,32,5,4,3	769.03
Region 9		5,32,29,30,33,34,35,37,31,11,10,9,8,7,6	9,276.8
Region 10		37,38,40,41,39,36,31	1,921.5

Current Slip Surface
 Slip Surface: 44,427

F of S: 1.28
Volume: $1,157.9967 \mathrm{ft}^{3}$
Weight: $138,959.6 \mathrm{lbs}$
Resisting Force: $40,952.797 \mathrm{lbs}$
Activating Force: $32,083.997 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 300 slip surfaces
Exit: $(379,2,057.5) \mathrm{ft}$
Entry: (460.49548, 2,093.7123) ft
Radius: 50.117051 ft
Center: (407.67964, 2,102.7653) ft
Slip Slices

	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	379.5	$2,057.5$	0	30	5.8314093	150
Slice 2	381.29	$2,057.5$	0	138.49014	26.919756	150
Slice 3	383.87	$2,057.5$	0	295.47042	57.433632	150
Slice 4	386.45	$2,057.5$	0	452.4507	87.947508	150
Slice 5	389.03	$2,057.5$	0	609.43099	118.46138	150
Slice 6	391.61	$2,057.5$	0	766.41127	148.97526	150
Slice 7	394.21875	$2,057.687$	0	867.1672	168.56023	150
Slice 8	396.85625	$2,058.061$	0	980.3117	190.55329	150
Slice 9	399.49375	$2,058.435$	0	$1,093.4562$	212.54635	150
Slice 10	402.13125	$2,058.809$	0	$1,206.6007$	234.53941	150
Slice 11	404.76875	$2,059.183$	0	$1,319.7452$	256.53248	150
Slice 12	407.40625	$2,059.5571$	0	$1,432.8897$	278.52554	150
Slice 13	410.04375	$2,059.9311$	0	$1,546.0342$	300.5186	150
Slice 14	412.68125	$2,060.3051$	0	$1,659.1787$	322.51166	150
Slice 15	415.38333	$2,060.6882$	0	$1,775.0937$	345.04326	150
Slice 16	418.15	$2,061.0806$	0	$1,893.7792$	368.11339	150
	420.91667	$2,061.4729$	0	$2,012.4648$	391.18352	150

file:///G:/SLOPE\%20RESULTS/Section\%2019-19\%20results/Latest\%20Update\%203-25-... 3/25/2016

Slice 17						
Slice 18	423.68333	$2,061.8652$	0	$2,131.1503$	414.25365	150
Slice 19	426.45	$2,062.2576$	0	$2,249.8358$	437.32378	150
Slice 20	429.21667	$2,062.6499$	0	$2,368.5214$	460.39392	150
Slice 21	431.98333	$2,063.0422$	0	$2,487.2069$	483.46405	150
Slice 22	434.75	$2,063.4345$	0	$2,605.8924$	506.53418	150
Slice 23	437.51667	$2,063.8269$	0	$2,724.578$	529.60431	150
Slice 24	440.28333	$2,064.2192$	0	$2,843.2635$	552.67444	150
Slice 25	443.05	$2,064.6115$	0	$2,961.949$	575.74457	150
Slice 26	445.81667	$2,065.0038$	0	$3,080.6346$	598.8147	150
Slice 27	447.48868	$2,065.8191$	0	$2,195.2379$	426.71102	150
Slice 28	449.38868	$2,069.8936$	0	999.89357	839.01033	225
Slice 29	452.58258	$2,076.743$	0	697.82189	585.54209	225
Slice 30	455.74774	$2,083.5307$	0	355.84044	298.58558	225
Slice 31	458.9129	$2,090.3184$	0	13.858984	11.629069	225

Section 19 SSA for Skyline Ranch.gsz

Section 19 SSA for Skyline Ranch.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/25/2016 2:09:28 PM

5 - Translational Temporary
 Reosear

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 156
Date: 3/25/2016
Time: 2:09:28 PM
Tool Version: 8.15.1.11777
File Name: Section 19 SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 19-19 results\Latest Update 3-25-16\}
Last Solved Date: 3/25/2016
Last Solved Time: 2:11:48 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

5 - Translational Temporary
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constan Advanced

Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-7^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs 150-17 ${ }^{\circ}\left(\mathrm{A}-\right.$ Bed $\left.6^{\circ}-7^{\circ}\right)$
C-Anisotropic Strength Fn.: 150psf-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}-7^{\circ}\right)$
Phi-B: 0°
Shear Layer
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 150 psf
Phi': 11°
Phi-B: $0{ }^{\circ}$
Tmc 100-25 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100 psf- $25^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}-5^{\circ}\right)$
C-Anisotropic Strength Fn.: 100 psf (A-Bed0 $0^{\circ}-5^{\circ}$
Phi-B: 0°
Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Anisotropic Fr
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{BedO}^{\circ}-5^{\circ}\right)$
C-Anisotropic Strength Fn.: 150psf-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{BedO}^{\circ}-5^{\circ}\right)$
Phi-B: 0°
TQs $100-25^{\circ}$ (A-Bed $6^{\circ}-13^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°

5-Translational Temporary

Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-13^{\circ}\right)$
C-Anisotropic Strength Fn.: 100psf-25 (A-Bed $6^{\circ}-13^{\circ}$)
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-201,1,955) \mathrm{ft}$
Right Coordinate: $(810,2,090) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: $(235,2,030.1838) \mathrm{ft}$
Lower Left: $(237,2,009.5966) \mathrm{ft}$
Lower Right: (439, 2,033) ft
X Increments: 10
Y Increments: 10
Starting Angle: 135°
Ending Angle: 180°
Angle Increments:
Right Grid
Upper Left: $(447,2,053) \mathrm{ft}$
Lower Left: (450, 2,033) ft
Lower Right: $(552,2,049) \mathrm{ft}$
X Increments: 10
Y Increments: 10
Starting Angle: 45
Ending Angle: 65°
Angle Increments:

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

150psf-17 ${ }^{\circ}\left(\right.$ A-Bed6 $\left.{ }^{\circ}-7^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: $(6,0.75)$
Data Point: $(7,0.75)$

Data Point: $(7.1,1)$
TQs $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-\mathbf{7}^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: $(6,0.425)$
Data Point: $(7,0.425)$
Data Point: $(7.1,1)$
TQs 100-25 (A-Bed $6^{\circ}-13^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$) Modifier Factor
Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: $(6,0.625)$
Data Point: $(13,0.625)$
Data Point: $(13.1,1)$
100 psf (A-Bed0 ${ }^{\circ}-5^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \% Segment Curvature: 0%
Y-Intercept: 0.5
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.5)$
Data Point: $(0,0.5)$
Data Point: $(5.1,1)$
Tmc 100psf- $25^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%
Y-Intercept: 0.625
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: (-0.9, 1

Data Point: ($0,0.625$)
 Data Point: $(5,0.625)$
 Data Point: $(5.1,1)$

150psf- 17° (A-Bed0 $0^{\circ}-5^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.75
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.75)$
Data Point: $(5,0.75)$
Data Point: $(5.1,1)$
Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}-5^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.425
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.425)$
Data Point: $(5,0.425)$
Data Point: $(5.1,1)$
100psf-25 ${ }^{\circ}$ (A-Bed $6^{\circ}-13^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: $(6,0.444)$
Data Point: $(13,0.444)$
Data Point: $(13.1,1)$

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	59	1,960
Point 2	11	1,957
Point 3	31	1,968

Point 4	45	1,976
Point 5	69	1,976
Point 6	125	2,004
Point 7	136	2,004
Point 8	194	2,030
Point 9	205	2,030
Point 10	259	2,057
Point 11	333	2,057
Point 12	550	2,091
Point 13	603	2,090
Point 14	715	2,088
Point 15	810	2,090
Point 16	810	2,016
Point 17	642	2,006
Point 18	466	1,993
Point 19	312	1,983
Point 20	-201	1,955
Point 21	810	1,803
Point 22	-200	1,803
Point 23	-200.75	1,920
Point 24	810	1,990
Point 25	810	2,087
Point 26	810	2,085
Point 27	654	$2,089.0893$

file:///G:/SLOPE\%20RESULTS/Section\%2019-19\%20results/Latest\%20Update\%203-25-... 3/25/2016

5 - Translational Temporary

Point 28	629	2,089
Point 29	88	1,956
Point 30	138	1,956
Point 31	358	2,067
Point 32	82.1967	$1,962.1088$
Point 33	167	1,970
Point 34	271	2,023
Point 35	273	2,024
Point 36	414	2,095
Point 37	316	$2,045.9574$
Point 38	356	2,046
Point 39	451	2,094
Point 40	374	2,055
Point 41	380	2,058

Regions

	Material	Points	Area (ft^{2})
Region 1	Tmc 100-25 ${ }^{\circ}$ (A-Bed0 ${ }^{\circ} 5^{\circ}$)	20,23,24,16,17,18,19,33,30,29,32,1,2	26,270
Region 2	Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ} 5^{\circ}\right.$)	23,22,21,24	$1.5359 \mathrm{e}+005$
Region 3	TQs 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}{ }^{\circ} 7^{\circ}\right.$)	19,18,17,16,26,34,33	32,238
Region 4	Shear Layer	26,25,35,34	744.5
Region 5	TQs 150-17 ${ }^{\circ}$ (A-Bed6 ${ }^{\circ} 7^{\circ}$)	15,14,27,40,38,37,35,25	8,477.5
Region 6	TQs 150-17 ${ }^{\circ}$ (A-Bed6 ${ }^{\circ} 7^{\circ}$)	13,12,39,41,28	3,375.5
Region 7	Shear Layer	27,28,41,40	694.11
Region 8	TQs 100-25 ${ }^{\circ}$ (A-Bed $6^{\circ}-13^{\circ}$)	2,1,32,5,4,3	769.03
Region 9		5,32,29,30,33,34,35,37,31,11,10,9,8,7,6	9,276.8
Region 10		37,38,40,41,39,36,31	1,921.5

Current Slip Surface
 Slip Surface: 60,792

5-Translational Temporary
Page 8 of 9

F of S: 1.32
Volume: $4,896.8003 \mathrm{ft}^{3}$
Weight: $587,616.03 \mathrm{lbs}$
Resisting Force: $151,439.98 \mathrm{lbs}$
Activating Force: $114,811.73 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 300 slip surfaces
Exit: (272.98858, 2,023.9943) ft
Entry: (481.30734, 2,093.0816) ft
Radius: 107.29461 ft
Center: $(359.96375,2,110.3534) \mathrm{ft}$
Slip Slices

	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	272.99429	$2,023.9949$	0	-12.118371	-2.3555727	150
Slice 2	276.58333	$2,024.3931$	0	157.24981	30.566266	150
Slice 3	283.75	$2,025.1883$	0	495.46134	96.307928	150
Slice 4	290.91667	$2,025.9835$	0	833.67287	162.04959	150
Slice 5	298.08333	$2,026.7787$	0	$1,171.8844$	227.79125	150
Slice 6	305.25	$2,027.5739$	0	$1,510.0959$	293.53292	150
Slice 7	312.41667	$2,028.3691$	0	$1,848.3075$	359.27458	150
Slice 8	320.25	$2,029.2382$	0	$1,962.2682$	381.4263	150
Slice 9	328.75	$2,030.1813$	0	$1,851.9782$	359.98809	150
Slice 10	336.83333	$2,031.0782$	0	$1,747.0945$	339.60078	150
Slice 11	344.5	$2,031.9289$	0	$1,647.6173$	320.26435	150
Slice 12	352.16667	$2,032.7795$	0	$1,548.14$	300.92793	150
Slice 13	357	$2,033.3158$	0	$1,544.3377$	300.18883	150
Slice 14	362	$2,033.8706$	0	$1,774.0193$	344.83442	150
Slice 15	370	$2,034.7582$	0	$2,141.5098$	416.26735	150
Slice 16	377	$2,035.5349$	0	$2,463.0641$	478.77116	150
	383.4	$2,036.245$	0	$2,759.8837$	536.46705	150

file:///G:/SLOPE\%20RESULTS/Section\%2019-19\%20results/Latest\%20Update\%203-25-... 3/25/2016

Slice 17						
Slice 18	390.2	$2,036.9995$	0	$3,077.905$	598.28412	150
Slice 19	397	$2,037.754$	0	$3,395.9262$	660.10119	150
Slice 20	403.8	$2,038.5085$	0	$3,713.9475$	721.91826	150
Slice 21	410.6	$2,039.263$	0	$4,031.9688$	783.73533	150
Slice 22	417.7	$2,040.0508$	0	$4,364.0204$	848.27963	150
Slice 23	425.1	$2,040.8719$	0	$4,710.1023$	915.55115	150
Slice 24	432.5	$2,041.693$	0	$5,056.1843$	982.82267	150
Slice 25	439.9	$2,042.514$	0	$5,402.2663$	$1,050.0942$	150
Slice 26	447.3	$2,043.3351$	0	$5,748.3483$	$1,117.3657$	150
Slice 27	454.85	$2,044.1728$	0	$5,857.1748$	$1,138.5195$	150
Slice 28	458.99253	$2,045.2273$	0	$4,243.2272$	824.79981	150
Slice 29	464.11227	$2,056.2067$	0	$1,746.609$	$1,465.5789$	225
Slice 30	469.56179	$2,067.8932$	0	$2,145.8657$	417.11405	150
Slice 31	472.96491	$2,075.1912$	0	767.82686	644.28324	225
Slice 32	478.52653	$2,087.1181$	0	152.91282	128.30909	225

Section 19 SSA for Skyline Ranch.gsz

Section 19 SSA for Skyline Ranch.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/25/2016 2:18:40 PM

Lower Keyway depth 20
width 50 ', backcut slope $2 \mathrm{H}: 1 \mathrm{~V}$
Upper Keyway depth 10

Width 25', Backcut Slope 2H:1V
5 - Translational Temporary lower portion of slope

Name: TQs $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-7^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-7^{\circ}\right)$
C-Anisotropic Strength Fn.: 150psf-17 ${ }^{\circ}$ (A-Bed6 ${ }^{\circ}-7^{\circ}$)
Name: Shear Layer
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 150 psf
Phi': 11°
Name: Tmc $100-25^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc $100 \mathrm{psf}-5^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$ C-Anisotropic Strength Fn.: $100 \mathrm{psf}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$

Name: Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\right.$ Bed $\left.0^{\circ}-5^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$ C-Anisotropic Strength Fn.: 150psf-17º (A-Bed0ㅇ․ ${ }^{\circ}$)

Name: TQs $100-25^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-13^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Unit Weight: 120 pc
Cohesion': 225 psf
Cohesion: 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}\left(\right.$ A-Bed $\left.6^{\circ}-13^{\circ}\right)$ C-Anisotropic Strength Fn.: 100 psf- 25° (A-Bed $6^{\circ}-13^{\circ}$)

5 - Translational Temporary lower portion of slope

Report generated using Geostudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 157
Date: 3/25/2016
Time: 2:18:40 PM
Tool Version: 8.15.1.11777
File Name: Section 19 SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 19-19 results\Latest Update 3-25-16\}
Last Solved Date: 3/25/2016
Last Solved Time: 2:19:50 PM

Project Settings
Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

5 - Translational Temporary lower portion of slope
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No

Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant

Advanced

Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}-7^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $150-17^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-7^{\circ}\right)$
C-Anisotropic Strength Fn .: 150 psf- $17^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}-7^{\circ}\right)$
Phi-B: 0°
Shear Layer
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 150 psf
Phi': 11°.
Phi-B: 0°
Tmc 100-25 ${ }^{\circ}$ (A-Bed0ㅇ․ 5°)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100 psf- $25^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}-5^{\circ}\right)$
C-Anisotropic Strength Fn.: 100 psf (A-BedO $\left.{ }^{\circ}-5^{\circ}\right)$
Phi-B: 0°
Tmc 150-17 ${ }^{\circ}$ (A-Bed $0^{\circ}-5^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}$ (A-Bed0o- 5°
C-Anisotropic Strength Fn.: 150 psf-17 ${ }^{\circ}$ (A-Bed0 ${ }^{\circ}-5^{\circ}$)
Phi-B: 0°
TQs 100-25 (A-Bed $6^{\circ}-13^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf

Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-13^{\circ}\right)$
C-Anisotropic Strength Fn .: 100 psf- 25° (A-Bed $\left.6^{\circ}-13^{\circ}\right)$
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-201,1,955)$ ft
Right Coordinate: $(810,2,090) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: $(161,2,006)$ ft
Lower Left: $(166,1,953)$ ft
Lower Right: ($368,1,976.4034$) ft
X Increments: 10
Y Increments: 10
Starting Angle: 135°
Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: $(404,2,031)$ ft
Lower Left: $(404,1,978) \mathrm{ft}$
Lower Right: $(513,1,991) \mathrm{ft}$
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

150psf-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed}^{\circ}-7^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$

Data Point: $(6,0.75)$
Data Point: $(7,0.75)$
Data Point: $(7.1,1)$
TQs 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-7^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: $(6,0.425)$
Data Point: (7, 0.425)
Data Point: (7.1, 1)
TQs $\mathbf{1 0 0 - 2 5}$ (A-Bed $6^{\circ}-13^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: $(6,0.625)$
Data Point: (13, 0.625
Data Point: $(13.1,1)$
100 psf (A-BedO응 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.5
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.5)$
Data Point: $(5,0.5)$
Data Point: $(5.1,1)$
Tmc 100psf- $25^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

Curve Fit to Data: 100%

Segment Curvature: 0%
Y-Intercept: 0.625
Data Points: Inclination (${ }^{\circ}$), Modifier Factor

```
Data Point: (-90, 1)
Data Point: \((-0.9,1)\)
Data Point: \((0,0.625)\)
Data Point: \((5,0.625)\)
Data Point: \((5.1,1)\)
```


150psf- 17° (A-Bed0 ${ }^{\circ}-5^{\circ}$)

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.75
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.75)$
Data Point: (5, 0.75)
Data Point: $(5,0.75)$
Tmc $150-17^{\circ}\left(\mathrm{A}-\mathrm{BedO} 0^{\circ}-5^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.425
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.425)$
Data Point: (5, 0.425)
Data Point: $(5.1,1)$
100psf-25 ${ }^{\circ}$ (A-Bed $6^{\circ}-13^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: $(6,0.444)$
Data Point: $(13,0.444)$
Data Point: $(13.1,1)$

Points

	$X(\mathrm{ft})$	$Y(\mathrm{ft})$
Point 1	59	1,960
Point 2	11	1,957

Point 3	31	1,968
Point 4	45	1,976
Point 5	69	1,976
Point 6	125	2,004
Point 7	136	2,004
Point 8	194	2,030
Point 9	205	2,030
Point 10	259	2,057
Point 11	333	2,057
Point 12	550	2,091
Point 13	603	2,090
Point 14	715	2,088
Point 15	810	2,090
Point 16	810	2,016
Point 17	642	2,006
Point 18	466	1,993
Point 19	312	1,983
Point 20	-201	1,955
Point 21	810	1,803
Point 22	-200	1,803
Point 23	-200.75	1,920
Point 24	810	1,990
Point 25	810	2,087
Point 26	810	2,085
	31	

file:///G:/SLOPE\%20RESULTS/Section\%2019-19\%20results/Latest\%20Update\%203-25-... 3/25/2016

Point 27	654	$2,089.0893$
Point 28	629	2,089
Point 29	88	1,956
Point 30	138	1,956
Point 31	358	2,067
Point 32	82.1967	$1,962.1088$
Point 33	167	1,970
Point 34	271	2,023
Point 35	273	2,024
Point 36	414	2,095
Point 37	316	$2,045.9574$
Point 38	356	2,046
Point 39	451	2,094
Point 40	374	2,055
Point 41	380	2,058

Regions			
	Material	Points	Area (ft^{2})
Region 1	Tmc 100-25 ${ }^{\circ}$ (A -Bed0 ${ }^{\circ} 5^{\circ}$)	20,23,24,16,17,18,19,33,30,29,32,1,2	26,270
Region 2	Tmc 150-170 ($\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}$)	23,22,21,24	$1.5359 \mathrm{e}+005$
Region 3	TQs 150-17 ${ }^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-7^{\circ}\right.$)	19,18,17,16,26,34,33	32,238
Region 4	Shear Layer	26,25,35,34	744.5
Region 5	TQs 150-17 ${ }^{\circ}$ (A-Bed6 ${ }^{\circ} 7^{\circ}$)	15,14,27,40,38,37,35,25	8,477.5
Region 6	TQs 150-17 ${ }^{\circ}$ (A-Bed6 ${ }^{\circ}-7^{\circ}$)	13,12,39,41,28	3,375.5
Region 7	Shear Layer	27,28,41,40	694.11
Region 8	TQs 100-25 ${ }^{\circ}$ (A-Bed $6^{\circ}-13^{\circ}$)	2,1,32,5,4,3	769.03
Region 9		5,32,29,30,33,34,35,37,31,11,10,9,8,7,6	9,276.8
Region 10		37,38,40,41,39,36,31	1,921.5

Current Slip Surface

Slip Surface: 48,782
Fof S : 1.49
Volume: $13,344,53 \mathrm{ft}^{3}$
Weight: 1,601,343,6 1
Resisting Force: $580,417.7 \mathrm{lbs}$
Resisting Force: $580,417.7 \mathrm{lbs}$
Activating Force: $389,532.89 \mathrm{lbs}$
Activating Force: $389,532.89$ lbs
F of S Rank (Analysis): 1 of 131,769 slip surf
F of S Rank (Query): 1 of 300 slip surfaces
F of S Rank (Query): 1 of 300 slip
Exit: $(178.1736,1,975.6942$) ft
Exit: (178.1736, 1,975.6942) ft ft
Entry: (489.54135, 2,0
Center: $(300.80667,2,122.1165) \mathrm{ft}$
Slip Slices

p Slices
X (ft) Y (ft) PWP (psf) Base Normal Stress (psf) Frictional Strength (psf) Cohesive Strength (psf) Slice 1 182.1302 $1,976.1114$ 0 176.18597 53.865457 168.75 Slice 2 190.0434 $1,976.9456$ 0 551.88815 168.72914 168.75 Slice 3 199.5 $1,977.9426$ 0 $1,000.8677$ 305.99596 168.75 Slice 4 210.4 $1,979.0917$ 0 $1,518.3768$ 464.21437 168.75 Slice 5 221.2 $1,980.2303$ 0 $2,031.1381$ 620.98124 168.75 Slice 6 232 $1,981.3688$ 0 $2,543.8994$ 777.74811 168.75 Slice 7 242.8 $1,982.5074$ 0 $3,056.6607$ 934.51497 168.75 Slice 8 253.6 $1,983.646$ 0 $3,569.4221$ $1,091.2818$ 168.75 Slice 9 265 $1,984.8478$ 0 $4,110.6701$ $1,256.758$ 168.75 Slice 10 272 $1,985.5858$ 0 $4,441.886$ $1,358.0208$ 168.75 Slice 11 278.375 $1,986.2579$ 0 $4,744.0733$ $1,450.4087$ 168.75 Slice 12 289.125 $1,987.3912$ 0 $5,255.751$ $1,606.8443$ 168.75 Slice 13 299.875 $1,988.5245$ 0 $5,767.4287$ $1,763.2799$ 168.75 Slice 14 310.625 $1,989.6578$ 0 $6,279.1064$ $1,919.7155$ 168.75 Slice 15 320.25 $1,990.6725$ 0 $6,482.847$ $1,982.0052$ 168.75 328.75 $1,991.5686$ 0 $6,378.6505$ $1,950.1492$ 168.75

file:///G:/SLOPE\%20RESULTS/Section\%2019-19\%20results/Latest\%20Update\%203-25-... 3/25/2016

Slice 16						
Slice 17	338.75	$1,992.6228$	0	$6,256.0663$	$1,912.6714$	168.75
Slice 18	350.25	$1,993.8352$	0	$6,115.0946$	$1,869.572$	168.75
Slice 19	357	$1,994.5468$	0	$6,090.9571$	$1,862.1925$	168.75
Slice 20	362	$1,995.074$	0	$6,322.6993$	$1,933.0432$	168.75
Slice 21	370	$1,995.9173$	0	$6,693.4868$	$2,046.4043$	168.75
Slice 22	377	$1,996.6553$	0	$7,017.9259$	$2,145.5953$	168.75
Slice 23	385.66667	$1,997.569$	0	$7,424.2999$	$2,269.8363$	168.75
Slice 24	397	$1,998.7638$	0	$7,958.9573$	$2,433.2974$	168.75
Slice 25	408.33333	$1,999.9586$	0	$8,493.6146$	$2,596.7586$	168.75
Slice 26	419.9	$2,001.178$	0	$9,039.2797$	$2,763.5851$	168.75
Slice 27	432.1	$2,010.7973$	0	$4,781.1383$	$4,011.8513$	225
Slice 28	444.7	$2,028.792$	0	$4,008.5811$	$3,363.5989$	225
Slice 29	453.25253	$2,041.0063$	0	$3,403.6207$	$2,855.9769$	225
Slice 30	455.9582	$2,044.8704$	0	$4,834.9442$	939.81795	150
Slice 31	463.88066	$2,056.1848$	0	$2,371.8111$	$1,990.1858$	225
Slice 32	472.3168	$2,068.2329$	0	$2,420.8687$	470.5692	150
Slice 33	477.34804	$2,075.4182$	0	$1,064.3596$	893.10378	225
Slice 34	485.47691	$2,087.0275$	0	275.18592	230.9084	225
	354					

Section 20-20 Static Final SSA with key for Skyline Ranch.gsz

Section 20-20 Static Final SSA with key for Skyline Ranch.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/24/2016 2:17:59 PM
 Phi': 11°

Name: Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf

Materials
\square Shear Layer
\square Fill
\square Tmc 100-25 ${ }^{\circ}$ (A-Bed $\left(-3^{\circ}\right)-\left(-18^{\circ}\right)$ \square TQs $100-25^{\circ}$ (A-Bed 0-5 $)$

Keyway depth 15^{\prime} width 30', backcut slope $3 \mathrm{H}: 1 \mathrm{~V}$

Phi-Anisotropic Strength Fn.: Tmc 100-25 ${ }^{\circ}$ (A-Bed $\left(-3^{\circ}\right)-(-18)$
C-Anisotropic Strength Fn.: 100psf-25 ${ }^{\circ}$ (A-Bed $\left(-3^{\circ}\right)-\left(-18^{\circ}\right)$

Model: Anisotropic Fn.
Unit Weight: 120 pcf Cohesion
Phi-Anisotropic Strength Fn.: TQS 100-25 (A-Bed 0-5 ${ }^{\circ}$) C-Anisotropic Strength En. 100 psf (A-Bed $0^{\circ}-5^{\circ}$)

Tmc $100-25^{\circ}\left(\mathrm{A}-\operatorname{Bed}\left(-3^{\circ}\right)-\left(-18^{\circ}\right)\right.$
Section 20-20

LGC Valley, Inc

GEOTECHNICAL CONSULTING
28532 Constellation Road, Valencia, CA 91355 Phone 661-702-8474, Fax 661-702-8475

Skyline Ranch
Development project, Tract 60922
Los Angeles CA

Project No: 153035-01
Engineer: BAS
Date: March 2016

1 - Circular Mode of Failure

Renoterain

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 180
Date: 3/24/2016
Time: 2:17:59 PM
Tool Version: 8.15.1.11236
File Name: Section 20-20 Static Final SSA with key for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 20-20 results\}
Last Solved Date: 3/24/2016
Last Solved Time: 2:39:39 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1
Driving Side Maximum Convex Angle: 5°
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant

Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Shear Layer
Model: Mohr-Coulomb
Unit Weight: 120 pc
Cohesion': 150 psf
Phi': 11°
Phi-B: 0
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Tmc 100-25 ${ }^{\circ}$ (A-Bed $\left(-3^{\circ}\right)-\left(-18^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100-25 ${ }^{\circ}$ (A-Bed $\left(-3^{\circ}\right)-\left(-18^{\circ}\right)$
C-Anisotropic Strength Fn.: 100 psf- 25° (A-Bed $\left(-3^{\circ}\right)-\left(-18^{\circ}\right)$ Phi-B: 0°

TQs $100-25^{\circ}$ (A-Bed 0-5 ${ }^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0-5^{\circ}\right)$
C-Anisotropic Strength Fn.: 100 psf $\left(A-B e d 0^{\circ}-5^{\circ}\right)$
Phi-B: 0°

Slip Surface Entry and Exit
Left Projection: Range
Left-Zone Left Coordinate: (272, 1,742.6102) ft
Left-Zone Right Coordinate: $(425,1,812.5833) \mathrm{ft}$
eft-Zone Increment: 50
Right Projection: Range
Right-Zone Left Coordinate: $(444,1,817.5) \mathrm{ft}$
Right-Zone Right Coordinate: ($727.9594,1,866.9135$) ft
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: (-159, 1,579) ft
Right Coordinate: $(811,1,896) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

100 psf (A-Bed0응ํ $)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
-Intercept. 0.5
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.5)$
Data Point: $(5.1,1)$
Tmc 100-25 ${ }^{\circ}$ (A-Bed (-3$\left.{ }^{\circ}\right)-\left(-18^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-18.1,1)$
Data Point: $(-3,0.625)$
Data Point: $(-2.9,1)$
TQs $100-25^{\circ}$ (A-Bed 0-5 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.625
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(-0.9,1)$
Data Point: $(0,0.625)$
Data Point: (5, 0.625
Data Point: (5.1, 1)

100psf-25 ${ }^{\circ}$ (A-Bed (-3°)-(-18 $\left.{ }^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: ($-18.1,1$
Data Point: $(-18,0.5)$
Data Point: $(-3,0.5)$
Data Point: (-2.9, 1)

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	323	1,760
Point 2	350	1,775
Point 3	366	1,776
Point 4	418	1,812
Point 5	430	1,813
Point 6	458	1,822
Point 7	503	1,835
Point 8	519	1,835
Point 9	554	1,846
Point 10	563	1,846
Point 11	792	1,888
Point 12	811	1,896
Point 13	811	1,883
Point 14	811	1,852
Point 15	811	1,786
Point 16	-159	1,579
Point 17	-119	1,580
Point 18	-63	1,612
Point 19	-54	1,612
Point 20	5	1,640
Point 21	16	1,641
Point 22	84	1,674
Point 23	93	1,674
Point 24	144	1,696
Point 25	153	1,697
Point 26	215	1,726
Point 27	223	1,726
Point 28	282	1,746
Point 29	297	1,748
Point 30	811	1,644
Point 31	810	1,500

Point 32 -159 Point 33 1,505 Point 34 811$\| 1,795$		
Point 35	381	1,796
Point 36	411	1,761
Point 37	710	1,861
Point 38	379	1,763
Point 39	428	1,767
Point 40	465	1,779
Point 41	468	1,780

Regions

	Material	Points	Area (ft^{2})
$\begin{aligned} & \text { Region } \\ & 1 \end{aligned}$	Tmc $100-25^{\circ}$ (A-Bed (-3 ${ }^{\circ}$)-(- 18°)	16,32,31,30,15,39,36,35,38,1,29,28,27,26,25,24,23,22,21,20,19,18,17	$2.1207 \mathrm{e}+005$
$\begin{aligned} & \text { Region } \\ & 2 \end{aligned}$	Shear Layer	33,34,41,40	320.5
$\begin{aligned} & \text { Region } \\ & 3 \end{aligned}$	$\begin{aligned} & \hline \text { TQs } \\ & 100-25^{\circ} \\ & (\mathrm{A}-\mathrm{Bed} \\ & \left.0-5^{\circ}\right) \\ & \hline \end{aligned}$	14,13,12,11,37,41,34	16,934
$\begin{aligned} & \text { Region } \\ & 4 \end{aligned}$	Fill	3,38,35,36,39,40,41,37,10,9,8,7,6,5,4	10,221
$\begin{aligned} & \text { Region } \\ & 5 \end{aligned}$	$\begin{aligned} & \hline \text { TQs } \\ & 100-25^{\circ} \\ & (\mathrm{A}-\mathrm{Bed} \\ & \left.0-5^{\circ}\right) \\ & \hline \end{aligned}$	1,38,3,2	490
$\begin{aligned} & \text { Region } \\ & 6 \end{aligned}$	$\begin{aligned} & \hline \text { TQs } \\ & 100-25^{\circ} \\ & (\mathrm{A}-\mathrm{Bed} \\ & \left.0-5^{\circ}\right) \\ & \hline \end{aligned}$	15,33,40,39	3,503.5

Current Slip Surface

Slip Surface: 75,446
Fof $\mathrm{S}: 1.71$

Volume: $829.50517 \mathrm{ft}^{3}$
Weight: 99,540.62 lbs
Resisting Moment: $8,779,718.6 \mathrm{lbs}-\mathrm{ft}$
Activating Moment: 5,143,754, 7 lbs ft
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 500 slip surfaces
Exit: ($366.06486,1,776.0449$) ft
Entry: (444, 1,817.5) ft
Radius: 114.37316 ft
Center: $(355.48166,1,889.9274) \mathrm{ft}$

Slip Slices						
	X (ft)	Y (ft)	$\begin{aligned} & \text { PWP } \\ & \text { (psf) } \end{aligned}$	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
$\begin{aligned} & \hline \text { Slice } \\ & 1 \\ & \hline \end{aligned}$	367.36324	1,776.1805	0	76.35423	49.585017	200
$\begin{aligned} & \text { Slice } \\ & 2 \end{aligned}$	369.96	1,776.4819	0	244.4064	158.71938	200
$\begin{aligned} & \text { Slice } \\ & 3 \end{aligned}$	372.55675	1,776.8436	0	402.75278	261.55071	200
Slice 4	375.15351	1,777.2664	0	551.52314	358.16332	200
$\begin{aligned} & \text { Slice } \\ & 5 \end{aligned}$	377.75027	1,777.7508	0	690.82643	448.62793	200
Slice 6	380.34703	1,778.2978	0	820.75155	533.00229	200
Slice 7	382.94378	1,778.9082	0	941.36799	611.33152	200
$\begin{aligned} & \hline \text { Slice } \\ & 8 \\ & \hline \end{aligned}$	385.54054	1,779.583	0	1,052.7263	683.64848	200
Slice 9	388.1373	1,780.3236	0	1,154.8586	749.97392	200
$\begin{aligned} & \hline \text { Slice } \\ & 10 \\ & \hline \end{aligned}$	390.73405	1,781.1311	0	1,247.7781	810.31655	200
$\begin{aligned} & \hline \text { Slice } \\ & 11 \\ & \hline \end{aligned}$	393.33081	1,782.0072	0	1,331.4797	864.67302	200
$\begin{aligned} & \hline \text { Slice } \\ & 12 \\ & \hline \end{aligned}$	395.92757	1,782.9534	0	1,405.9395	913.02777	200
$\begin{aligned} & \text { Slice } \\ & 13 \\ & \hline \end{aligned}$	398.52432	1,783.9718	0	1,471.1142	955.35273	200
Slice 14	401.12108	1,785.0643	0	1,526.9408	991.60697	200
$\begin{aligned} & \text { Slice } \\ & 15 \\ & \hline \end{aligned}$	403.71784	1,786.2334	0	1,573.3356	1,021.7361	200
$\begin{aligned} & \text { Slice } \\ & 16 \end{aligned}$	406.31459	1,787.4816	0	1,610.1932	1,045.6717	200
$\begin{aligned} & \text { Slice } \\ & 17 \end{aligned}$	408.91135	1,788.8119	0	1,637.3849	1,063.3302	200
$\begin{aligned} & \hline \text { Slice } \\ & 18 \end{aligned}$	411.50811	1,790.2276	0	1,654.7576	1,074.6122	200

file:///G:/SLOPE\%20RESULTS/Section\%2020-20\%20results/section\%2020-20\%20static... 3/24/2016

Slice 19	414.10486	$1,791.7324$	0	$1,662.1315$	$1,079.4008$	200
Slice 20	416.70162	$1,793.3304$	0	$1,659.2976$	$1,077.5604$	200
Slice 21	419.2	$1,794.9584$	0	$1,577.0049$	$1,024.1189$	200
Slice 22	421.6	$1,796.6138$	0	$1,418.1585$	920.96293	200
Slice 23	424	$1,798.362$	0	$1,253.1884$	813.83005	200
Slice 24	426.4	$1,800.2085$	0	$1,081.992$	702.65383	200
Slice 25	428.8	$1,802.1595$	0	904.46401	587.3658	200
Slice 26	431.4	$1,804.4047$	0	734.28963	476.85326	200
Slice 27	434.2	$1,806.9761$	0	569.01665	369.52373	200
Slice 28	437	$1,809.7276$	0	392.47425	254.87576	200
Slice 29	439.8	$1,812.6788$	0	204.32202	132.68827	200
Slice 30	442.6	$1,815.8535$	0	4.2300002	2.7469943	200

file:///G:/SLOPE\%20RESULTS/Section\%2020-20\%20results/section\%2020-20\%20static... 3/24/2016

1 - Circular Mode of Failure

Renot

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 177
Date: 3/24/2016
Time: 2:11:22 PM
Tool Version: 8.15.1.11236
File Name: Section 20-20 Seismic Final SSA with key for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 20-20 results\}
Last Solved Date: 3/24/2016
Last Solved Time: 2:31:46 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1
Driving Side Maximum Convex Angle: 5°
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant

Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Shear Layer
Model: Mohr-Coulomb
Unit Weight: 120 pc
Cohesion': 150 psf
Phi': 11°
Phi-B: 0
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Tmc 100-25 ${ }^{\circ}$ (A-Bed $\left(-3^{\circ}\right)-\left(-18^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100-25 ${ }^{\circ}$ (A-Bed $\left(-3^{\circ}\right)-\left(-18^{\circ}\right)$
C-Anisotropic Strength Fn.: 100 psf- 25° (A-Bed $\left(-3^{\circ}\right)-\left(-18^{\circ}\right)$ Phi-B: 0°

TQs $100-25^{\circ}$ (A-Bed 0-5 ${ }^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}\left(\mathrm{A}-\mathrm{Bed} 0-5^{\circ}\right)$
C-Anisotropic Strength Fn.: 100 psf $\left(A-B e d 0^{\circ}-5^{\circ}\right)$
Phi-B: 0°

Slip Surface Entry and Exit
Left Projection: Range
Left-Zone Left Coordinate: (272, 1,742.6102) ft
Left-Zone Right Coordinate: $(425,1,812.5833) \mathrm{ft}$
Left-Zone Increment: 50
Right Projection. Range
Right-Zone Left Coordinate: $(444,1,817.5) \mathrm{ft}$
Right-Zone Right Coordinate: $(727.9594,1,866.9135) \mathrm{ft}$
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: (-159, 1,579) ft
Right Coordinate: $(811,1,896) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

100 psf (A-Bed0 ${ }^{\circ}-5^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.5
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.5)$
Data Point: $(5.1,1)$
Tmc 100-25 ${ }^{\circ}$ (A-Bed (-3$\left.{ }^{\circ}\right)-\left(-18^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-18.1,1)$
Data Point: $(-3,0.625)$
Data Point: $(-2.9,1)$
TQs $100-25^{\circ}$ (A-Bed 0-5 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.625
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(-0.9,1)$
Data Point: $(0,0.625)$
Data Point: (5, 0.625
Data Point: $(5.1,1)$

100 psf- 25° (A-Bed $\left(-3^{\circ}\right)-\left(-18^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: ($-18.1,1$
Data Point: $(-18,0.5)$
Data Point: $(-3,0.5)$
Data Point: (-2.9, 1)

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	323	1,760
Point 2	350	1,775
Point 3	366	1,776
Point 4	418	1,812
Point 5	430	1,813
Point 6	458	1,822
Point 7	503	1,835
Point 8	519	1,835
Point 9	554	1,846
Point 10	563	1,846
Point 11	792	1,888
Point 12	811	1,896
Point 13	811	1,883
Point 14	811	1,852
Point 15	811	1,786
Point 16	-159	1,579
Point 17	-119	1,580
Point 18	-63	1,612
Point 19	-54	1,612
Point 20	5	1,640
Point 21	16	1,641
Point 22	84	1,674
Point 23	93	1,674
Point 24	144	1,696
Point 25	153	1,697
Point 26	215	1,726
Point 27	223	1,726
Point 28	282	1,746
Point 29	297	1,748
Point 30	811	1,644
Point 31	810	1,500

Point 32	-159	1,505
Point 33	811	1,795
Point 34	811	1,796
Point 35	381	1,761
Point 36	411	1,761
Point 37	710	1,861
Point 38	379	1,763
Point 39	428	1,767
Point 40	465	1,779
Point 41	468	1,780

Regions

	Material	Points	Area (ft^{2})
$\begin{aligned} & \text { Region } \\ & 1 \end{aligned}$	Tmc $100-25^{\circ}$ (A-Bed (-3 ${ }^{\circ}$)-(- 18°)	16,32,31,30,15,39,36,35,38,1,29,28,27,26,25,24,23,22,21,20,19,18,17	$2.1207 \mathrm{e}+005$
$\begin{aligned} & \text { Region } \\ & 2 \end{aligned}$	Shear Layer	33,34,41,40	320.5
$\begin{aligned} & \text { Region } \\ & 3 \end{aligned}$	$\begin{aligned} & \hline \text { TQs } \\ & 100-25^{\circ} \\ & (\mathrm{A}-\mathrm{Bed} \\ & \left.0-5^{\circ}\right) \\ & \hline \end{aligned}$	14,13,12,11,37,41,34	16,934
$\begin{aligned} & \text { Region } \\ & 4 \end{aligned}$	Fill	3,38,35,36,39,40,41,37,10,9,8,7,6,5,4	10,221
$\begin{aligned} & \text { Region } \\ & 5 \end{aligned}$	$\begin{aligned} & \hline \text { TQs } \\ & 100-25^{\circ} \\ & (\mathrm{A}-\mathrm{Bed} \\ & \left.0-5^{\circ}\right) \\ & \hline \end{aligned}$	1,38,3,2	490
$\begin{aligned} & \text { Region } \\ & 6 \end{aligned}$	$\begin{aligned} & \hline \text { TQs } \\ & 100-25^{\circ} \\ & (\mathrm{A}-\mathrm{Bed} \\ & \left.0-5^{\circ}\right) \\ & \hline \end{aligned}$	15,33,40,39	3,503.5

Current Slip Surface

Slip Surface: 67,643
Fof S : 1.27
Volume: $797.58287 \mathrm{ft}^{3}$
Weight: $95,709.944 \mathrm{lbs}$
Resisting Moment: $8,515,823.8 \mathrm{lbs}-\mathrm{ft}$
Activating Moment: 6,701,235 lbs-ft
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 500 slip surfaces
Exit: (366.06489, 1,776.0449) ft
Entry: (444, 1,817.5) ft
Radius: 121.12055 ft
Center: $(352.06352,1,896.3535) \mathrm{ft}$

Slip Slices						
	X (ft)	Y (ft)	$\begin{aligned} & \text { PWP } \\ & \text { (psf) } \end{aligned}$	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	367.36327	1,776.2103	0	63.911433	41.50457	200
Slice 2	369.96002	1,776.5696	0	220.43805	143.15414	200
Slice 3	372.55678	1,776.9865	0	367.30928	238.53343	200
$\begin{aligned} & \text { Slice } \\ & 4 \end{aligned}$	375.15353	1,777.4616	0	504.70052	327.75635	200
Slice 5	377.75029	1,777.9955	0	632.76615	410.92314	200
$\begin{aligned} & \text { Slice } \\ & 6 \end{aligned}$	380.34704	1,778.5891	0	751.64066	488.12115	200
$\begin{aligned} & \text { Slice } \\ & 7 \end{aligned}$	382.9438	1,779.2433	0	861.43962	559.42543	200
Slice 8	385.54056	1,779.9591	0	962.26049	624.89927	200
$\begin{aligned} & \text { Slice } \\ & 9 \\ & \hline \end{aligned}$	388.13731	1,780.7377	0	1,054.1832	684.59458	200
$\begin{aligned} & \text { Slice } \\ & 10 \end{aligned}$	390.73407	1,781.5802	0	1,137.2707	738.55225	200
Slice 11	393.33082	1,782.4883	0	1,211.5694	786.80234	200
$\begin{aligned} & \hline \text { Slice } \\ & 12 \end{aligned}$	395.92758	1,783.4633	0	1,277.1089	829.36423	200
$\begin{aligned} & \text { Slice } \\ & 13 \end{aligned}$	398.52433	1,784.5071	0	1,333.9029	866.24664	200
$\begin{aligned} & \hline \text { Slice } \\ & 14 \\ & \hline \end{aligned}$	401.12109	1,785.6217	0	1,381.9482	897.44764	200
$\begin{aligned} & \text { Slice } \\ & 15 \end{aligned}$	403.71784	1,786.8092	0	1,421.2252	922.95444	200
Slice 16	406.3146	1,788.0719	0	1,451.6973	942.74322	200
$\begin{aligned} & \hline \text { Slice } \\ & 17 \end{aligned}$	408.91136	1,789.4126	0	1,473.3101	956.77879	200
Slice 18	411.50811	1,790.8343	0	1,485.9915	965.01414	200

file:///G:/SLOPE\%20RESULTS/Section\%2020-20\%20results/section\%2020-20\%20seismi... 3/24/2016

Slice 19	414.10487	$1,792.3401$	0	$1,489.6498$	967.38987	200
Slice 20	416.70162	$1,793.934$	0	$1,484.1735$	963.83356	200
Slice 21	419.2	$1,795.5527$	0	$1,404.8394$	912.31339	200
Slice 22	421.6	$1,797.1934$	0	$1,254.8025$	814.87826	200
Slice 23	424	$1,798.9209$	0	$1,100.1482$	714.44462	200
Slice 24	426.4	$1,800.7399$	0	940.86216	611.00303	200
Slice 25	428.8	$1,802.6556$	0	776.93524	504.54764	200
Slice 26	431.4	$1,804.8522$	0	621.43083	403.5619	200
Slice 27	434.2	$1,807.3582$	0	472.33446	306.73759	200
Slice 28	437	$1,810.0278$	0	314.71921	204.38105	200
Slice 29	439.8	$1,812.8767$	0	148.51278	96.445329	200
Slice 30	442.6	$1,815.9241$	0	-26.316766	-17.090308	200

file:///G:/SLOPE\%20RESULTS/Section\%2020-20\%20results/section\%2020-20\%20seismi... 3/24/2016

2 - Translational

Report generated using GeoStudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 180
Date: 3/24/2016
Time: 2:17:59 PM
Tool Version: 8.15.1.11236
File Name: Section 20-20 Static Final SSA with key for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 20-20 results\}
Last Solved Date: 3/24/2016
Last Solved Time: 2:37:00 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: $1{ }^{\circ}$
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)
F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Shear Layer
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 150 psf
Phi': $11{ }^{\circ}$
Phi-B: 0
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Tmc 100-25 ${ }^{\circ}$ (A-Bed $\left(-3^{\circ}\right)-\left(-18^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100-25 ${ }^{\circ}$ (A-Bed $\left(-3^{\circ}\right)-\left(-18^{\circ}\right)$
C-Anisotropic Strength Fn.: 100 psf- 25° (A-Bed $\left(-3^{\circ}\right)-\left(-18^{\circ}\right)$
Phi-B: 0°
TQs $100-25^{\circ}\left(\mathrm{A}-\mathrm{Bed} \mathrm{0-5}{ }^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs 100-25 (A-Bed 0-5 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 100 psf (A-Bed0 $\left.{ }^{\circ}-5^{\circ}\right)$
Phi-B: 0°

Slip Surface Limits
Left Coordinate: $(-159,1,579) \mathrm{ft}$
Right Coordinate: $(811,1,896) \mathrm{ft}$

Slip Surface Block
Left Grid
Upper Left: $(389,1,801) \mathrm{ft}$
Lower Left: (398.4302, 1,750.9572) ft

2-Translational

Lower Right: $(489,1,755) \mathrm{ft}$
X Increments: 10
Increments: 10
tarting Angle: 135
Ending Angle: 180°
Angle
Right Grid
Upper Left: $(621.85,1,800.3944) \mathrm{ft}$
Lower Left: ($642.3716,1,766.6249$) ft
ower Right: $(788,1,773) \mathrm{ft}$
X Increments: 10
Increments: 10
Starting Angle: 45°
Ending Angle: 65
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

$100 \mathrm{psf}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.5
Data Points: Inclination (${ }^{\circ}$, Modifier Factor
Data Point: (-90, 1)
Data Point: $(-0.9,1)$
Data Point: $(0,0.5)$
Data Point: $(5,0.5)$
Data Point: (5.1, 1)
Tmc 100-25 ${ }^{\circ}$ (A-Bed (-3°)-(-18 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-18.1,1)$
Data Point: $(-18,0.625)$
Data Point: $(-3,0.625)$
Data Point: $(-2.9,1)$
TQs $100-25^{\circ}$ (A-Bed 0-5 ${ }^{\circ}$ Model: Spline Data Point Function

Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
-Intercept: 0.625
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: ($0,0.625$
Data Point: $(5,0.625)$
$100 p s f-25^{\circ}$ (A-Bed (-3$\left.{ }^{\circ}\right)-\left(-18^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-18.1,1)$
Data Point: ($-18,0.5$)
Data Point. ($-3,0.5$)
Data Point: (-2.9, 1)

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	323	1,760
Point 2	350	1,775
Point 3	366	1,776
Point 4	418	1,812
Point 5	430	1,813
Point 6	458	1,822
Point 7	503	1,835
Point 8	519	1,835
Point 9	554	1,846
Point 10	563	1,846
Point 11	792	1,888
Point 12	811	1,896
Point 13	811	1,883
Point 14	811	1,852
Point 15	811	1,786
Point 16	-159	1,579
Point 17	-119	1,580
Point 18	-63	1,612
Point 19	-54	1,612
Point 20	5	1,640
Point 21	16	1,641
Point 22	84	1,674

2 - Translational

Point 23	93	1,674
Point 24	144	1,696
Point 25	153	1,697
Point 26	215	1,726
Point 27	223	1,726
Point 28	282	1,746
Point 29	297	1,748
Point 30	811	1,644
Point 31	810	1,500
Point 32	-159	1,505
Point 33	811	1,795
Point 34	811	1,796
Point 35	381	1,761
Point 36	411	1,761
Point 37	710	1,861
Point 38	379	1,763
Point 39	428	1,767
Point 40	465	1,779
Point 41	468	1,780

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Tmc $100-25^{\circ}$ $($ A-Bed $\left(-3^{\circ}\right)-(-$ $\left.18^{\circ}\right)$	$16,32,31,30,15,39,36,35,38,1,29,28,27,26,25,24,23,22,21,20,19,18,17$	$2.1207 \mathrm{e}+005$
Region 2	Shear Layer	$33,34,41,40$	320.5

file:///G:/SLOPE\%20RESULTS/Section\%2020-20\%20results/section\%2020-20\%20static... 3/24/2016

Region 3	TQs 100-25 (A-Bed $\left.0-5^{\circ}\right)$	$14,13,12,11,37,41,34$	16,934
Region 4	Fill	$3,38,35,36,39,40,41,37,10,9,8,7,6,5,4$	10,221
Region 5	TQs TO-25 (A-3ed $\left.0-5^{\circ}\right)$	$1,38,3,2$	490
Region 6	TQs $100-25^{\circ}$ (A-Bed $\left.0-5^{\circ}\right)$	$15,33,40,39$	$3,503.5$

Current Slip Surface

Slip Surface: 60,842
F of $\mathrm{s}: 2.16$
Volume: $22,175.401 \mathrm{ft}^{3}$
Weight: $2,661,048.2 \mathrm{lbs}$
Resisting Force: $846,644.37 \mathrm{lbs}$
Resisting Force: $846,644.3 \mathrm{lbs}$
Activating Force: $391,561.67 \mathrm{lbs}$
Activating Force: $391,561.67$ lbs
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 500 slip surfaces
Exit: $(365.6576,1,775.9786) \mathrm{ft}$
Entry: (802.88262, 1,892.5822) ft
Radius: 208.81205 ft
Center: $(560.94736,1,921.733)$ ft
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	365.8288	$1,775.9786$	0	1.284	0.59873903	112.5
Slice 2	372.93412	$1,775.9786$	0	578.63377	375.76916	200
Slice 3	386.79168	$1,775.9786$	0	$1,729.8764$	$1,123.3949$	200
Slice 4	399.78632	$1,776.2545$	0	$2,734.7637$	$1,775.9763$	200
Slice 5	411.92877	$1,776.8062$	0	$3,664.6129$	$2,379.8274$	200
Slice 6	424	$1,777.3547$	0	$4,156.4552$	$2,699.2336$	200
Slice 7	437	$1,777.9453$	0	$4,412.0816$	$2,865.2393$	200
Slice 8	451	$1,778.5815$	0	$4,869.4989$	$3,162.2896$	200
Slice 9	461.87786	$1,779.0757$	0	$5,209.9696$	$3,383.3938$	200

file:///G:/SLOPE\%20RESULTS/Section\%2020-20\%20results/section\%2020-20\%20static... 3/24/2016

Slice 10	466.87786	$1,779.3029$	0	$5,406.1583$	$1,050.8507$	150
Slice 11	476.75	$1,779.7515$	0	$5,693.3909$	$1,106.6831$	150
Slice 12	494.25	$1,780.5466$	0	$6,202.558$	$1,205.6551$	150
Slice 13	511	$1,781.3077$	0	$6,413.6997$	$1,246.6969$	150
Slice 14	527.75	$1,782.0687$	0	$6,651.3995$	$1,292.9011$	150
Slice 15	545.25	$1,782.8639$	0	$7,213.6828$	$1,402.1979$	150
Slice 16	558.5	$1,783.4659$	0	$7,470.3884$	$1,452.0964$	150
Slice 17	570.35	$1,784.0044$	0	$7,495.6737$	$1,457.0114$	150
Slice 18	585.05	$1,784.6723$	0	$7,595.1163$	$1,476.341$	150
Slice 19	599.75	$1,785.3402$	0	$7,694.5588$	$1,495.6707$	150
Slice 20	614.45	$1,786.0081$	0	$7,794.0014$	$1,515.0004$	150
Slice 21	629.15	$1,786.676$	0	$7,893.444$	$1,534.3301$	150
Slice 22	643.85	$1,787.344$	0	$7,992.8866$	$1,553.6598$	150
Slice 23	658.55	$1,788.0119$	0	$8,092.3292$	$1,572.9895$	150
Slice 24	673.25	$1,788.6798$	0	$8,191.7718$	$1,592.3191$	150
Slice 25	687.95	$1,789.3477$	0	$8,291.2144$	$1,611.6488$	150
Slice 26	702.65	$1,790.0157$	0	$8,390.657$	$1,630.9785$	150
Slice 27	715.49963	$1,790.5995$	0	$8,626.9316$	$1,676.9056$	150
Slice 28	726.49889	$1,791.0993$	0	$9,000.0382$	$1,749.4302$	150
Slice 29	739.76082	$1,802.4349$	0	$5,180.7499$	$4,347.1653$	225
Slice 30	754.93593	$1,824.1072$	0	$3,893.7093$	$3,267.2101$	225
Slice 31	769.76156	$1,845.2804$	0	$2,636.3095$	$2,212.1264$	225
Slice 32	784.58719	$1,866.4536$	0	$1,378.9097$	$1,157.0427$	225
Slice 33	797.44131	$1,884.8112$	0	327.26453	274.60755	225

file:///G:/SLOPE\%20RESULTS/Section\%2020-20\%20results/section\%2020-20\%20static... 3/24/2016

2 - Translational

Report generated using GeoStudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 177
Date: 3/24/2016
Time: 2:11:22 PM
Tool Version: 8.15.1.11236
File Name: Section 20-20 Seismic Final SSA with key for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 20-20 results\}
Last Solved Date: 3/24/2016
Last Solved Time: 2:27:54 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)
F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Shear Layer
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 150 psf
Phi': $11{ }^{\circ}$
Phi-B: 0
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Tmc 100-25 ${ }^{\circ}$ (A-Bed $\left(-3^{\circ}\right)-\left(-18^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100-25 ${ }^{\circ}$ (A-Bed $\left(-3^{\circ}\right)-\left(-18^{\circ}\right)$
C-Anisotropic Strength Fn.: 100 psf- 25° (A-Bed $\left(-3^{\circ}\right)-\left(-18^{\circ}\right)$
Phi-B: 0°
TQs $100-25^{\circ}\left(\mathrm{A}-\mathrm{Bed} \mathrm{0-5}{ }^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs 100-25 (A-Bed 0-5 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 100 psf (A-Bed0 $\left.{ }^{\circ}-5^{\circ}\right)$
Phi-B: 0°

Slip Surface Limits
Left Coordinate: $(-159,1,579) \mathrm{ft}$
Right Coordinate: $(811,1,896) \mathrm{ft}$

Slip Surface Block
Left Grid
Upper Left: $(389,1,801) \mathrm{ft}$
Lower Left: (398.4302, 1,750.9572) ft

2-Translational

Lower Right: $(489,1,755) \mathrm{ft}$
X Increments: 10
Increments: 10
tarting Angle: 135
Ending Angle: 180°
Angle
Right Grid
Upper Left: $(621.85,1,800.3944) \mathrm{ft}$
Lower Left: ($642.3716,1,766.6249$) ft
ower Right: $(788,1,773) \mathrm{ft}$
X Increments: 10
Increments: 10
Ending Angle: 65°
Ending Angle: 65
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

$100 \mathrm{psf}\left(\mathrm{A}-\mathrm{Bed} 0^{\circ}-5^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.5
Data Points: Inclination (${ }^{\circ}$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.5)$
Data Point: $(5,0.5)$
Data Point: (5.1, 1)
Tmc 100-25 ${ }^{\circ}$ (A-Bed (-3 ${ }^{\circ}$)-(-18 $\left.{ }^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-18.1,1)$
Data Point: $(-18,0.625)$
Data Point: $(-3,0.625)$
Data Point: $(-2.9,1)$
TQs $100-25^{\circ}$ (A-Bed 0-5 ${ }^{\circ}$ Model: Spline Data Point Function

Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
-Intercept: 0.625
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: ($0,0.625$
Data Point: $(5,0.625)$
$100 p s f-25^{\circ}$ (A-Bed (-3$\left.{ }^{\circ}\right)-\left(-18^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-18.1,1)$
Data Point: ($-18,0.5$)
Data Point. ($-3,0.5$)
Data Point: (-2.9, 1)

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	323	1,760
Point 2	350	1,775
Point 3	366	1,776
Point 4	418	1,812
Point 5	430	1,813
Point 6	458	1,822
Point 7	503	1,835
Point 8	519	1,835
Point 9	554	1,846
Point 10	563	1,846
Point 11	792	1,888
Point 12	811	1,896
Point 13	811	1,883
Point 14	811	1,852
Point 15	811	1,786
Point 16	-159	1,579
Point 17	-119	1,580
Point 18	-63	1,612
Point 19	-54	1,612
Point 20	5	1,640
Point 21	16	1,641
Point 22	84	1,674

2 - Translational

Point 23	93	1,674
Point 24	144	1,696
Point 25	153	1,697
Point 26	215	1,726
Point 27	223	1,726
Point 28	282	1,746
Point 29	297	1,748
Point 30	811	1,644
Point 31	810	1,500
Point 32	-159	1,505
Point 33	811	1,795
Point 34	811	1,796
Point 35	381	1,761
Point 36	411	1,761
Point 37	710	1,861
Point 38	379	1,763
Point 39	428	1,767
Point 40	465	1,779
Point 41	468	1,780

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Tmc $100-25^{\circ}$ $($ A-Bed $\left(-3^{\circ}\right)-(-$ $\left.18^{\circ}\right)$	$16,32,31,30,15,39,36,35,38,1,29,28,27,26,25,24,23,22,21,20,19,18,17$	$2.1207 \mathrm{e}+005$
Region 2	Shear Layer	$33,34,41,40$	320.5

file:///G:/SLOPE\%20RESULTS/Section\%2020-20\%20results/section\%2020-20\%20seismi... 3/24/2016

Region 3	TQs 100-25 (A-Bed $\left.0-5^{\circ}\right)$	$14,13,12,11,37,41,34$	16,934
Region 4	Fill	$3,38,35,36,39,40,41,37,10,9,8,7,6,5,4$	10,221
Region 5	TQs (A0-25 (A-Bed $\left.0-5^{\circ}\right)$	$1,38,3,2$	490
Region 6	TQs $100-25^{\circ}$ (A-Bed $\left.0-5^{\circ}\right)$	$15,33,40,39$	$3,503.5$

Current Slip Surface

Slip Surface: 60,842
F of S: 1.12
Volume: $22,175.401 \mathrm{ft}^{3}$
Weight: $2,661,048.2 \mathrm{lbs}$
Resisting Force: $795,760.17 \mathrm{lbs}$
Resisting Force: $795,760.17 \mathrm{lbs}$
Activating Force: $710,791.63 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 500 slip surfaces
Exit: (365.6576, 1,775.9786) ft
Entry: (802.88262, 1,892.5822) f
Radius: 208.81205 ft
Center: $(560.94736,1,921.733)$ ft
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	365.8288	$1,775.9786$	0	1.284	0.59873903	112.5
Slice 2	372.93412	$1,775.9786$	0	578.63377	375.76916	200
Slice 3	386.79168	$1,775.9786$	0	$1,729.8764$	$1,123.3949$	200
Slice 4	399.78632	$1,776.2545$	0	$2,696.4754$	$1,751.1116$	200
Slice 5	411.92877	$1,776.8062$	0	$3,614.6239$	$2,347.3642$	200
Slice 6	424	$1,777.3547$	0	$4,100.2771$	$2,662.7511$	200
Slice 7	437	$1,777.9453$	0	$4,352.6868$	$2,826.6678$	200
Slice 8	451	$1,778.5815$	0	$4,804.3482$	$3,119.9802$	200
Slice 9	461.87786	$1,779.0757$	0	$5,140.5345$	$3,338.3022$	200

file:///G:/SLOPE\%20RESULTS/Section\%2020-20\%20results/section\%2020-20\%20seismi... 3/24/2016

Slice 10	466.87786	$1,779.3029$	0	$5,382.4596$	$1,046.2442$	150
Slice 11	476.75	$1,779.7515$	0	$5,668.5903$	$1,101.8623$	150
Slice 12	494.25	$1,780.5466$	0	$6,175.8043$	$1,200.4547$	150
Slice 13	511	$1,781.3077$	0	$6,386.136$	$1,241.3391$	150
Slice 14	527.75	$1,782.0687$	0	$6,622.924$	$1,287.366$	150
Slice 15	545.25	$1,782.8639$	0	$7,183.0503$	$1,396.2435$	150
Slice 16	558.5	$1,783.4659$	0	$7,438.7712$	$1,445.9506$	150
Slice 17	570.35	$1,784.0044$	0	$7,463.9594$	$1,450.8467$	150
Slice 18	585.05	$1,784.6723$	0	$7,563.0206$	$1,470.1023$	150
Slice 19	599.75	$1,785.3402$	0	$7,662.0817$	$1,489.3578$	150
Slice 20	614.45	$1,786.0081$	0	$7,761.1428$	$1,508.6133$	150
Slice 21	629.15	$1,786.676$	0	$7,860.204$	$1,527.8689$	150
Slice 22	643.85	$1,787.344$	0	$7,959.2651$	$1,547.1244$	150
Slice 23	658.55	$1,788.0119$	0	$8,058.3262$	$1,566.3799$	150
Slice 24	673.25	$1,788.6798$	0	$8,157.3873$	$1,585.6355$	150
Slice 25	687.95	$1,789.3477$	0	$8,256.4485$	$1,604.891$	150
Slice 26	702.65	$1,790.0157$	0	$8,355.5096$	$1,624.1465$	150
Slice 27	715.49963	$1,790.5995$	0	$8,590.8778$	$1,669.8975$	150
Slice 28	726.49889	$1,791.0993$	0	$8,962.5531$	$1,742.1438$	150
Slice 29	739.76082	$1,802.4349$	0	$3,806.0107$	$3,193.6222$	225
Slice 30	754.93593	$1,824.1072$	0	$2,843.6865$	$2,386.1363$	225
Slice 31	769.76156	$1,845.2804$	0	$1,903.5247$	$1,597.2469$	225
Slice 32	784.58719	$1,866.4536$	0	963.36303	808.35756	225
Slice 33	797.44131	$1,884.8112$	0	177.04466	148.55811	225

file:///G:/SLOPE\%20RESULTS/Section\%2020-20\%20results/section\%2020-20\%20seismi... 3/24/2016

2 - Translational

$\stackrel{\text { Report generated using Geostudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd. }}{\text { It }}$

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 183
Date: 3/24/2016
Time: 2:21:39 PM
Tool Version: 8.15.1.11236
File Name: Section 20-20 Static Temporary Final SSA without key for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 20-20 results
Last Solved Date: 3/24/2016
Last Solved Date. 3/24/2016

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
Fof S Tolerance: 0
Minimum Slip Surface Depth: 0.1 ft

Materials

Shear Layer
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 150 psf
Phi': 11°
Phi-B: 0°
Tmc 100-25 ${ }^{\circ}$ (A-Bed $\left(-3^{\circ}\right)-\left(-18^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 100-25 (A-Bed (-3°) $-\left(-18^{\circ}\right)$
C-Anisotropic Strength Fn.: 100 psf- 25° (A-Bed $\left(-3^{\circ}\right)-\left(-18^{\circ}\right)$
Phi-B: 0°
TQs $100-25^{\circ}$ (A-Bed 0-5 ${ }^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': $40{ }^{\circ}$
Phi-Anisotropic Strength Fn.: TQs 100-25 (A-Bed 0-5 ${ }^{\circ}$)
C-Anisotropic Strength Fn.: 100 psf (A-Bed0 $\left.0^{\circ}-5^{\circ}\right)$
Phi-B: 0°

Slip Surface Limits

Left Coordinate: (-159, 1,579) ft
Right Coordinate: $(811,1,896) \mathrm{ft}$

Slip Surface Block

Upper Left: $(389,1,801)$ ft
Lower Left: (398.4302, 1,750.9572) ft
ower Right: $(489,1,755)$ ft
X Increments: 10
Increments: 10
Starting Angle: 135°
Ending Angle: 180°

2-Translational

Angle Increments: 2
Right Grid
Upper Left: $(621.85,1,800.3944) \mathrm{ft}$
Lower Left: ($642.3716,1,766.6249$) ft
Lower Right: $(788,1,773) \mathrm{ft}$
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

100 psf (A-Bed0 ${ }^{\circ}-5^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.5
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: $(0,0.5)$
Data Point: $(5,0.5)$
Data Point: $(5.1,1)$
Tmc 100-25 ${ }^{\circ}$ (A-Bed (-3°)-(-18 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(-18.1,1)$
Data Point: $(-18,0.625)$
Data Point: $(-3,0.625)$
Data Point: $(-2.9,1)$
TQs 100-25 (A-Bed 0-5 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Segment Curvature: 0%
Y-Intercept: 0.625

Data Points: Inclination (${ }^{\circ}$) Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-0.9,1)$
Data Point: ($0,0.625$)
Data Point: $(5,0.625)$
Data Point: $(5.1,1)$
100 psf- 25° (A-Bed $\left(-3^{\circ}\right)-\left(-18^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: (-18.1, 1)
Data Point: $(-18,0.5)$
Data Point: $(-3,0.5)$
Data Point: (-2.9, 1)

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	323	1,760
Point 2	350	1,775
Point 3	366	1,776
Point 4	792	1,888
Point 5	811	1,896
Point 6	811	1,883
Point 7	811	1,852
Point 8	811	1,786
Point 9	-159	1,579
Point 10	-119	1,580
Point 11	-63	1,612
Point 12	-54	1,612
Point 13	5	1,640
Point 14	16	1,641
Point 15	84	1,674
Point 16	93	1,674
Point 17	144	1,696
Point 18	153	1,697
Point 19	215	1,726
Point 20	223	1,726
Point 21	282	1,746
Point 22	297	1,748
Point 23	811	1,644
Point 24	810	1,500

2 - Translational

Point 25	-159	1,505
Point 26	811	1,795
Point 27	811	1,796
Point 28	381	1,761
Point 29	411	1,761
Point 30	710	1,861
Point 31	379	1,763
Point 32	428	1,767
Point 33	465	1,779
Point 34	468	1,780

Regions

	Material	Points	Area (ft^{2})
$\begin{aligned} & \text { Region } \\ & 1 \end{aligned}$	Tmc $100-25^{\circ}$ (A-Bed $\left(-3^{\circ}\right)$-(- 18)	9,25,24,23,8,32,29,28,31,1,22,21,20,19,18,17,16,15,14,13,12,11,10	$2.1207 \mathrm{e}+005$
$\begin{aligned} & \text { Region } \\ & 2 \end{aligned}$	Shear Layer	26,27,34,33	320.5
$\begin{aligned} & \text { Region } \\ & 3 \end{aligned}$	TQs 100-25 ${ }^{\circ}$ (A-Bed $0-5^{\circ}$)	7,6,5,4,30,34,27	16,934
$\begin{aligned} & \text { Region } \\ & 4 \end{aligned}$	$\begin{aligned} & \text { TQs } \\ & 100-25^{\circ} \\ & (\mathrm{A}-\mathrm{Bed} \\ & \left.0-5^{\circ}\right) \end{aligned}$	1,31,3,2	490
$\begin{aligned} & \text { Region } \\ & 5 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { TQs } \\ \text { 100-25 } \\ \text { (A-Bed } \\ \left.0-5^{\circ}\right) \\ \hline \end{array}$	8,26,33,32	3,503.5

Current Slip Surface

Slip Surface: 71,732
Fof $\mathrm{S}: 1.45$
Volume: $12,949.205 \mathrm{ft}^{3}$

Weight: $1,553,904.6 \mathrm{lbs}$
Resisting Force: 432,084.76 lbs
Resisting Force: $432,084.76 \mathrm{lbs}$
Activating Force: $298,222.81 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Analysis): 1 of 131,769 slip surf
F of S Rank (Query): 1 of 500 slip surfaces
F of S Rank (Query): 1 of 500 slip s
Exit: ($468.06394,1,780.0214$) ft
Exit: $(468.06394,1,780.0214) \mathrm{ft}$
Entry: $(802.88262,1,892.5822) \mathrm{ft}$
Entry: (802.88262, 1,8
Radius: 177.45619 ft
Center: $(607.09242,1,920.7223) \mathrm{ft}$
Slip Slices

	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	468.26135	$1,780.0214$	0	7.9291643	3.69743	112.5
Slice 2	476.37183	$1,780.0214$	0	333.68902	64.862576	150
Slice 3	489.92778	$1,780.2794$	0	837.28115	162.75097	150
Slice 4	501.21353	$1,780.7955$	0	$1,226.2476$	238.35839	150
Slice 5	512.49929	$1,781.3116$	0	$1,615.2141$	313.96581	150
Slice 6	523.78504	$1,781.8277$	0	$2,004.1805$	389.57323	150
Slice 7	535.0708	$1,782.3438$	0	$2,393.147$	465.18065	150
Slice 8	546.35655	$1,782.8599$	0	$2,782.1134$	540.78807	150
Slice 9	557.64231	$1,783.376$	0	$3,171.0799$	616.39549	150
Slice 10	568.92806	$1,783.8921$	0	$3,560.0464$	692.00291	150
Slice 11	580.21382	$1,784.4082$	0	$3,949.0128$	767.61033	150
Slice 12	591.49957	$1,784.9243$	0	$4,337.9793$	843.21775	150
Slice 13	602.78533	$1,785.4403$	0	$4,726.9457$	918.82517	150
Slice 14	614.07108	$1,785.9564$	0	$5,115.9122$	994.43259	150
Slice 15	625.35684	$1,786.4725$	0	$5,504.8786$	$1,070.04$	150
Slice 16	636.64259	$1,786.9886$	0	$5,893.8451$	$1,145.6474$	150
Slice 17	647.92835	$1,787.5047$	0	$6,282.8116$	$1,221.2549$	150
Slice 18	659.2141	$1,788.0208$	0	$6,671.778$	$1,296.8623$	150

file:///G:/SLOPE\%20RESULTS/Section\%2020-20\%20results/Latest\%20Update\%20-\%20... 3/24/2016

2 - Translational

Slice 19	670.49986	$1,788.5369$	0	$7,060.7445$	$1,372.4697$	150
Slice 20	681.78561	$1,789.053$	0	$7,449.7109$	$1,448.0771$	150
Slice 21	693.07137	$1,789.5691$	0	$7,838.6774$	$1,523.6845$	150
Slice 22	704.35712	$1,790.0851$	0	$8,227.6438$	$1,599.292$	150
Slice 23	715.49963	$1,790.5947$	0	$8,608.1035$	$1,673.2458$	150
Slice 24	726.49889	$1,791.0977$	0	$8,980.0563$	$1,745.5461$	150
Slice 25	732.34801	$1,791.8483$	0	$7,574.0834$	$1,472.2527$	150
Slice 26	738.62774	$1,800.8167$	0	$4,439.6407$	$3,725.3009$	225
Slice 27	750.48824	$1,817.7552$	0	$3,585.5992$	$3,008.675$	225
Slice 28	762.34875	$1,834.6938$	0	$2,731.5577$	$2,292.0491$	225
Slice 29	774.20925	$1,851.6323$	0	$1,877.5163$	$1,575.4232$	225
Slice 30	786.06975	$1,868.5709$	0	$1,023.4748$	858.79732	225
Slice 31	797.44131	$1,884.8112$	0	237.36695	199.17452	225

Section 21-21 Static Final SSA with key for Skyline Ranch.gsz

Section 21-21 Static Final SSA with key for Skyline Ranch.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/24/2016 11:17:07 AM

1 - Circular Mode of Failure

Reporenad

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 139
Date: 3/24/2016
Time: 11:17:07 AM
Tool Version: 8.15.1.11236
File Name: Section 21-21 Static Final SSA with key for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 21-21 results\}
Last Solved Date: 3/24/2016
Last Solved Time: 11:17:14 AM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Left to Right
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $\mathbf{1 0 0 - 2 5}$ (A-bedding 4-21)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs 100-25 (A-bedding 4-21 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 100 psf- 25° (A-bedding 4-21 ${ }^{\circ}$)
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33
Phi-B: 0°
Tmc 150-17 ${ }^{\circ}$ (A-bed (-2°)-($\left.2^{\circ}\right)$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}$ (A-bed $\left.\left(-2^{\circ}\right)-\left(2^{\circ}\right)\right)$
C-Anisotropic Strength Fn.: 150psf-17 $\left(A-b e d ~\left(-2^{\circ}\right)-\left(2^{\circ}\right)\right)$
Phi-B: 0°

Slip Surface Entry and Exit
Left Projection: Range
Left-Zone Left Coordinate: $(-39.1067,1,781.3158) \mathrm{ft}$
Left-Zone Right Coordinate: (349.9651, 1,740.2631) ft
Left-Zone Increment: 50
Right Projection: Range
Right-Zone Left Coordinate: ($380.965,1,725.0172$) ft
Right-Zone Right Coordinate: $(739.0283,1,605) \mathrm{ft}$
Right-Zone Increment: 10
Radius Increments: 50

Slip Surface Limits

Left Coordinate: $(-200,1,780) \mathrm{ft}$
Right Coordinate: $(811,1,605) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc $\mathbf{1 5 0 - 1 7}{ }^{\circ}$ (A-bed $\left(-2^{\circ}\right)-\left(2^{\circ}\right)$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.425
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-2.1,1)$
Data Point: $(-2,0.425)$
Data Point: $(2,0.425)$
Data Point: $(2.1,1)$
TQs 100-25 (A-bedding 4-21 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: $(4,0.625)$
Data Point: (21, 0.625
Data Point: $(21.1,1)$
150psf-17 ${ }^{\circ}$ (A-bed $\left(-2^{\circ}\right)-\left(2^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.75
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-2.1,1)$
Data Point: $(-2,0.75)$
Data Point: $(2,0.75)$
Data Point: $(2.1,1)$

100 psf- 25° (A-bedding $4-21^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.444)$
Data Point: (21, 0.444)
Data Point: $(21.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	183	1,679
Point 2	-200	1,780
Point 3	-89	1,781
Point 4	69	1,782
Point 5	260	1,783
Point 6	306	1,755
Point 7	320	1,755
Point 8	381	1,725
Point 9	400	1,726
Point 10	462	1,699
Point 11	694	1,605
Point 12	634	1,634
Point 13	622	1,634
Point 14	558	1,665
Point 15	536	1,664
Point 16	483	1,694
Point 17	-199	1,660
Point 18	811	1,605
Point 19	-200	1,502
Point 20	474	1,699
Point 21	811	1,500
Point 22	669	1,580
Point 23	609	1,580
Point 24	205	1,783
Point 25	394.7786	$1,689.3389$

Regions
Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$

$\begin{aligned} & \text { Region } \\ & 1 \end{aligned}$	Tmc 150-170 (A-bed $\left.\left(-2^{\circ}\right)-\left(2^{\circ}\right)\right)$	17,19,21,18,11,22,23,25,1	$1.5107 \mathrm{e}+005$
$\begin{aligned} & \text { Region } \\ & 2 \end{aligned}$	TQs 100-25 (A-bedding 4-21 ${ }^{\circ}$)	17,1,25,24,4,3,2	54,880
$\begin{aligned} & \text { Region } \\ & 3 \end{aligned}$	Fill	11,12,13,14,15,16,20,10,9,8,7,6,5,24,25,23,22	18,436

Current Slip Surface

Slip Surface: 20,103
Fof S: 1.92
Volume: 11,340.004 ft^{3}
Weight: $1,360,800.4 \mathrm{lbs}$
Resisting Moment: $8.7742978 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
Activating Moment: $4.5727768 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
F of S Rank (Analysis): 1 of 28,611 slip surfaces
F of S Rank (Query): 1 of 150 slip surfaces
Exit: (692.11664, 1,605.9103) ft
Entry: (241.1374, 1,783) ft
Radius: 943.06163 ft
Center: (799.75699, 2,542.8088) ft
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	250.5687	$1,776.2432$	0	592.73178	384.92452	200
Slice 2	267.66667	$1,764.2467$	0	$1,315.4245$	854.24665	200
Slice 3	283	$1,753.9847$	0	$1,419.3917$	921.76373	200
Slice 4	298.33333	$1,744.1489$	0	$1,482.2639$	962.59344	200
Slice 5	313	$1,735.117$	0	$1,930.1136$	$1,253.4304$	200
Slice 6	327.625	$1,726.4884$	0	$2,435.1886$	$1,581.43$	200
Slice 7	342.875	$1,717.8554$	0	$2,568.8728$	$1,668.2455$	200
Slice 8	358.125	$1,709.591$	0	$2,666.2898$	$1,731.5089$	200
Slice 9	373.375	$1,701.6842$	0	$2,727.7958$	$1,771.4513$	200
Slice 10	390.5	$1,693.2426$	0	$3,285.7949$	$2,133.8202$	200
Slice 11	407.75	$1,685.124$	0	$3,856.7852$	$2,504.6256$	200
	423.25	$1,678.207$	0	$3,900.7414$	$2,533.1711$	200

Slice 12						
Slice 13	438.75	$1,671.6206$	0	$3,909.8234$	$2,539.069$	200
Slice 14	454.25	$1,665.3575$	0	$3,884.2063$	$2,522.4331$	200
Slice 15	468	$1,660.0509$	0	$4,112.4291$	$2,670.6427$	200
Slice 16	478.5	$1,656.1655$	0	$4,278.4935$	$2,778.4861$	200
Slice 17	489.625	$1,652.228$	0	$4,049.7653$	$2,629.9483$	200
Slice 18	502.875	$1,647.7235$	0	$3,748.4572$	$2,434.2765$	200
Slice 19	516.125	$1,643.4369$	0	$3,420.2104$	$2,221.1106$	200
Slice 20	529.375	$1,639.3648$	0	$3,065.0483$	$1,990.4656$	200
Slice 21	547	$1,634.3217$	0	$3,283.675$	$2,132.4435$	200
Slice 22	566	$1,629.2144$	0	$3,499.9805$	$2,272.9139$	200
Slice 23	582	$1,625.2689$	0	$3,099.4311$	$2,012.7941$	200
Slice 24	598	$1,621.6181$	0	$2,661.0562$	$1,728.1101$	200
Slice 25	614	$1,618.2586$	0	$2,184.7026$	$1,418.7625$	200
Slice 26	628	$1,615.5399$	0	$2,066.5586$	$1,342.0388$	200
Slice 27	641.26458	$1,613.19$	0	$1,945.9787$	$1,263.7334$	200
Slice 28	655.79374	$1,610.8293$	0	$1,425.9278$	926.00832	200
Slice 29	670.3229	$1,608.7005$	0	873.86398	567.4939	200
Slice 30	684.85206	$1,606.8021$	0	289.53849	188.0285	200
	500					

Section 21-21 Seismic Final SSA with key for Skyline Ranch.gsz

Section 21-21 Seismic Final SSA with key for Skyline Ranch.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/24/2016 11:09:07 AM

Materials
\square TQs 100-25 (A-bedding 4-21$)$
\square Fill
\square Tmc 150-17 (A-bed $\left.\left(-2^{\circ}\right)-\left(2^{\circ}\right)\right)$

Seimic load
Horizontal: 0.15
Vertical: 0.0
Keyway depth 25^{\prime}
width 60', backcut slope 2H:1V

Name: TQs $100-25^{\circ}\left(\right.$ A-bedding $\left.4-21^{\circ}\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psi
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs 100-25 ${ }^{\circ}$ (A-bedding 4-21 C-Anisotropic Strength Fn.: 100psf- 25° (A-bedding 4-21 ${ }^{\circ}$)

Name: Fill

Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
1.32

Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}$ (A-bed $\left(-2^{\circ}\right)-\left(2^{\circ}\right)$ C-Anisotropic Strength Fn.: 150 pst-17 ${ }^{\circ}\left(\right.$ A-bed $\left.\left(-2^{\circ}\right)-\left(2^{\circ}\right)\right)$
\qquad ${ }^{029} 6$

LGC

LGC Valley, Inc

GEOTECHNICAL CONSULTING
8532 Constellation Road, Valencia, CA 91355 Phone 661-702-8474, Fax 661-702-8475

Skyline Ranch Development project, Tract 60922 Los Angeles CA

Project No: 153035-01 Engineer: BAS Date: March 2016

1 - Circular Mode of Failure

Reportenad

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 136
Date: 3/24/2016
Time: 11:09:07 AM
Tool Version: 8.15.1.11236
File Name: Section 21-21 Seismic Final SSA with key for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 21-21 results\}
Last Solved Date: 3/24/2016
Last Solved Time: 11:09:12 AM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Left to Right
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $\mathbf{1 0 0 - 2 5}$ (A-bedding 4-21)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs 100-25 (A-bedding 4-21 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 100 psf- 25° (A-bedding 4-21 ${ }^{\circ}$)
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33
Phi-B: 0°
Tmc 150-17 ${ }^{\circ}$ (A-bed (-2°)-($\left.2^{\circ}\right)$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}$ (A-bed $\left.\left(-2^{\circ}\right)-\left(2^{\circ}\right)\right)$
C-Anisotropic Strength Fn.: 150psf-17 $\left(A-b e d ~\left(-2^{\circ}\right)-\left(2^{\circ}\right)\right)$
Phi-B: 0°

Slip Surface Entry and Exit
Left Projection: Range
Left-Zone Left Coordinate: $(-39.1067,1,781.3158) \mathrm{ft}$
Left-Zone Right Coordinate: (349.9651, 1,740.2631) ft
Left-Zone Increment: 50
Right Projection: Range
Right-Zone Left Coordinate: ($380.965,1,725.0172$) ft
Right-Zone Right Coordinate: $(739.0283,1,605) \mathrm{ft}$
Right-Zone Increment: 10
Radius Increments: 50

Slip Surface Limits

Left Coordinate: $(-200,1,780) \mathrm{ft}$
Right Coordinate: $(811,1,605) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc 150-17 ${ }^{\circ}$ (A-bed $\left.\left(-2^{\circ}\right)-\left(2^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.425
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-2.1,1)$
Data Point: $(-2,0.425)$
Data Point: $(2,0.425)$
Data Point: $(2.1,1)$
TQs 100-25 (A-bedding 4-21 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Facto
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.625)$
Data Point: (21, 0.625
Data Point: $(21.1,1)$
150psf-17 ${ }^{\circ}$ (A-bed $\left(-2^{\circ}\right)-\left(2^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.75
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-2.1,1)$
Data Point: $(-2,0.75)$
Data Point: $(2,0.75)$
Data Point: $(2.1,1)$

100 psf- 25° (A-bedding $4-21^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.444)$
Data Point: (21, 0.444)
Data Point: $(21.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	183	1,679
Point 2	-200	1,780
Point 3	-89	1,781
Point 4	69	1,782
Point 5	260	1,783
Point 6	306	1,755
Point 7	320	1,755
Point 8	381	1,725
Point 9	400	1,726
Point 10	462	1,699
Point 11	694	1,605
Point 12	634	1,634
Point 13	622	1,634
Point 14	558	1,665
Point 15	536	1,664
Point 16	483	1,694
Point 17	-199	1,660
Point 18	811	1,605
Point 19	-200	1,502
Point 20	474	1,699
Point 21	811	1,500
Point 22	669	1,580
Point 23	609	1,580
Point 24	205	1,783
Point 25	394.7786	$1,689.3389$

Regions
Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$

$\begin{aligned} & \text { Region } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Tmc } 150-17^{\circ} \text { (A-bed } \\ & \left.\left(-2^{\circ}\right)-\left(2^{\circ}\right)\right) \end{aligned}$	17,19,21,18,11,22,23,25,1	$1.5107 \mathrm{e}+005$
$\begin{aligned} & \text { Region } \\ & 2 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { TQs } 100-25^{\circ} \\ \text { (A-bedding 4-21 }) \\ \hline \end{array}$	17,1,25,24,4,3,2	54,880
$\begin{aligned} & \text { Region } \\ & 3 \end{aligned}$	Fill	11,12,13,14,15,16,20,10,9,8,7,6,5,24,25,23,22	18,436

Current Slip Surface

Slip Surface: 19,541
Fof S: 1.32
Volume: $11,409.938 \mathrm{ft}^{3}$
Weight: 1,369,192.5 lbs
Resisting Moment: 9.3039048e+008 lbs-ft
Activating Moment: $7.0610888 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
F of S Rank (Analysis): 1 of 28,611 slip surfaces
F of S Rank (Query): 1 of 150 slip surfaces
Exit: (691.72283, 1,606.1006) ft
Entry: $(233.13026,1,783) \mathrm{ft}$
Radius: $1,045.7308 \mathrm{ft}$
Center: (828.23993, 2,642.8821) ft
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	239.84769	$1,778.4278$	0	333.88252	216.82585	200
Slice 2	253.28256	$1,769.4337$	0	$1,154.6236$	749.82134	200
Slice 3	267.66667	$1,760.1432$	0	$1,590.1902$	$1,032.6816$	200
Slice 4	283	$1,750.5899$	0	$1,627.7071$	$1,057.0454$	200
Slice 5	298.33333	$1,741.3985$	0	$1,631.6461$	$1,059.6033$	200
Slice 6	313	$1,732.9283$	0	$2,004.7822$	$1,301.9208$	200
Slice 7	327.625	$1,724.8069$	0	$2,437.2277$	$1,582.7542$	200
Slice 8	342.875	$1,716.6534$	0	$2,522.4028$	$1,638.0675$	200
Slice 9	358.125	$1,708.8201$	0	$2,577.5842$	$1,673.9027$	200
Slice 10	373.375	$1,701.2989$	0	$2,602.8155$	$1,690.2881$	200
Slice 11	390.5	$1,693.2363$	0	$3,099.4505$	$2,012.8067$	200
	407.75	$1,685.4536$	0	$3,613.7828$	$2,346.818$	200

Slice 12						
Slice 13	423.25	$1,678.7943$	0	$3,635.3004$	$2,360.7917$	200
Slice 14	438.75	$1,672.4283$	0	$3,627.1409$	$2,355.4928$	200
Slice 15	454.25	$1,666.3498$	0	$3,589.2406$	$2,330.8801$	200
Slice 16	468	$1,661.18$	0	$3,797.7081$	$2,466.2605$	200
Slice 17	478.5	$1,657.3813$	0	$3,951.1439$	$2,565.9029$	200
Slice 18	491.83333	$1,652.783$	0	$3,679.8981$	$2,389.7538$	200
Slice 19	509.5	$1,646.9546$	0	$3,280.7772$	$2,130.5616$	200
Slice 20	527.16667	$1,641.4718$	0	$2,838.3276$	$1,843.2315$	200
Slice 21	547	$1,635.7444$	0	$2,996.9507$	$1,946.2425$	200
Slice 22	566	$1,630.6002$	0	$3,214.3646$	$2,087.4328$	200
Slice 23	582	$1,626.5894$	0	$2,839.3644$	$1,843.9048$	200
Slice 24	598	$1,622.8453$	0	$2,429.7554$	$1,577.9016$	200
Slice 25	614	$1,619.365$	0	$1,985.2095$	$1,289.2101$	200
Slice 26	628	$1,616.5199$	0	$1,887.0695$	$1,225.4773$	200
Slice 27	641.21535	$1,614.0377$	0	$1,789.5293$	$1,162.1339$	200
Slice 28	655.64606	$1,611.5186$	0	$1,309.2381$	850.22917	200
Slice 29	670.07677	$1,609.2072$	0	799.38585	519.12724	200
Slice 30	684.50748	$1,607.1019$	0	259.61725	168.59741	200
	500					

Section 21-21 Static Final SSA with key for Skyline Ranch.gsz

Section 21-21 Static Final SSA with key for Skyline Ranch.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/24/2016 10:48:15 AM

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 138
Date: 3/24/2016
Time: 10:48:15 AM
Tool Version: 8.15.1.11236
File Name: Section 21-21 Static Final SSA with key for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 21-21 results\}
Last Solved Date: 3/24/2016
Last Solved Time: 11:13:44 AM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Left to Right
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $100-25^{\circ}$ (A-bedding 4-21 ${ }^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs 100-25 (A-bedding 4-21 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 100 psf- 25° (A-bedding 4-21 ${ }^{\circ}$)
Phi-B: 0°
Fill
Model: Mohr-Coulom
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0
Tmc $150-17^{\circ}$ (A-bed $\left.\left(-2^{\circ}\right)-\left(2^{\circ}\right)\right)$
Model: Anisotropic Fr
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}$ (A-bed $\left.\left(-2^{\circ}\right)-\left(2^{\circ}\right)\right)$
C-Anisotropic Strength Fn.: 150psf-17 $\left(\right.$ A-bed $\left.\left(-2^{\circ}\right)-\left(2^{\circ}\right)\right)$
Phi-B: 0°

Slip Surface Limits
Left Coordinate: $(-200,1,780)$ ft
Right Coordinate: $(811,1,605) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: ($345.9397,1,691.465$) it
Lower Left: (295.0306, 1,576.1191) ft
Lower Right: (409.9866, 1,529.9807) ft
X Increments: 10
Y Increments: 10

2-Translational

Starting Angle: 115°
Ending Angle: 135°
Angle Increments: 2
Right Grid
Upper Left: (644.9611, 1,663.7267) ft
Lower Left: $(598.3451,1,550.8695) \mathrm{ft}$
Lower Right: (717.2158, 1,501.4945) ft
X Increments: 10
Y Increments: 10
Starting Angle: 0°
Ending Angle: 45°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc $150-17^{\circ}$ (A-bed $\left(-2^{\circ}\right)-\left(2^{\circ}\right)$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

Curve Fit to Data: 100%

Segment Curvature: 0 \%
Y-Intercept: 0.425
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-2.1,1)$
Data Point: $(-2,0.425)$
Data Point: $(2,0.425)$
Data Point: $(2.1,1)$
TQs $100-25^{\circ}$ (A-bedding 4-21 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(3.9,1)$
Data Point: $(4,0.625)$
Data Point: $(21,0.625)$
Data Point: $(21.1,1)$
$150 p s f-17^{\circ}\left(\right.$ A-bed $\left.\left(-2^{\circ}\right)-\left(2^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

2 - Translational

Curve Fit to Data: 100 \%

Segment Curvature: 0%
Y-Intercept: 0.75
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-2.1,1)$
Data Point: $(-2,0.75)$
Data Point: $(2,0.75)$
Data Point: $(2.1,1)$
100psf- 25° (A-bedding 4-21 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.444)$
Data Point: $(21,0.444)$
Data Point: $(21.1,1)$

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	183	1,679
Point 2	-200	1,780
Point 3	-89	1,781
Point 4	69	1,782
Point 5	260	1,783
Point 6	306	1,755
Point 7	320	1,755
Point 8	381	1,725
Point 9	400	1,726
Point 10	462	1,699
Point 11	694	1,605
Point 12	634	1,634
Point 13	622	1,634
Point 14	558	1,665
Point 15	536	1,664
Point 16	483	1,694
Point 17	-199	1,660
Point 18	811	1,605
Point 19	-200	1,502
Point 20	474	1,699
Point 21	811	1,500

2 - Translational

Regions

Material Points Area $\left(\mathrm{ft}^{2}\right)$ Region 1 Tmc $150-17^{\circ}\left(\mathrm{A}\right.$-bed $\left(-2^{\circ}\right)$ $\left.-\left(2^{\circ}\right)\right)$ $17,19,21,18,11,22,23,25,1$ $1.5107 \mathrm{e}+005$ Region 2 TQs $100-25^{\circ}($ A-bedding $\left.4-21^{\circ}\right)$ $17,1,25,24,4,3,2$ 54,880 Region 3 Fill $11,12,13,14,15,16,20,10,9,8,7,6,5,24,25,23,22$ 18,436

Current Slip Surface

Slip Surface: 41,930
F of S : 1.74
Volume: $40,416.641 \mathrm{ft}^{3}$
Weight: $4,849,996.9$ Ibs
Resisting Force: $1,895,838.6 \mathrm{lbs}$
Activating Force: $1,087,812.1 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 150 slip surfaces
Exit: (758.94849, 1,605) ft
Entry: $(230.99836,1,783) \mathrm{ft}$
Radius: 290.73895 ft
Center: $(539.98336,1,827.5) \mathrm{ft}$

Slip Slices

Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	237.86261	$1,773.1968$	0	660.01214	428.6169	200
Slice 2	252.36343	$1,752.4875$	0	$2,058.0993$	$1,726.9504$	225
Slice 3	269.9566	$1,727.3619$	0	$3,412.4242$	$2,863.3638$	225
Slice 4	289.86979	$1,698.9229$	0	$4,571.5966$	$3,836.025$	225
Slice 5	302.91319	$1,680.295$	0	$5,343.0266$	$4,483.3316$	200
	313	$1,665.8895$	0	$6,232.8712$	$5,229.9999$	200

Slice 6						
Slice 7	327.96355	$1,644.5193$	0	$7,472.7242$	$6,270.3601$	200
Slice 8	343.89067	$1,621.7731$	0	$8,532.115$	$7,159.2946$	200
Slice 9	359.81777	$1,599.0268$	0	$9,591.5059$	$8,048.229$	200
Slice 10	374.39067	$1,587.4508$	0	$16,802.629$	$5,137.0792$	150
Slice 11	387.8893	$1,587.0365$	0	$16,507.389$	$5,046.8154$	150
Slice 12	397.3893	$1,586.745$	0	$16,601.867$	$5,075.7002$	150
Slice 13	407.75	$1,586.427$	0	$16,253.394$	$4,969.1613$	150
Slice 14	423.25	$1,585.9513$	0	$15,504.521$	$4,740.2079$	150
Slice 15	438.75	$1,585.4756$	0	$14,755.649$	$4,511.2545$	150
Slice 16	454.25	$1,584.9999$	0	$14,006.776$	$4,282.3011$	150
Slice 17	468	$1,584.5778$	0	$13,654.318$	$4,174.544$	150
Slice 18	478.5	$1,584.2556$	0	$13,394.392$	$4,095.0765$	150
Slice 19	491.83333	$1,583.8464$	0	$12,548.065$	$3,836.3285$	150
Slice 20	509.5	$1,583.3042$	0	$11,419.223$	$3,491.2067$	150
Slice 21	527.16667	$1,582.762$	0	$10,290.38$	$3,146.0849$	150
Slice 22	547	$1,582.1533$	0	$9,825.9316$	$3,004.0888$	150
Slice 23	566.413	$1,581.5574$	0	$9,470.3418$	$2,895.374$	150
Slice 24	583.23901	$1,581.041$	0	$8,559.2166$	$2,616.8151$	150
Slice 25	600.06501	$1,580.5246$	0	$7,648.0915$	$2,338.2562$	150
Slice 26	612.81839	$1,580.1332$	0	$6,914.8939$	$4,490.5846$	200
Slice 27	619.57939	$1,579.9257$	0	$6,591.3916$	$2,015.1906$	150
Slice 28	628	$1,579.6673$	0	$6,482.2948$	$1,981.8364$	150
Slice 29	642.75	$1,579.2146$	0	$6,031.5507$	$1,844.0301$	150

file:///G:/SLOPE\%20RESULTS/Section\%2021-21\%20results/section\%2021-21\%20static... 3/24/2016

2-Translational

Slice 30	660.25	$1,578.6775$	0	$5,086.1046$	$1,554.9782$	150
Slice 31	681.5	$1,578.2532$	0	$3,924.9424$	$1,199.9753$	150
Slice 32	702.11856	$1,581.4603$	0	$3,590.1224$	$3,012.4704$	200
Slice 33	718.35568	$1,588.1859$	0	$2,581.3887$	$2,166.0423$	200
Slice 34	734.59281	$1,594.9115$	0	$1,572.6551$	$1,319.6143$	200
Slice 35	750.82993	$1,601.6372$	0	563.92146	473.18629	200

Section 21-21 Seismic Final SSA with key for Skyline Ranch.gsz

Section 21-21 Seismic Final SSA with key for Skyline Ranch.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/24/2016 10:46:22 AM

Materials
\square TQs $100-25^{\circ}\left(\right.$ A-bedding $\left.4-21^{\circ}\right)$
\square Fill
\square Tmc $150-17^{\circ}\left(\right.$ A-bed $\left.\left(-2^{\circ}\right)-\left(2^{\circ}\right)\right)$

Seimic load
Horizontal: 0.15
Vertical: 0.0
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Keyway depth 25
width 60', backcut slope $2 \mathrm{H}: 1 \mathrm{~V}$

Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}$ (A-bedding 4-21 ${ }^{\circ}$) C-Anisotropic Strength Fn.: 100 psff 25° (A-bedding 4-21 ${ }^{\circ}$)

Name: Fill

Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Name: Tmc 150-170 (A-bed (-20)-(20))
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-170 (A-bed (-20)-(20))
C-Anisotropic Strength Fn.: 150psf-170 $\left(\mathrm{A}\right.$-bed $\left.\left(-2^{\circ}\right)-\left(2^{\circ}\right)\right)$
иоџеләヨ

1,550

LGG

GEOTECHNICAL CONSULTING
28532 Constellation Road, Valencia, CA 91355 Phone 661-702-8474, Fax 661-702-8475

Skyline Ranch
Development project, Tract 60922 Los Angeles CA

Project No: 153035-01 Engineer: BAS Date: March 2016

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 135
Date: 3/24/2016
Time: 10:46:22 AM
Tool Version: 8.15.1.11236
File Name: Section 21-21 Seismic Final SSA with key for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 21-21 results\}
Last Solved Date: 3/24/2016
Last Solved Time: 11:06:27 AM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Left to Right
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $100-25^{\circ}$ (A-bedding 4-21 ${ }^{\circ}$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs 100-25 (A-bedding 4-21 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 100 psf- 25° (A-bedding 4-21 ${ }^{\circ}$)
Phi-B: 0°
Fill
Model: Mohr-Coulom
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0
Tmc 150-17 ${ }^{\circ}$ (A-bed $\left.\left(-2^{\circ}\right)-\left(2^{\circ}\right)\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}$ (A-bed $\left.\left(-2^{\circ}\right)-\left(2^{\circ}\right)\right)$
C-Anisotropic Strength Fn.: 150psf-17 $\left(\right.$ A-bed $\left.\left(-2^{\circ}\right)-\left(2^{\circ}\right)\right)$
Phi-B: 0°

Slip Surface Limits
Left Coordinate: $(-200,1,780)$ ft
Right Coordinate: $(811,1,605) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: ($345.9397,1,691.465$) it
Lower Left: (295.0306, 1,576.1191) ft
Lower Right: (409.9866, 1,529.9807) ft
X Increments: 10
Y Increments: 10

Starting Angle: 115
Ending Angle: 135°
Angle Increments:
Right Grid
Upper Left: (644.9611, 1,663.7267) ft
Lower Left: (598.3451, 1,550.8695) ft
Lower Right: (717.2158, 1,501.4945) ft
X Increments: 10
Y Increments: 10
Starting Angle: 0°
Ending Angle: 45°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc $150-17^{\circ}$ (A-bed $\left(-2^{\circ}\right)-\left(2^{\circ}\right)$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

Curve Fit to Data: 100%

Segment Curvature: 0%
Y-Intercept: 0.425
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-2.1,1)$
Data Point: $(-2,0.425)$
Data Point: $(2,0.425)$
Data Point: $(2.1,1)$
TQs $100-25^{\circ}$ (A-bedding 4-21 ${ }^{\circ}$)
Model: Spline Data Point Functio
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.625)$
Data Point: (21, 0.625)
Data Point: $(21.1,1)$
$150 p s f-17^{\circ}\left(\right.$ A-bed $\left.\left(-2^{\circ}\right)-\left(2^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.75
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-2.1,1)$
Data Point: $(-2,0.75$
Data Point: $(2,0.75)$
Data Point: $(2.1,1)$
100psf- 25° (A-bedding 4-21 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.444)$
Data Point: $(21,0.444)$
Data Point: $(21.1,1)$

Points

	$X(\mathrm{ft})$	$Y(\mathrm{ft})$
Point 1	183	1,679
Point 2	-200	1,780
Point 3	-89	1,781
Point 4	69	1,782
Point 5	260	1,783
Point 6	306	1,755
Point 7	320	1,755
Point 8	381	1,725
Point 9	400	1,726
Point 10	462	1,699
Point 11	694	1,605
Point 12	634	1,634
Point 13	622	1,634
Point 14	558	1,665
Point 15	536	1,664
Point 16	483	1,694
Point 17	-199	1,660
Point 18	811	1,605
Point 19	-200	1,502
Point 20	474	1,699
Point 21	811	1,500

2 - Translational

Point 22	669	1,580
Point 23	609	1,580
Point 24	205	1,783
Point 25	394.7786	$1,689.3389$

Regions

	Material	Points	Area (ft^{2})
$\begin{aligned} & \text { Region } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Tmc } 150-17^{\circ}\left(A-\text { bed }\left(-2^{\circ}\right)\right. \\ & \left.-\left(2^{\circ}\right)\right) \end{aligned}$	17,19,21,18,11,22,23,25,1	$1.5107 \mathrm{e}+005$
$\begin{aligned} & \text { Region } \\ & 2 \end{aligned}$	$\begin{aligned} & \text { TQs } 100-25^{\circ} \text { (A-bedding } \\ & 4-21^{\circ} \text {) } \end{aligned}$	17,1,25,24,4,3,2	54,880
$\begin{aligned} & \text { Region } \\ & 3 \end{aligned}$	Fill	11,12,13,14,15,16,20,10,9,8,7,6,5,24,25,23,22	18,436

Current Slip Surface

Slip Surface: 27,773
F of S : 1.11
Volume: $46,767.473 \mathrm{ft}^{3}$
Weight: $5,612,096.8 \mathrm{lbs}$
Resisting Force: $2,032,506.4 \mathrm{lbs}$
Activating Force: $1,827,168.4 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 150 slip surfaces
Exit: $(758.94849,1,605) \mathrm{ft}$
Entry: (201.31988, 1,782.9729) ft
Radius: 299.26834 ft
Center: $(522.73561,1,827.4662) \mathrm{ft}$

Slip Slices

Slices

	X (ft)	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	203.15994	$1,780.3451$	0	13.993672	11.742085	225
Slice 2	214.16667	$1,764.6258$	0	924.34296	775.61584	225
Slice 3	232.5	$1,738.4431$	0	$2,439.3604$	$2,046.8664$	225
Slice 4	250.83333	$1,712.2604$	0	$3,954.3779$	$3,318.117$	225
Slice 5	265.55529	$1,691.2353$	0	$4,975.2971$	$4,174.77$	225
	279.83293	$1,670.8447$	0	$5,667.716$	$4,755.7784$	200

Slice 6						
Slice 7	297.27764	$1,645.9311$	0	$6,494.878$	$5,449.8497$	200
Slice 8	313	$1,623.4772$	0	$7,486.9202$	$6,282.272$	200
Slice 9	329.84961	$1,599.4135$	0	$8,599.033$	$7,215.4454$	200
Slice 10	350.02441	$1,585.1225$	0	$18,500.355$	$5,656.1262$	150
Slice 11	370.6748	$1,584.6739$	0	$17,342.361$	$5,302.092$	150
Slice 12	387.8893	$1,584.3$	0	$16,824.47$	$5,143.7566$	150
Slice 13	397.3893	$1,584.0937$	0	$16,908.731$	$5,169.5178$	150
Slice 14	410.33333	$1,583.8125$	0	$16,421.856$	$5,020.6653$	150
Slice 15	431	$1,583.3636$	0	$15,401.796$	$4,708.8015$	150
Slice 16	451.66667	$1,582.9147$	0	$14,381.735$	$4,396.9377$	150
Slice 17	468	$1,582.5599$	0	$13,887.252$	$4,245.7589$	150
Slice 18	478.5	$1,582.3318$	0	$13,616.234$	$4,162.9004$	150
Slice 19	491.83333	$1,582.0422$	0	$12,756.106$	$3,899.9331$	150
Slice 20	509.5	$1,581.6584$	0	$11,608.982$	$3,549.2221$	150
Slice 21	527.16667	$1,581.2747$	0	$10,461.858$	$3,198.511$	150
Slice 22	547	$1,580.8439$	0	$9,976.4437$	$3,050.1049$	150
Slice 23	566.5	$1,580.4203$	0	$9,595.4765$	$2,933.6316$	150
Slice 24	583.5	$1,580.0511$	0	$8,657.2465$	$2,646.7859$	150
Slice 25	600.5	$1,579.6818$	0	$7,719.0165$	$2,359.9402$	150
Slice 26	615.5	$1,579.356$	0	$6,891.1665$	$2,106.841$	150
Slice 27	628	$1,579.0845$	0	$6,547.9785$	$2,001.9179$	150
Slice 28	642.75	$1,578.7641$	0	$6,081.7002$	$1,859.3623$	150
Slice 29	660.25	$1,578.3839$	0	$5,118.0497$	$1,564.7448$	150

file:///G:/SLOPE\%20RESULTS/Section\%2021-21\%20results/section\%2021-21\%20seismi... 3/24/2016

2 - Translational \quad Page 7 of 7

Slice 30	681.5	$1,578.1457$	0	$3,942.8349$	$1,205.4456$	150
Slice 31	704.82475	$1,582.5812$	0	$4,014.9791$	$3,368.9675$	200
Slice 32	726.47425	$1,591.5487$	0	$2,452.1136$	$2,057.5677$	200
Slice 33	748.12374	$1,600.5162$	0	889.24821	746.16784	200

2 - Translational

Report generated using GeoStudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 142
Date: 3/24/2016
Time: 10:53:54 AM
Tool Version: 8.15.1.11236
File Name: Section 21-21 Static Temporary Final SSA without key for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 21-21 results\}
Last Solved Date: 3/24/2016
Last Solved Time: 10:54:07 AM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Left to Right
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $100-25^{\circ}$ (A-bedding 4-21²)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs 100-25 (A-bedding 4-21 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 100 psf- 25° (A-bedding 4-21 ${ }^{\circ}$)
Phi-B: 0°
Tmc 150-17 ${ }^{\circ}$ (A-bed $\left.\left(-2^{\circ}\right)-\left(2^{\circ}\right)\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 150-17 ${ }^{\circ}$ (A-bed $\left.\left(-2^{\circ}\right)-\left(2^{\circ}\right)\right)$
C-Anisotropic Strength Fn.: 150psf-17 $\left(\mathrm{A}\right.$-bed $\left.\left(-2^{\circ}\right)-\left(2^{\circ}\right)\right)$
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-200,1,780) \mathrm{ft}$
Right Coordinate: $(811,1,605) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: $(345.9397,1,691.465) \mathrm{ft}$
Lower Left: (295.0306, 1,576.1191) ft
Lower Right: (409.9866, 1,529.9807) ft
X Increments: 10
Y Increments: 10
Starting Angle: 115
Ending Angle: 135°
Angle Increments: 2
Right Grid
Upper Left: (599.9611, 1,661.7267) ft
Lower Left: (553.3451, 1,548.8695) ft
Lower Right: (672.2158, 1,499.4945) ft

X Increments: 10
Y Increments: 10
Starting Angle: 0°
Ending Angle: 45°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc 150-17 ${ }^{\circ}$ (A-bed $\left.\left(-2^{\circ}\right)-\left(2^{\circ}\right)\right)$
Model: Spline Data Point Functio
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 0.425
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-2.1,1)$
Data Point: $(-2,0.425)$
Data Point: $(2,0.425)$
Data Point: $(2.1,1)$
TQs $100-25^{\circ}$ (A-bedding 4-21 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.625)$
Data Point: ($21,0.625$)
Data Point: $(21.1,1)$
150psf-17º (A-bed $\left.\left(-2^{\circ}\right)-\left(2^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 0.75
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-2.1,1)$
Data Point: $(-2,0.75)$

Data Point: $(2,0.75)$ Data Point: $(2.1,1)$

100psf- 25° (A-bedding 4-21 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(3.9,1)$
Data Point: $(4,0.444)$
Data Point: $(21,0.444)$
Data Point: $(21.1,1)$

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	183	1,679
Point 2	-200	1,780
Point 3	-89	1,781
Point 4	69	1,782
Point 5	694	1,605
Point 6	-199	1,660
Point 7	811	1,605
Point 8	-200	1,502
Point 9	811	1,500
Point 10	669	1,580
Point 11	609	1,580
Point 12	205	1,783
Point 13	394.7786	$1,689.3389$

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Tmc $150-17^{\circ}\left(\mathrm{A}\right.$-bed $\left.\left(-2^{\circ}\right)-\left(2^{\circ}\right)\right)$	$6,8,9,7,5,10,11,13,1$	$1.5107 \mathrm{e}+005$
Region 2	TQs 100-25	(A-bedding $\left.4-21^{\circ}\right)$	$6,1,13,12,4,3,2$
54,880			

Current Slip Surface

Slip Surface: 26,76
Fof S: 1.37
Volume: $27,789.799 \mathrm{ft}^{3}$
Weight: 3,334,775.9 lbs
Resisting Force: 1,232,169.4 lbs

```
Activating Force: 897,971.46 lbs
F of S Rank (Analysis): }1\mathrm{ of 131,769 slip surfaces
F of S Rank (Query): 1 of 150 slip surfaces
F of S Rank (Query):1 Of 150 slip
Entry: (193.09726, 1,782.9125) ft
Radius: 275.194 ft
Center: (473.25182, 1,833.2651) ft
```

Slip Slices						
	X (ft)	Y (ft)	$\begin{aligned} & \text { PWP } \\ & \text { (psf) } \end{aligned}$	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	199.04863	1,774.413	0	424.55202	356.24144	225
Slice 2	212.26485	1,755.5383	0	1,410.0248	1,183.1513	225
$\begin{aligned} & \text { Slice } \\ & 3 \end{aligned}$	226.79455	1,734.7878	0	2,282.8096	1,915.5047	225
$\begin{aligned} & \text { Slice } \\ & 4 \end{aligned}$	241.32425	1,714.0372	0	3,155.5943	2,647.858	225
Slice 5	255.85395	1,693.2866	0	4,028.379	3,380.2114	225
Slice 6	269.62729	1,673.6163	0	4,869.5659	4,086.051	200
$\begin{aligned} & \hline \text { Slice } \\ & 7 \end{aligned}$	282.64425	1,655.0261	0	5,651.482	4,742.1565	200
$\begin{aligned} & \text { Slice } \\ & 8 \end{aligned}$	295.66121	1,636.436	0	6,433.3981	5,398.262	200
$\begin{aligned} & \text { Slice } \\ & 9 \end{aligned}$	308.67818	1,617.8458	0	7,215.3142	6,054.3674	200
$\begin{aligned} & \text { Slice } \\ & 10 \end{aligned}$	321.69514	1,599.2557	0	7,997.2302	6,710.4729	200
$\begin{aligned} & \text { Slice } \\ & 11 \end{aligned}$	334.86112	1,589.7579	0	15,391.277	4,705.5857	150
Slice 12	348.17611	1,589.3526	0	14,656.309	4,480.8834	150
$\begin{aligned} & \text { Slice } \\ & 13 \\ & \hline \end{aligned}$	361.49111	1,588.9472	0	13,921.341	4,256.1811	150
Slice 14	374.80611	1,588.5419	0	13,186.373	4,031.4787	150
$\begin{aligned} & \text { Slice } \\ & 15 \\ & \hline \end{aligned}$	388.1211	1,588.1365	0	12,451.405	3,806.7764	150
$\begin{aligned} & \text { Slice } \\ & 16 \\ & \hline \end{aligned}$	401.82122	1,587.7195	0	11,681.014	3,571.2443	150
$\begin{aligned} & \text { Slice } \\ & 17 \\ & \hline \end{aligned}$	415.90647	1,587.2907	0	10,875.2	3,324.8824	150
$\begin{aligned} & \text { Slice } \\ & 18 \\ & \hline \end{aligned}$	429.99171	1,586.8619	0	10,069.387	3,078.5205	150
	444.07696	1,586.4331	0	9,263.5733	2,832.1586	150

Slice 19						
Slice 20	458.1622	$1,586.0043$	0	$8,457.7598$	$2,585.7967$	150
Slice 21	472.24745	$1,585.5755$	0	$7,651.9463$	$2,339.4347$	150
Slice 22	486.33269	$1,585.1467$	0	$6,846.1328$	$2,093.0728$	150
Slice 23	500.41794	$1,584.7179$	0	$6,040.3193$	$1,846.7109$	150
Slice 24	514.50318	$1,584.2891$	0	$5,234.5058$	$1,600.349$	150
Slice 25	528.58843	$1,583.8603$	0	$4,428.6923$	$1,353.9871$	150
Slice 26	542.67367	$1,583.4315$	0	$3,622.8788$	$1,107.6252$	150
Slice 27	556.75892	$1,583.0027$	0	$2,817.0653$	861.26328	150
Slice 28	570.84416	$1,582.574$	0	$2,011.2518$	614.90137	150
Slice 29	584.92941	$1,582.1452$	0	$1,205.4383$	368.53946	150
Slice 30	599.01465	$1,581.7164$	0	399.62475	122.17755	150

Section 22-22 Static Left SSA for Skyline Ranch.gsz

Section 22-22 Static Left SSA for Skyline Ranch.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/25/2016 3:25:12 PM

1 - Circular Mode of Failure

Renotserad

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 163
Date: 3/25/2016
Time: 3:25:12 PM
Tool Version: 8.15.1.11236
File Name: Section 22-22 Static Left SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 22-22 results\Latest update 3-25-2016\Latest Results 3-25-2016 Last Solved Date: 3/25/2016
Last Solved Time: 3:28:51 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Left to Right
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $\mathbf{1 0 0 - 2 5}{ }^{\circ}$ (A-bed $10^{\circ}-18^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}$ (A-bed $10^{\circ}-18^{\circ}$
C-Anisotropic Strength Fn.: 100 psf- 25° (A-bed $\left.10^{\circ}-18^{\circ}\right)$
Phi-B: 0°
TQs $\mathbf{1 0 0 - 2 5}{ }^{\circ}$ (A-bed $2^{\circ}-10^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}$ (A-bed $2^{\circ}-10^{\circ}$)
C-Anisotropic Strength Fn.: 150pcf (Along Bedding $8^{\circ}-20^{\circ}$
Phi-B: 0°
Tmc150-17 ${ }^{\circ}$ (A-bed -1$\left.-\left(-5^{\circ}\right)\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc100-25 (A-bed $-1^{\circ}-\left(-5^{\circ}\right)$
C-Anisotropic Strength Fn.: 150 psf-17 ${ }^{\circ}$ (A-bed $-1^{\circ}-\left(-5^{\circ}\right)$)
Phi-B: 0°
Tmc100-25 ${ }^{\circ}$ (A-bed - $1^{\circ}-\left(-5^{\circ}\right)$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40
Phi-Anisotropic Strength Fn.: Tmc100-25 (A-bed $-1^{\circ}-\left(-5^{\circ}\right)$)
C-Anisotropic Strength Fn.: 100 psf- 25° (A-bed $-1^{\circ}-\left(-5^{\circ}\right)$)
Phi-B: 0°

Slip Surface Entry and Exit
Left Projection: Range
Left-Zone Left Coordinate: (-190.7941, 1,777.3607) ft

1-Circular Mode of Failure

Left-Zone Increment: 50
Left-Zone Increment: 50
Right Projection: Range
Right-Zone Left Coordinate: $(131,1,671.1538)$ f
Right-Zone Right Coordinate: $(319,1,626) \mathrm{ft}$
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: $(-200,1,773) \mathrm{ft}$
Right Coordinate: $(812,1,751) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs $\mathbf{1 0 0 - 2 5 ^ { \circ }}$ (A-bed $10^{\circ}-18^{\circ}$)
 Model: Spline Data Point Function

Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(9.9,1)$
Data Point: (10, 0.625)
Data Point: $(10,0.625)$
Data Point: $(18.1,1)$
Tmc100-25 ${ }^{\circ}$ (A-bed - $\left.1^{\circ}-\left(-5^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Facto
Data Point: (-90, 1)
Data Point: $(-5.1,1)$
Data Point: ($-5,0.625$)
Data Point: (-1, 0.625
Data Point: (-0.9, 1)
TQs $\mathbf{1 0 0}-2^{\circ}$ (A-bed $\mathbf{2}^{\circ}-10^{\circ}$)
Model: Spline Data Point Function

1 - Circular Mode of Failure

Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(1.9,1)$
Data Point: ($2,0.625$)
Data Point: $(10,0.625$
Data Point: $(10.1,1)$
150pcf (Along Bedding $8^{\circ}-20^{\circ}$)
Model: Spline Data Point Functio
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.667)$
Data Point: $(20,0.667)$ Data Point: $(20.1,1)$

150psf-17 ${ }^{\circ}$ (A-bed $\left.-1^{\circ}-\left(-5^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-5.1,1)$
Data Point: $(-5,0.75)$
Data Point: ($-1,0.75$
Data Point: $(-0.9,1)$
100psf-25 (A-bed $10^{\circ}-18^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(9.9,1)$
Data Point: ($10,0.444$
Data Point: $(18,0.444)$
Data Point: (18.1, 1)

100psf-25 ${ }^{\circ}$ (A-bed - $\left.1^{\circ}-\left(-5^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: (-5.1, 1
Data Point: $(-5,0.5)$
Data Point: $(-1,0.5)$
Data Point: $(-0.9,1)$

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-200	$1,665.0405$
Point 2	-200	1,773
Point 3	-181	1,782
Point 4	-161	1,788
Point 5	-128	1,769
Point 6	-115	1,769
Point 7	-56	1,730
Point 8	-36	1,730
Point 9	21	1,709
Point 10	31	1,709
Point 11	83	1,685
Point 12	96	1,679
Point 13	114	1,679
Point 14	166	1,655
Point 15	176	1,655
Point 16	235	1,626
Point 17	332	1,626
Point 18	367	1,649
Point 19	443	1,648
Point 20	523	1,678
Point 21	566	1,702
Point 22	592	1,702
Point 23	639	1,726
Point 24	661	1,726
Point 25	731	1,728
Point 26	812	1,733
Point 27	812	1,500
Point 28	-200	1,500
Point 29	703	1,749

1 - Circular Mode of Failure
Page 6 of 8

Point 30	768	1,750
Point 31	812	1,751
Point 32	542	$1,688.6047$
Point 33	812	1,701

Regions

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs $100-25^{\circ}\left(\right.$ A-bed 10° $\left.-18^{\circ}\right)$	$1,2,3,4,5,6,7,8,9,10,11$	18,295
Region 2	TQs $100-25^{\circ}\left(\right.$ A-bed 2° $\left.-10^{\circ}\right)$	$24,29,30,31,26,25$	2,654
Region 3	Tmc100-25 ${ }^{\circ}\left(\right.$ A-bed -1° $\left.-\left(-5^{\circ}\right)\right)$	$32,33,26,25,24,23,22,21$	$6,933.1$
Region 4	Tmc $150-17^{\circ}\left(\right.$ A-bed -1° $\left.-\left(-5^{\circ}\right)\right)$	$1,28,27,33,32,20,19,18,17,16,15,14,13,12,11$	$1.7108 e+005$

Current Slip Surface

Slip Surface: 6,847
F of S: 2.44
Volume: 13,249.685 ft ${ }^{3}$
Weight: 1,589,962.2 lbs
Resisting Moment: $8.4245847 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
Activating Moment: $3.4512137 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 300 slip surfaces
Exit: (247.61564, 1,626) ft
Entry: (-178.33604, 1,782.7992) ft
Radius: 632.66709 ft
Center: (238.65057, 2,258.6036) ft
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	-169.66802	$1,775.4734$	0	862.95277	724.10335	225
Slice 2	-152.75	$1,761.6499$	0	$1,983.248$	$1,664.1427$	225
Slice 3	-136.25	$1,749.0819$	0	$2,309.1293$	$1,937.5895$	225
Slice 4	-121.5	$1,738.5106$	0	$2,904.48$	$2,437.1481$	225
	-107.625	$1,729.1858$	0	$3,374.7018$	$2,831.7111$	225

file:///G:/SLOPE\%20RESULTS/Section\%2022-22\%20results/Latest\%20update\%203-25-2... 3/25/2016

Slice 5						
Slice 6	-92.875	$1,719.824$	0	$3,376.2433$	$2,833.0045$	225
Slice 7	-78.125	$1,711.0195$	0	$3,320.0237$	$2,785.8307$	225
Slice 8	-63.375	$1,702.7459$	0	$3,207.2002$	$2,691.1605$	225
Slice 9	-46	$1,693.6998$	0	$3,674.0528$	$3,082.8964$	225
Slice 10	-30.294986	$1,685.9813$	0	$4,294.3348$	$3,603.3748$	225
Slice 11	-18.884957	$1,680.7592$	0	$4,432.9194$	$3,719.661$	225
Slice 12	-4.6349568	$1,674.6566$	0	$4,567.1967$	$3,832.333$	200
Slice 13	12.455014	$1,667.8248$	0	$4,673.1875$	$3,921.2699$	200
Slice 14	26	$1,662.7687$	0	$4,916.1845$	$4,125.1686$	200
Slice 15	37.5	$1,658.8044$	0	$5,054.1264$	$4,240.9156$	200
Slice 16	50.5	$1,654.5997$	0	$4,898.6594$	$4,110.4633$	200
Slice 17	63.5	$1,650.7021$	0	$4,706.6047$	$3,949.3103$	200
Slice 18	76.5	$1,647.1057$	0	$4,477.9566$	$3,757.4517$	200
Slice 19	89.5	$1,643.8052$	0	$4,212.6566$	$3,534.8386$	200
Slice 20	105	$1,640.283$	0	$4,308.6247$	$3,615.3654$	200
Slice 21	120.5	$1,637.1019$	0	$4,367.1863$	$3,664.5044$	200
Slice 22	133.5	$1,634.7706$	0	$3,983.2329$	$3,342.3293$	200
Slice 23	146.5	$1,632.718$	0	$3,561.7565$	$2,988.6686$	200
Slice 24	159.5	$1,630.9413$	0	$3,102.4103$	$2,603.2313$	200
Slice 25	171	$1,629.5839$	0	$2,932.8426$	$2,460.9471$	200
Slice 26	183.375	$1,628.3993$	0	$2,702.2945$	$1,370.5115$	156.30856
Slice 27	198.125	$1,627.279$	0	$1,993.1701$	929.4305	150
Slice 28	212.875	$1,626.5049$	0	$1,232.3276$	574.6438	150
	-100					

1 - Circular Mode of Failure

Renotserated

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 16
Date: 3/25/2016
Time: 3:20:06 PM
Tool Version: 8.15.1.11236
File Name: Section 22-22 pseudostatic Left SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 22-22 results\Latest update 3-15-2016\Latest Results 3-25-2016 Last Solved Date: 3/25/2016
Last Solved Time: 3:20:38 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Left to Right
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $\mathbf{1 0 0 - 2 5}$ (A-bed $10^{\circ}-18^{\circ}$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}$ (A-bed $10^{\circ}-18^{\circ}$
C-Anisotropic Strength Fn.: 100psf-25 (A-bed $\left.10^{\circ}-18^{\circ}\right)$
Phi-B: 0°
TQs $100-25^{\circ}\left(\right.$ A-bed $\left.2^{\circ}-10^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}\left(\mathrm{A}\right.$-bed $\left.2^{\circ}-10^{\circ}\right)$
C-Anisotropic Strength Fn.: 150pcf (Along Bedding $8^{\circ}-20^{\circ}$
Phi-B: 0°
Tmc150-17 ${ }^{\circ}$ (A-bed - $\left.1^{\circ}-\left(-5^{\circ}\right)\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc100-25 (A-bed $-1^{\circ}-\left(-5^{\circ}\right)$
C-Anisotropic Strength Fn.: 150 psf-17 ${ }^{\circ}$ (A-bed $-1^{\circ}-\left(-5^{\circ}\right)$)
Phi-B: 0°
Tmc100-25 ${ }^{\circ}$ (A-bed - $1^{\circ}-\left(-5^{\circ}\right)$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40
Phi-Anisotropic Strength Fn.: Tmc100-25 (A-bed $-1^{\circ}-\left(-5^{\circ}\right)$)
C-Anisotropic Strength Fn.: 100 psf- 25° (A-bed $-1^{\circ}-\left(-5^{\circ}\right)$)
Phi-B: 0°

Slip Surface Entry and Exit
Left Projection: Range
Left-Zone Left Coordinate: (-190.7941, 1,777.3607) ft

1-Circular Mode of Failure

Left-Zone Increment: 50
Left-Zone Increment: 50
Right Projection: Range
Right-Zone Left Coordinate: $(131,1,671.1538)$ f
Right-Zone Right Coordinate: $(319,1,626) \mathrm{ft}$
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: $(-200,1,773) \mathrm{ft}$
Right Coordinate: $(812,1,751) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs $\mathbf{1 0 0 - 2 5 ^ { \circ }}$ (A-bed $10^{\circ}-18^{\circ}$)
 Model: Spline Data Point Function

Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(9.9,1)$
Data Point: (10, 0.625)
Data Point: $(18,0.625)$
Data Point: $(18.1,1)$
Tmc100-25 ${ }^{\circ}$ (A-bed - $\left.1^{\circ}-\left(-5^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Facto
Data Point: $(-90,1)$
Data Point: $(-5.1,1)$
Data Point: ($-5,0.625$)
Data Point: (-1, 0.625
Data Point: $(-0.9,1)$
TQs $\mathbf{1 0 0}-\mathbf{2 5}^{\circ}$ (A-bed $\mathbf{2}^{\circ}-\mathbf{1 0}^{\circ}$)
Model: Spline Data Point Function

1 - Circular Mode of Failure

Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(1.9,1)$
Data Point: $(2,0.625)$
Data Point: $(10,0.625$
Data Point: $(10.1,1)$
150pcf (Along Bedding $8^{\circ}-20^{\circ}$)
Model: Spline Data Point Functio
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.667)$
Data Point: $(20,0.667)$ Data Point: $(20.1,1)$

150psf-17 ${ }^{\circ}$ (A-bed $\left.-1^{\circ}-\left(-5^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-5.1,1)$
Data Point: $(-5,0.75)$
Data Point: ($-1,0.75$
Data Point: (-0.9, 1)
100psf-25 (A-bed $10^{\circ}-18^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(9.9,1)$
Data Point: $(10,0.444$
Data Point: $(18,0.444)$
Data Point: (18.1, 1)

100psf-25 ${ }^{\circ}$ (A-bed - $\left.1^{\circ}-\left(-5^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: (-5.1, 1
Data Point: $(-5,0.5)$
Data Point: $(-1,0.5)$
Data Point: $(-0.9,1)$

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-200	$1,665.0405$
Point 2	-200	1,773
Point 3	-181	1,782
Point 4	-161	1,788
Point 5	-128	1,769
Point 6	-115	1,769
Point 7	-56	1,730
Point 8	-36	1,730
Point 9	21	1,709
Point 10	31	1,709
Point 11	83	1,685
Point 12	96	1,679
Point 13	114	1,679
Point 14	166	1,655
Point 15	176	1,655
Point 16	235	1,626
Point 17	332	1,626
Point 18	367	1,649
Point 19	443	1,648
Point 20	523	1,678
Point 21	566	1,702
Point 22	592	1,702
Point 23	639	1,726
Point 24	661	1,726
Point 25	731	1,728
Point 26	812	1,733
Point 27	812	1,500
Point 28	-200	1,500
Point 29	703	1,749

1 - Circular Mode of Failure
Page 6 of 8

Point 30	768	1,750
Point 31	812	1,751
Point 32	542	$1,688.6047$
Point 33	812	1,701

Regions

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs $100-25^{\circ}\left(\right.$ A-bed 10° $\left.-18^{\circ}\right)$	$1,2,3,4,5,6,7,8,9,10,11$	18,295
Region 2	TQs $100-25^{\circ}\left(\right.$ A-bed 2° $\left.-10^{\circ}\right)$	$24,29,30,31,26,25$	2,654
Region 3	Tmc100-25 ${ }^{\circ}\left(\right.$ A-bed -1° $\left.-\left(-5^{\circ}\right)\right)$	$32,33,26,25,24,23,22,21$	$6,933.1$
Region 4	Tmc $150-17^{\circ}\left(\right.$ A-bed -1° $\left.-\left(-5^{\circ}\right)\right)$	$1,28,27,33,32,20,19,18,17,16,15,14,13,12,11$	$1.7108 e+005$

Current Slip Surface

Slip Surface: 4,043
F of S: 1.66
Volume: $15,477.816 \mathrm{ft}^{3}$
Weight: $1,857,337.9 \mathrm{Ibs}$
Resisting Moment: $8.4460924 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
Activating Moment: $5.0779195 \mathrm{e}+008 \mathrm{lbs}$-ft
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 300 slip surfaces
Exit: (232.08549, 1,627.4326) ft
Entry: (-184.64029, 1,780.2757) ft
Radius: 581.50139 ft
Center: (208.80039, 2,208.4675) ft
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	-182.82014	$1,778.6174$	0	123.02745	103.23229	225
Slice 2	-171	$1,768.33$	0	$1,313.3356$	$1,102.0194$	225
Slice 3	-152.75	$1,753.1499$	0	$2,503.8346$	$2,100.9667$	225
Slice 4	-136.25	$1,740.5156$	0	$2,835.8265$	$2,379.541$	225
	-121.5	$1,729.9457$	0	$3,408.7385$	$2,860.2712$	225

file:///G:/SLOPE\%20RESULTS/Section\%2022-22\%20results/Latest\%20update\%203-15-2... 3/25/2016

Slice 5						
Slice 6	-107.625	$1,720.675$	0	$3,864.362$	$3,242.5847$	225
Slice 7	-92.875	$1,711.4148$	0	$3,885.8893$	$3,260.6483$	225
Slice 8	-78.125	$1,702.7544$	0	$3,848.5455$	$3,229.3131$	225
Slice 9	-63.375	$1,694.6633$	0	$3,752.9778$	$3,149.1223$	225
Slice 10	-46	$1,685.8809$	0	$4,197.9731$	$3,522.5177$	225
Slice 11	-31.811919	$1,679.1015$	0	$4,769.7903$	$4,002.3293$	225
Slice 12	-21.545858	$1,674.5756$	0	$4,896.5226$	$4,108.6703$	200
Slice 13	-9.3898984	$1,669.4927$	0	$5,013.9371$	$4,207.1928$	200
Slice 14	2.766061	$1,664.7291$	0	$5,100.1884$	$4,279.5662$	200
Slice 15	14.92202	$1,660.2765$	0	$5,155.1702$	$4,325.7014$	200
Slice 16	26	$1,656.471$	0	$5,368.6344$	$4,504.8192$	200
Slice 17	37.5	$1,652.8114$	0	$5,493.0622$	$4,609.2264$	200
Slice 18	50.5	$1,648.9685$	0	$5,330.5209$	$4,472.8381$	200
Slice 19	63.5	$1,645.4519$	0	$5,128.4539$	$4,303.2838$	200
Slice 20	76.5	$1,642.2557$	0	$4,886.4485$	$4,100.2171$	200
Slice 21	89.5	$1,639.3743$	0	$4,604.0157$	$3,863.2279$	200
Slice 22	105	$1,636.3787$	0	$4,666.506$	$3,915.6635$	200
Slice 23	120.5	$1,633.747$	0	$4,689.1974$	$3,934.7038$	200
Slice 24	133.5	$1,631.8995$	0	$4,275.2794$	$3,587.3854$	200
Slice 25	146.5	$1,630.3501$	0	$3,817.9141$	$3,203.6103$	200
Slice 26	159.5	$1,629.0965$	0	$3,380.2808$	$1,576.2508$	150
Slice 27	171	$1,628.2177$	0	$3,150.5881$	$1,469.1433$	150
Slice 28	183.01069	$1,627.5807$	0	$2,837.5587$	$1,323.1753$	150

Section 22-22 Static Left SSA for Skyline Ranch.gsz

Section 22-22 Static Left SSA for Skyline Ranch.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/25/2016 3:25:12 PM

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 163
Date: 3/25/2016
Time: 3:25:12 PM
Tool Version: 8.15.1.11236
File Name: Section 22-22 Static Left SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 22-22 results\Latest update 3-25-2016\Latest Results 3-25-2016 Last Solved Date: 3/25/2016
Last Solved Time: 3:25:36 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Left to Right
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $100-25^{\circ}\left(\mathrm{A}\right.$-bed $10^{\circ}-18^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}\left(\right.$ A-bed $\left.10^{\circ}-18^{\circ}\right)$
C-Anisotropic Strength Fn.: 100 psf- 25° (A-bed $10^{\circ}-18^{\circ}$)
Phi-B: 0°
TQs $\mathbf{1 0 0 - 2 5 ^ { \circ }}$ (A-bed $2^{\circ}-10^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}\left(\mathrm{A}\right.$-bed $2^{\circ}-10^{\circ}$)
C-Anisotropic Strength Fn.: 150pcf (Along Bedding $8^{\circ}-20^{\circ}$)
Phi-B: 0
Tmc150-17º (A-bed -1ํ.(-5ํ))
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc100-25 ${ }^{\circ}$ (A-bed $\left.-1^{\circ}-\left(-5^{\circ}\right)\right)$
C-Anisotropic Strength Fn.: 150 psf-17 $\left(\mathrm{A}\right.$-bed $\left.-1^{\circ}-\left(-5^{\circ}\right)\right)$
Phi-B: 0°
Tmc100-25 ${ }^{\circ}$ (A-bed - $\left.1^{\circ}-\left(-5^{\circ}\right)\right)$
Model: Anisotropic Fr
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40
Phi-Anisotropic Strength Fn.: Tmc100-25 (A-bed $-1^{\circ}-\left(-5^{\circ}\right)$)
C-Anisotropic Strength Fn.: 100 psf- 25° (A-bed $\left.-1^{\circ}-\left(-5^{\circ}\right)\right)$
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-200,1,773) f$

Right Coordinate: $(812,1,751) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: $(-104,1,763) \mathrm{ft}$
Lower Left: ($-145,1,621$) ft
Lower Right: ($-5,1,570$) ft
X Increments: 10
Y Increments: 10
Starting Angle: $115{ }^{\circ}$
Ending Angle: 135°
Angle Increments: 2
Right Grid
Upper Left: $(148,1,699)$ ft
Lower Left: $(118,1,596) \mathrm{ft}$
Lower Right: $(278,1,551) \mathrm{ft}$
X Increments: 10
Y Increments: 10
Starting Angle: 0°
Ending Angle: 45°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs $\mathbf{1 0 0}-\mathbf{2 5}^{\circ}$ (A-bed $\mathbf{1 0}^{\circ}-\mathbf{1 8}^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0 \%

Y-Intercept: 1

Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(9.9,1)$
Data Point: ($10,0.625$)
Data Point: $(18,0.625)$
Data Point: $(18.1,1)$
Tmc100-25 ${ }^{\circ}$ (A-bed - $\left.1^{\circ}-\left(-5^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%

Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$, Modifier Facto
Data Point: $(-90,1)$
Data Point: $(-5.1,1)$
Data Point: $(-5,0.625$
Data Point: $(-1,0.625$
Data Point: $(-0.9,1)$
TQs $\mathbf{1 0 0 - 2 5}{ }^{\circ}$ (A-bed $\mathbf{2}^{\circ}-10^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(1.9,1)$
Data Point: $(2,0.625)$
Data Point: $(2,0.625)$
Data Point: ($10,0.625$
150pcf (Along Bedding $8^{\circ}-20^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(7.9,1)$
Data Point: $(8,0.667)$
Data Point: $(20,0.667)$
Data Point: (20.1, 1)
150psf-17 ${ }^{\circ}$ (A-bed $\left.-1^{\circ}-\left(-5^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(-5.1,1)$
Data Point: $(-5,0.75)$
Data Point: $(-1,0.75$
Data Point: (-0.9, 1)
100psf-25 (A-bed $10^{\circ}-18^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

2-Translational

Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(9.9,1)$
Data Point: $(10,0.444)$
Data Point: $(18,0.444)$
Data Point: (18.1, 1)
100psf-25 ${ }^{\circ}$ (A-bed - $\left.1^{\circ}-\left(-5^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: (-5.1, 1)
Data Point: $(-5.1,1)$
Data Point: $(-5,0.5)$
Data Point: $(-1,0.5)$
Data Point: $(-0.9,1)$

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-200	$1,665.0405$
Point 2	-200	1,773
Point 3	-181	1,782
Point 4	-161	1,788
Point 5	-128	1,769
Point 6	-115	1,769
Point 7	-56	1,730
Point 8	-36	1,730
Point 9	21	1,709
Point 10	31	1,709
Point 11	83	1,685
Point 12	96	1,679
Point 13	114	1,679
Point 14	166	1,655
Point 15	176	1,655
Point 16	235	1,626
Point 17	332	1,626
Point 18	367	1,649
Point 19	443	1,648
Point 20	523	1,678
Point 21	566	1,702

2-Translational
Page 6 of 8

Point 22	592	1,702
Point 23	639	1,726
Point 24	661	1,726
Point 25	731	1,728
Point 26	812	1,733
Point 27	812	1,500
Point 28	-200	1,500
Point 29	703	1,749
Point 30	768	1,750
Point 31	812	1,751
Point 32	542	$1,688.6047$
Point 33	812	1,701

Regions

Regions
\qquad Material Points Area $\left(\mathrm{ft}^{2}\right)$ Region 1 TQs $100-25^{\circ}\left(\mathrm{A}\right.$-bed 10° $\left.-18^{\circ}\right)$ $1,2,3,4,5,6,7,8,9,10,11$ 18,295 Region 2 TQs $100-25^{\circ}\left(\mathrm{A}\right.$-bed 2° $\left.-10^{\circ}\right)$ $24,29,30,31,26,25$ 2,654 Region 3 Tmc100-25 $\left.-\left(-5^{\circ}\right)\right)$ A-bed -1° $32,33,26,25,24,23,22,21$
Region 4
Tmc150-17 $\left.-\left(-5^{\circ}\right)\right)$

Current Slip Surface

Slip Surface: 51,804
Fof S : 1.87
Volume: $17,312.036 \mathrm{ft}^{3}$
Weight: 2,077,444.3 lbs
Resisting Force: $1,031,602.7 \mathrm{lbs}$
Activating Force: $551,786.92 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 300 slip surfaces

Exit: (213.17513, 1,636.7275) ft
Entry: $(-172.13666,1,784.659) \mathrm{ft}$
Radius: 216.64633 ft
Center: (63.115398, 1,821.6419) ft

Slip Slices						
	X (ft)	Y (ft)	$\begin{aligned} & \text { PWP } \\ & \text { (psf) } \end{aligned}$	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
$\begin{aligned} & \hline \text { Slice } \\ & 1 \\ & \hline \end{aligned}$	-166.56833	1,776.7066	0	600.17497	503.60659	225
$\begin{aligned} & \text { Slice } \\ & 2 \\ & \hline \end{aligned}$	-155.5	1,760.8994	0	1,648.1723	1,382.9807	225
$\begin{aligned} & \text { Slice } \\ & 3 \end{aligned}$	-144.5	1,745.1898	0	2,334.7981	1,959.1283	225
$\begin{aligned} & \hline \text { Slice } \\ & 4 \end{aligned}$	-133.5	1,729.4801	0	3,021.424	2,535.2758	225
$\begin{aligned} & \text { Slice } \\ & 5 \\ & \hline \end{aligned}$	-121.5	1,712.3424	0	4,044.5281	3,393.762	225
Slice 6	-109.65795	1,695.4302	0	5,024.4194	4,215.9885	225
$\begin{aligned} & \hline \text { Slice } \\ & 7 \end{aligned}$	-98.973857	1,680.1717	0	5,624.6197	4,719.6164	225
$\begin{aligned} & \text { Slice } \\ & 8 \end{aligned}$	-90.115905	1,667.5212	0	6,133.845	5,146.9071	200
Slice 9	-78.95	1,661.8423	0	9,783.4562	4,562.1006	150
$\begin{aligned} & \text { Slice } \\ & 10 \end{aligned}$	-63.65	1,660.5269	0	8,749.7613	4,080.0807	150
$\begin{aligned} & \text { Slice } \\ & 11 \end{aligned}$	-51	1,659.4394	0	8,283.4185	3,862.6215	150
$\begin{aligned} & \text { Slice } \\ & 12 \end{aligned}$	-41	1,658.5796	0	8,384.4277	3,909.7229	150
$\begin{aligned} & \hline \text { Slice } \\ & 13 \\ & \hline \end{aligned}$	-28.875	1,657.5372	0	8,198.491	3,823.0191	150
Slice 14	-14.625	1,656.3121	0	7,725.6082	3,602.5103	150
$\begin{aligned} & \text { Slice } \\ & 15 \end{aligned}$	-0.375	1,655.087	0	7,252.7255	3,382.0014	150
$\begin{aligned} & \hline \text { Slice } \\ & 16 \end{aligned}$	13.875	1,653.8619	0	6,779.8427	3,161.4926	150
$\begin{aligned} & \text { Slice } \\ & 17 \end{aligned}$	26	1,652.8195	0	6,593.906	3,074.7889	150
$\begin{aligned} & \text { Slice } \\ & 18 \end{aligned}$	37.5	1,651.8308	0	6,357.5975	2,964.5964	150
$\begin{aligned} & \text { Slice } \\ & 19 \end{aligned}$	50.5	1,650.7131	0	5,783.9713	2,697.1101	150
$\begin{aligned} & \text { Slice } \\ & 20 \end{aligned}$	63.5	1,649.5955	0	5,210.3451	2,429.6238	150

file:///G:/SLOPE\%20RESULTS/Section\%2022-22\%20results/Latest\%20update\%203-25-2... 3/25/2016

Slice 21	76.5	$1,648.4778$	0	$4,636.7189$	$2,162.1376$	150
Slice 22	89.5	$1,647.3602$	0	$4,063.0928$	$1,894.6513$	150
Slice 23	105	$1,646.0276$	0	$3,867.188$	$1,803.2994$	150
Slice 24	120.5	$1,644.695$	0	$3,671.2832$	$1,711.9475$	150
Slice 25	133.5	$1,643.5774$	0	$3,097.657$	$1,444.4612$	150
Slice 26	146.5	$1,642.4597$	0	$2,524.0309$	$1,176.9749$	150
Slice 27	159.5	$1,641.3421$	0	$1,950.4047$	909.48863	150
Slice 28	171	$1,640.3534$	0	$1,714.0962$	799.29618	150
Slice 29	182.19586	$1,639.3909$	0	$1,469.3792$	685.18275	150
Slice 30	194.58757	$1,638.3255$	0	878.93581	409.8545	150
Slice 31	206.97928	$1,637.2602$	0	288.49248	134.52625	150

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 160
Date: 3/25/2016
Time: 3:14:27 PM
Tool Version: 8.15.1.11236
File Name: Section 22-22 pseudostatic Left SSA for Skyline Ranch.gsz
Firectory: G:\SLOPE RESULTS\Section 22-22 results\Latest update 3-15-2016\Latest Results 3-25-2016 Last Solved Date: 3/25/2016
Last Solved Time: 3:16:44 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Left to Right
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $100-25^{\circ}\left(\mathrm{A}\right.$-bed $10^{\circ}-18^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}\left(\right.$ A-bed $\left.10^{\circ}-18^{\circ}\right)$
C-Anisotropic Strength Fn.: 100 psf- 25° (A-bed $10^{\circ}-18^{\circ}$)
Phi-B: 0°
TQs $\mathbf{1 0 0 - 2 5 ^ { \circ }}$ (A-bed $2^{\circ}-10^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}\left(\mathrm{A}\right.$-bed $2^{\circ}-10^{\circ}$)
C-Anisotropic Strength Fn.: 150pcf (Along Bedding $8^{\circ}-20^{\circ}$)
Phi-B: 0
Tmc150-17º (A-bed -1ํ.(-5ํ))
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc100-25 ${ }^{\circ}$ (A-bed $\left.-1^{\circ}-\left(-5^{\circ}\right)\right)$
C-Anisotropic Strength Fn.: 150 psf-17 $\left(\mathrm{A}\right.$-bed $\left.-1^{\circ}-\left(-5^{\circ}\right)\right)$
Phi-B: 0°
Tmc100-25 ${ }^{\circ}$ (A-bed - $\left.1^{\circ}-\left(-5^{\circ}\right)\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40
Phi-Anisotropic Strength Fn.: Tmc100-25 (A-bed $-1^{\circ}-\left(-5^{\circ}\right)$)
C-Anisotropic Strength Fn.: 100 psf- 25° (A-bed $\left.-1^{\circ}-\left(-5^{\circ}\right)\right)$
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-200,1,773) f$

Right Coordinate: $(812,1,751) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: $(-104,1,763) \mathrm{ft}$
Lower Left: ($-145,1,621$) ft
Lower Right: ($-5,1,570$) ft
X Increments: 10
Y Increments: 10
Starting Angle: 115°
Ending Angle: 135°
Angle Increments: 2
Right Grid
Upper Left: $(148,1,699)$ ft
Lower Left: $(118,1,596) \mathrm{ft}$
Lower Right: $(278,1,551) \mathrm{ft}$
X Increments: 10
Y Increments: 10
Starting Angle: 0°
Ending Angle: 45°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs $\mathbf{1 0 0}-\mathbf{2 5}^{\circ}$ (A-bed $\mathbf{1 0}^{\circ}-\mathbf{1 8}^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0 \%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(9.9,1)$
Data Point: ($10,0.625$)
Data Point: $(18,0.625)$
Data Point: $(18.1,1)$
Tmc100-25 ${ }^{\circ}$ (A-bed - 1°-(-5 $\left.{ }^{\circ}\right)$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%

Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$, Modifier Facto
Data Point: $(-90,1)$
Data Point: $(-5.1,1)$
Data Point: $(-5,0.625$
Data Point: $(-1,0.625$
Data Point: $(-0.9,1)$
TQs $\mathbf{1 0 0 - 2 5}{ }^{\circ}$ (A-bed $\mathbf{2}^{\circ}-10^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(1.9,1)$
Data Point: $(2,0.625)$
Data Point: $(2,0.625)$
Data Point: ($10,0.625$
150pcf (Along Bedding $8^{\circ}-20^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(7.9,1)$
Data Point: $(8,0.667)$
Data Point: $(20,0.667)$
Data Point: (20.1, 1)
150psf-17 ${ }^{\circ}$ (A-bed $\left.-1^{\circ}-\left(-5^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(-5.1,1)$
Data Point: $(-5,0.75)$
Data Point: $(-1,0.75$
Data Point: $(-0.9,1$
100psf-25 (A-bed $10^{\circ}-18^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

2-Translational

Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(9.9,1)$
Data Point: $(10,0.444)$
Data Point: $(18,0.444)$
Data Point: (18.1, 1)
100psf-25 ${ }^{\circ}$ (A-bed - $\left.1^{\circ}-\left(-5^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: (-5.1, 1)
Data Point: $(-5.1,1)$
Data Point: $(-5,0.5)$
Data Point: $(-1,0.5)$
Data Point: $(-0.9,1)$

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-200	$1,665.0405$
Point 2	-200	1,773
Point 3	-181	1,782
Point 4	-161	1,788
Point 5	-128	1,769
Point 6	-115	1,769
Point 7	-56	1,730
Point 8	-36	1,730
Point 9	21	1,709
Point 10	31	1,709
Point 11	83	1,685
Point 12	96	1,679
Point 13	114	1,679
Point 14	166	1,655
Point 15	176	1,655
Point 16	235	1,626
Point 17	332	1,626
Point 18	367	1,649
Point 19	443	1,648
Point 20	523	1,678
Point 21	566	1,702

2 - Translational
Page 6 of 8

Point 22	592	1,702
Point 23	639	1,726
Point 24	661	1,726
Point 25	731	1,728
Point 26	812	1,733
Point 27	812	1,500
Point 28	-200	1,500
Point 29	703	1,749
Point 30	768	1,750
Point 31	812	1,751
Point 32	542	$1,688.6047$
Point 33	812	1,701

Regions

Regions
\qquad Material Points Area $\left(\mathrm{ft}^{2}\right)$ Region 1 TQs $100-25^{\circ}\left(\mathrm{A}\right.$-bed 10° $\left.-18^{\circ}\right)$ $1,2,3,4,5,6,7,8,9,10,11$ 18,295 Region 2 TQs $100-25^{\circ}\left(\mathrm{A}\right.$-bed 2° $\left.-10^{\circ}\right)$ $24,29,30,31,26,25$ 2,654 Region 3 Tmc100-25 $\left.-\left(-5^{\circ}\right)\right)$ A-bed -1° $32,33,26,25,24,23,22,21$
Region 4
Tmc150-17 $\left.-\left(-5^{\circ}\right)\right)$

Current Slip Surface

Slip Surface: 51,804
F of S: 1.24
Volume: $17,312.036 \mathrm{ft}^{3}$
Weight: 2,077,444.3 Ibs
Resisting Force: $979,875.01 \mathrm{lbs}$
Activating Force: $787,554.94 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 300 slip surfaces

Exit: (213.17513, 1,636.7275) ft
Entry: $(-172.13666,1,784.659) \mathrm{ft}$
Radius: 216.64633 ft
Center: (63.115398, 1,821.6419) ft

Slip Slices						
	X (ft)	Y (ft)	$\begin{aligned} & \text { PWP } \\ & \text { (psf) } \end{aligned}$	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
$\begin{aligned} & \hline \text { Slice } \\ & 1 \\ & \hline \end{aligned}$	-166.56833	1,776.7066	0	457.06243	383.52092	225
$\begin{aligned} & \text { Slice } \\ & 2 \\ & \hline \end{aligned}$	-155.5	1,760.8994	0	1,332.3335	1,117.9606	225
$\begin{aligned} & \text { Slice } \\ & 3 \end{aligned}$	-144.5	1,745.1898	0	1,905.7928	1,599.15	225
$\begin{aligned} & \hline \text { Slice } \\ & 4 \end{aligned}$	-133.5	1,729.4801	0	2,479.2521	2,080.3395	225
$\begin{aligned} & \text { Slice } \\ & 5 \\ & \hline \end{aligned}$	-121.5	1,712.3424	0	3,333.7327	2,797.3339	225
Slice 6	-109.65795	1,695.4302	0	4,152.1227	3,484.0446	225
$\begin{aligned} & \hline \text { Slice } \\ & 7 \end{aligned}$	-98.973857	1,680.1717	0	4,653.4007	3,904.6668	225
$\begin{aligned} & \text { Slice } \\ & 8 \end{aligned}$	-90.115905	1,667.5212	0	5,083.6083	4,265.6538	200
Slice 9	-78.95	1,661.8423	0	9,677.5455	4,512.7136	150
$\begin{aligned} & \text { Slice } \\ & 10 \end{aligned}$	-63.65	1,660.5269	0	8,654.6847	4,035.7457	150
$\begin{aligned} & \text { Slice } \\ & 11 \end{aligned}$	-51	1,659.4394	0	8,193.2295	3,820.5657	150
$\begin{aligned} & \text { Slice } \\ & 12 \end{aligned}$	-41	1,658.5796	0	8,293.1801	3,867.1734	150
$\begin{aligned} & \hline \text { Slice } \\ & 13 \\ & \hline \end{aligned}$	-28.875	1,657.5372	0	8,109.1921	3,781.3784	150
Slice 14	-14.625	1,656.3121	0	7,641.2656	3,563.1807	150
$\begin{aligned} & \text { Slice } \\ & 15 \end{aligned}$	-0.375	1,655.087	0	7,173.3391	3,344.9829	150
$\begin{aligned} & \hline \text { Slice } \\ & 16 \end{aligned}$	13.875	1,653.8619	0	6,705.4125	3,126.7852	150
$\begin{aligned} & \text { Slice } \\ & 17 \end{aligned}$	26	1,652.8195	0	6,521.4246	3,040.9902	150
$\begin{aligned} & \text { Slice } \\ & 18 \end{aligned}$	37.5	1,651.8308	0	6,287.5928	2,931.9527	150
$\begin{aligned} & \text { Slice } \\ & 19 \end{aligned}$	50.5	1,650.7131	0	5,719.9787	2,667.2699	150
$\begin{aligned} & \text { Slice } \\ & 20 \end{aligned}$	63.5	1,649.5955	0	5,152.3647	2,402.5871	150

file:///G:/SLOPE\%20RESULTS/Section\%2022-22\%20results/Latest\%20update\%203-15-2... 3/25/2016

Slice 21	76.5	$1,648.4778$	0	$4,584.7506$	$2,137.9043$	150
Slice 22	89.5	$1,647.3602$	0	$4,017.1365$	$1,873.2215$	150
Slice 23	105	$1,646.0276$	0	$3,823.285$	$1,782.8271$	150
Slice 24	120.5	$1,644.695$	0	$3,629.4335$	$1,692.4326$	150
Slice 25	133.5	$1,643.5774$	0	$3,061.8194$	$1,427.7498$	150
Slice 26	146.5	$1,642.4597$	0	$2,494.2053$	$1,163.067$	150
Slice 27	159.5	$1,641.3421$	0	$1,926.5913$	898.38426	150
Slice 28	171	$1,640.3534$	0	$1,692.7595$	789.34672	150
Slice 29	182.19586	$1,639.3909$	0	$1,450.6073$	676.4293	150
Slice 30	194.58757	$1,638.3255$	0	866.35234	403.98673	150
Slice 31	206.97928	$1,637.2602$	0	282.09737	131.54416	150

1 - Circular Mode of Failure

Renotenatedura

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 174
Date: 3/25/2016
Time: 3:43:56 PM
Tool Version: 8.15.1.11236
File Name: Section 22-22 Static Right SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 22-22 results\Latest update 3-25-2016\}
Last Solved Date: 3/25/2016
Last Solved Time: 3:47:34 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $\mathbf{1 0 0 - 2 5}{ }^{\circ}$ (A-bed $10^{\circ}-18^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}$ (A-bed $10^{\circ}-18^{\circ}$
C-Anisotropic Strength Fn.: 100psf-25 (A-bed $\left.10^{\circ}-18^{\circ}\right)$
Phi-B: 0°
TQs $\mathbf{1 0 0 - 2 5}$ (A-bed $2^{\circ}-10^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}$ (A-bed $2^{\circ}-10^{\circ}$)
C-Anisotropic Strength Fn.: 150pcf (Along Bedding $8^{\circ}-20^{\circ}$
Phi-B: 0°
Tmc150-17 ${ }^{\circ}$ (A-bed - $\left.1^{\circ}-\left(-5^{\circ}\right)\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc100-25 (A-bed $-1^{\circ}-\left(-5^{\circ}\right)$)
C-Anisotropic Strength Fn.: 150 psf-17 ${ }^{\circ}$ (A-bed $-1^{\circ}-\left(-5^{\circ}\right)$)
Phi-B. 0°
Tmc100-25 ${ }^{\circ}$ (A-bed - $1^{\circ}-\left(-5^{\circ}\right)$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40
Phi-Anisotropic Strength Fn.: Tmc100-25 (A-bed $-1^{\circ}-\left(-5^{\circ}\right)$)
C-Anisotropic Strength Fn.: 100 psf- 25° (A-bed $-1^{\circ}-\left(-5^{\circ}\right)$)
Phi-B: 0°

Slip Surface Entry and Exit
Left Projection: Range
Left-Zone Left Coordinate: $(242,1,626)$ ft

1-Circular Mode of Failure

Left-Zone Increment: 50
Left-Zone Increment: 50
Right Projection: Range
Right-Zone Left Coordinate: ($557,1,696.9768$)
Right-Zone Right Coordinate: $(790,1,750.5) \mathrm{ft}$
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: $(-200,1,773) \mathrm{ft}$
Right Coordinate: $(812,1,751) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs $100-25^{\circ}$ (A-bed $\mathbf{1 0}^{\circ}-\mathbf{1 8}^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(9.9,1)$
Data Point: $(10,0.625)$
Data Point: ($18,0.625$)
Data Point: $(18.1,1)$
Tmc100-25 ${ }^{\circ}$ (A-bed - $\left.1^{\circ}-\left(-5^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-5.1,1)$
Data Point: (-5, 0.625)
Data Point: (-1, 0.625
Data Point: $(-0.9,1)$
TQs $100-25^{\circ}\left(\right.$ A-bed $\left.2^{\circ}-10^{\circ}\right)$
Model: Spline Data Point Function

- Circular Mode of Failure

Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(1.9,1)$
Data Point: ($2,0.625$)
Data Point: $(10,0.625$
Data Point: (10.1, 1)
150pcf (Along Bedding $8^{\circ}-20^{\circ}$)
Model: Spline Data Point Functio
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.667)$
Data Point: $(20,0.667)$ Data Point: $(20.1,1)$

150psf-17 ${ }^{\circ}$ (A-bed $\left.-1^{\circ}-\left(-5^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-5.1,1)$
Data Point: $(-5,0.75)$
Data Point: $(-1,0.75)$
Data Point: (-0.9, 1)
100psf-25 (A-bed $10^{\circ}-18^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(9.9,1)$
Data Point: $(10,0.444$
Data Point: $(18,0.444)$
Data Point: (18.1, 1)

100psf-25 ${ }^{\circ}$ (A-bed - $\left.1^{\circ}-\left(-5^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: (-5.1, 1
Data Point: $(-5,0.5)$
Data Point: $(-1,0.5)$
Data Point: $(-0.9,1)$

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-200	$1,665.0405$
Point 2	-200	1,773
Point 3	-181	1,782
Point 4	-161	1,788
Point 5	-128	1,769
Point 6	-115	1,769
Point 7	-56	1,730
Point 8	-36	1,730
Point 9	21	1,709
Point 10	31	1,709
Point 11	83	1,685
Point 12	96	1,679
Point 13	114	1,679
Point 14	166	1,655
Point 15	176	1,655
Point 16	235	1,626
Point 17	332	1,626
Point 18	367	1,649
Point 19	443	1,648
Point 20	523	1,678
Point 21	566	1,702
Point 22	592	1,702
Point 23	639	1,726
Point 24	661	1,726
Point 25	731	1,728
Point 26	812	1,733
Point 27	812	1,500
Point 28	-200	1,500
Point 29	703	1,749

1 - Circular Mode of Failure
Page 6 of 8

Point 30	768	1,750
Point 31	812	1,751
Point 32	542	$1,688.6047$
Point 33	812	1,701

Regions

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs $100-25^{\circ}\left(\right.$ A-bed 10° $\left.-18^{\circ}\right)$	$1,2,3,4,5,6,7,8,9,10,11$	18,295
Region 2	TQs $100-25^{\circ}\left(\right.$ A-bed 2° $\left.-10^{\circ}\right)$	$24,29,30,31,26,25$	2,654
Region 3	Tmc100-25 ${ }^{\circ}\left(\right.$ A-bed -1° $\left.-\left(-5^{\circ}\right)\right)$	$32,33,26,25,24,23,22,21$	$6,933.1$
Region 4	Tmc $150-17^{\circ}\left(\right.$ A-bed -1° $\left.-\left(-5^{\circ}\right)\right)$	$1,28,27,33,32,20,19,18,17,16,15,14,13,12,11$	$1.7108 e+005$

Current Slip Surface

Slip Surface: 114,620
F of S: 2.45
Volume: $391.35693 \mathrm{ft}^{3}$
Weight: $46,962.832$ Ibs
Resisting Moment: 2,962,018.9 lbs-ft
Activating Moment: $1,208,218.8 \mathrm{lbs}-\mathrm{ft}$
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 300 slip surfaces
Exit: (514.57611, 1,674.841) ft
Entry: $(570.4518,1,702) \mathrm{ft}$
Radius: 59.981802 ft
Center: (520.08275, 1,734.5695) ft
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	515.4185	$1,674.7753$	0	51.318155	23.930049	150
Slice 2	517.10328	$1,674.6677$	0	138.8712	64.756702	150
Slice 3	518.78806	$1,674.6076$	0	219.76672	102.4789	150
Slice 4	520.47283	$1,674.5949$	0	293.70413	246.44703	200
	522.15761	$1,674.6296$	0	359.47327	301.63389	200

file:///G:/SLOPE\%20RESULTS/Section\%2022-22\%20results/Latest\%20update\%203-25-2... 3/25/2016

Slice 5						
Slice 6	523.95	$1,674.7201$	0	442.18814	371.03991	200
Slice 7	525.85	$1,674.8733$	0	540.38254	453.43479	200
Slice 8	527.75	$1,675.0875$	0	629.416	528.14274	200
Slice 9	529.65	$1,675.3635$	0	709.44259	595.29301	200
Slice 10	531.55	$1,675.702$	0	780.58027	654.98462	200
Slice 11	533.45	$1,676.1043$	0	842.91275	707.28778	200
Slice 12	535.35	$1,676.5716$	0	896.49061	752.24494	200
Slice 13	537.25	$1,677.1055$	0	941.33186	789.87121	200
Slice 14	539.15	$1,677.7078$	0	977.42199	820.15443	200
Slice 15	541.05	$1,678.3809$	0	$1,004.7134$	843.05461	200
Slice 16	542.9756	$1,679.1383$	0	$1,023.2543$	858.61231	200
Slice 17	544.92679	$1,679.9853$	0	$1,032.6654$	866.50917	200
Slice 18	546.87799	$1,680.9166$	0	$1,032.4128$	866.2972	200
Slice 19	548.82918	$1,681.9366$	0	$1,022.2782$	857.79326	200
Slice 20	550.78038	$1,683.0508$	0	$1,001.991$	840.77024	200
Slice 21	552.73157	$1,684.2653$	0	971.22121	814.95136	200
Slice 22	554.68276	$1,685.5876$	0	929.57122	780.00287	200
Slice 23	556.63396	$1,687.0268$	0	876.56427	735.52475	200
Slice 24	558.58515	$1,688.5939$	0	811.63049	681.03885	200
Slice 25	560.63396	$1,690.3961$	0	729.46155	612.09091	200
Slice 26	562.78038	$1,692.4697$	0	627.80021	526.78693	200
Slice 27	564.92679	$1,694.7673$	0	508.49233	426.67572	200
Slice 28	567.11295	$1,697.3841$	0	314.82507	264.1696	200

Section 22-22 pseudostatic Right SSA for Skyline Ranch.gsz

Section 22-22 pseudostatic Right SSA for Skyline Ranch.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/25/2016 3:34:46 PM

1 - Circular Mode of Failure

Renotenatedura

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 172
Date: 3/25/2016
Time: 3:34:46 PM
Tool Version: 8.15.1.11236
File Name: Section 22-22 pseudostatic Right SSA for Skyline Ranch.gsz
Firectory: G:\SLOPE RESULTS\Section 22-22 results \Latest update 3-25-2016\}
Last Solved Date: 3/25/2016
Last Solved Time: 3:39:23 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exi
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $\mathbf{1 0 0 - 2 5}{ }^{\circ}$ (A-bed $10^{\circ}-18^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}$ (A-bed $10^{\circ}-18^{\circ}$
C-Anisotropic Strength Fn.: 100 psf- 25° (A-bed $\left.10^{\circ}-18^{\circ}\right)$
Phi-B: 0°
TQs $100-25^{\circ}\left(\right.$ A-bed $\left.2^{\circ}-10^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}\left(\mathrm{A}\right.$-bed $\left.2^{\circ}-10^{\circ}\right)$
C-Anisotropic Strength Fn.: 150pcf (Along Bedding $8^{\circ}-20^{\circ}$
Phi-B: 0°
Tmc150-17 ${ }^{\circ}$ (A-bed -1$\left.-\left(-5^{\circ}\right)\right)$
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc100-25 (A-bed $-1^{\circ}-\left(-5^{\circ}\right)$)
C-Anisotropic Strength Fn.: 150 psf-17 ${ }^{\circ}$ (A-bed $-1^{\circ}-\left(-5^{\circ}\right)$)
Phi-B. 0°
Tmc100-25 ${ }^{\circ}$ (A-bed - $1^{\circ}-\left(-5^{\circ}\right)$)
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40
Phi-Anisotropic Strength Fn.: Tmc100-25 (A-bed $-1^{\circ}-\left(-5^{\circ}\right)$)
C-Anisotropic Strength Fn.: 100 psf- 25° (A-bed $-1^{\circ}-\left(-5^{\circ}\right)$)
Phi-B: 0°

Slip Surface Entry and Exit
Left Projection: Range
Left-Zone Left Coordinate: $(242,1,626)$ ft

1-Circular Mode of Failure

Left-Zone Increment: 50
Left-Zone Increment: 50
Right Projection: Range
Right-Zone Left Coordinate: ($557,1,696.9768$)
Right-Zone Right Coordinate: $(790,1,750.5) \mathrm{ft}$
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: $(-200,1,773) \mathrm{ft}$
Right Coordinate: $(812,1,751) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs $100-25^{\circ}$ (A-bed $\mathbf{1 0}^{\circ}-\mathbf{1 8}^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(9.9,1)$
Data Point: $(10,0.625)$
Data Point: ($18,0.625$)
Data Point: $(18.1,1)$
Tmc100-25 ${ }^{\circ}$ (A-bed - $\left.1^{\circ}-\left(-5^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-5.1,1)$
Data Point: (-5, 0.625)
Data Point: (-1, 0.625
Data Point: $(-0.9,1)$
TQs $\mathbf{1 0 0 - 2 5}$ (A-bed $\mathbf{2}^{\circ}-10^{\circ}$)
Model: Spline Data Point Function

1 - Circular Mode of Failure

Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(1.9,1)$
Data Point: ($2,0.625$)
Data Point: $(10,0.625$
Data Point: (10.1, 1)
150pcf (Along Bedding $8^{\circ}-20^{\circ}$)
Model: Spline Data Point Functio
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.667)$
Data Point: $(20,0.667)$ Data Point: $(20.1,1)$

150psf-17 ${ }^{\circ}$ (A-bed $\left.-1^{\circ}-\left(-5^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-5.1,1)$
Data Point: $(-5,0.75)$
Data Point: $(-1,0.75)$
Data Point: (-0.9, 1)
100psf-25 (A-bed $10^{\circ}-18^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(9.9,1)$
Data Point: $(10,0.444$
Data Point: $(18,0.444)$
Data Point: (18.1, 1)

100psf-25 ${ }^{\circ}$ (A-bed - $\left.1^{\circ}-\left(-5^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: (-5.1, 1
Data Point: $(-5,0.5)$
Data Point: $(-1,0.5)$
Data Point: $(-0.9,1)$

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-200	$1,665.0405$
Point 2	-200	1,773
Point 3	-181	1,782
Point 4	-161	1,788
Point 5	-128	1,769
Point 6	-115	1,769
Point 7	-56	1,730
Point 8	-36	1,730
Point 9	21	1,709
Point 10	31	1,709
Point 11	83	1,685
Point 12	96	1,679
Point 13	114	1,679
Point 14	166	1,655
Point 15	176	1,655
Point 16	235	1,626
Point 17	332	1,626
Point 18	367	1,649
Point 19	443	1,648
Point 20	523	1,678
Point 21	566	1,702
Point 22	592	1,702
Point 23	639	1,726
Point 24	661	1,726
Point 25	731	1,728
Point 26	812	1,733
Point 27	812	1,500
Point 28	-200	1,500
Point 29	703	1,749

1 - Circular Mode of Failure

Regions

egions
Material Points Area $\left(\mathrm{ft}^{2}\right)$ Region 1 TQs $100-25^{\circ}\left(\right.$ A-bed 10° $\left.-18^{\circ}\right)$ $1,2,3,4,5,6,7,8,9,10,11$ 18,295 Region 2 TQs $100-25^{\circ}\left(\right.$ A-bed 2° $\left.-10^{\circ}\right)$ $24,29,30,31,26,25$ 2,654 Region 3 Tmc100-25 $\left.-\left(-5^{\circ}\right)\right)$ $32,33,26,25,24,23,22,21$ $6,933.1$ Region 4 Tmc150-17 $\left.-\left(-5^{\circ}\right)\right)$ A-bed -1° $1,28,27,33,32,20,19,18,17,16,15,14,13,12,11$
:---

Current Slip Surface

Slip Surface: 86,107
F of S: 1.79
Volume: $1,812.5546 \mathrm{ft}^{3}$
Weight: $217,506.55 \mathrm{lbs}$
Resisting Moment: 28,443,985 lbs-ft
Activating Moment: $15,916,884 \mathrm{lbs}-\mathrm{ft}$
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 300 slip surfaces
Exit: (448.01933, 1,649.8823) ft
Entry: (580.29095, 1,702) ft
Radius: 148.63848 ft
Center: (466.30091, 1,797.3922) ft
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	450.22465	$1,649.6423$	0	147.725	123.95599	200
Slice 2	454.63528	$1,649.2287$	0	390.75475	182.21193	150
Slice 3	459.0459	$1,648.9473$	0	620.38457	289.29008	150
Slice 4	463.45653	$1,648.7973$	0	830.61423	387.32178	150
	467.86716	$1,648.7783$	0	$1,019.4097$	855.3863	200

file:///G:/SLOPE\%20RESULTS/Section\%2022-22\%20results/Latest\%20update\%203-25-2... 3/25/2016

Slice 5						
Slice 6	472.27779	$1,648.8903$	0	$1,183.8301$	993.3514	200
Slice 7	476.68841	$1,649.1336$	0	$1,328.4882$	$1,114.734$	200
Slice 8	481.09904	$1,649.5088$	0	$1,454.0196$	$1,220.0673$	200
Slice 9	485.50967	$1,650.0169$	0	$1,560.9737$	$1,309.8125$	200
Slice 10	489.92029	$1,650.6593$	0	$1,649.8227$	$1,384.3656$	200
Slice 11	494.33092	$1,651.4378$	0	$1,720.9684$	$1,444.064$	200
Slice 12	498.74155	$1,652.3546$	0	$1,774.7487$	$1,489.191$	200
Slice 13	503.15218	$1,653.4123$	0	$1,811.4417$	$1,519.9801$	200
Slice 14	507.5628	$1,654.6141$	0	$1,831.2701$	$1,536.6181$	200
Slice 15	511.97343	$1,655.9636$	0	$1,834.4038$	$1,539.2476$	200
Slice 16	516.38406	$1,657.4651$	0	$1,820.9629$	$1,527.9693$	200
Slice 17	520.79469	$1,659.1236$	0	$1,791.0187$	$1,502.8431$	200
Slice 18	525.375	$1,661.0215$	0	$1,785.52$	$1,498.2291$	200
Slice 19	530.125	$1,663.1798$	0	$1,801.03$	$1,511.2436$	200
Slice 20	534.875	$1,665.5444$	0	$1,794.428$	$1,505.7039$	200
Slice 21	539.625	$1,668.1269$	0	$1,765.4639$	$1,481.4001$	200
Slice 22	544.4	$1,670.9565$	0	$1,713.3964$	$1,437.7103$	200
Slice 23	549.2	$1,674.0521$	0	$1,637.5306$	$1,374.0514$	200
Slice 24	554	$1,677.4196$	0	$1,537.4465$	$1,290.0708$	200
Slice 25	558.8	$1,681.0826$	0	$1,412.4479$	$1,185.1845$	200
Slice 26	563.6	$1,685.0703$	0	$1,261.706$	$1,058.6971$	200
Slice 27	567.44814	$1,688.4944$	0	$1,056.7822$	886.74553	200
Slice 28	570.7954	$1,691.7174$	0	767.62652	644.11513	200

Section 22-22 Static Right SSA for Skyline Ranch.gsz

Section 22-22 Static Right SSA for Skyline Ranch.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/25/2016 3:43:56 PM

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 174
Date: 3/25/2016
Time: 3:43:56 PM
Tool Version: 8.15.1.11236
File Name: Section 22-22 Static Right SSA for Skyline Ranch.gsz
Directory: G:\SLOPE RESULTS\Section 22-22 results\Latest update 3-25-2016\}
Last Solved Date: 3/25/2016
Last Solved Time: 3:44:27 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $100-25^{\circ}\left(\mathrm{A}\right.$-bed $10^{\circ}-18^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}\left(\right.$ A-bed $\left.10^{\circ}-18^{\circ}\right)$
C-Anisotropic Strength Fn.: 100 psf- 25° (A-bed $10^{\circ}-18^{\circ}$)
Phi-B: 0°
TQs $\mathbf{1 0 0 - 2 5 ^ { \circ }}$ (A-bed $2^{\circ}-10^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}\left(\mathrm{A}\right.$-bed $2^{\circ}-10^{\circ}$)
C-Anisotropic Strength Fn.: 150pcf (Along Bedding $8^{\circ}-20^{\circ}$)
Phi-B: 0
Tmc150-17º (A-bed -1ํ.(-5ํ))
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc100-25 ${ }^{\circ}$ (A-bed $\left.-1^{\circ}-\left(-5^{\circ}\right)\right)$
C-Anisotropic Strength Fn.: 150 psf-17 $\left(\mathrm{A}\right.$-bed $\left.-1^{\circ}-\left(-5^{\circ}\right)\right)$
Phi-B: 0°
Tmc100-25 ${ }^{\circ}$ (A-bed - $\left.1^{\circ}-\left(-5^{\circ}\right)\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40
Phi-Anisotropic Strength Fn.: Tmc100-25 (A-bed $-1^{\circ}-\left(-5^{\circ}\right)$)
C-Anisotropic Strength Fn.: 100 psf- 25° (A-bed $\left.-1^{\circ}-\left(-5^{\circ}\right)\right)$
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-200,1,773) f$

Right Coordinate: $(812,1,751) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: $(422.5932,1,659.817) \mathrm{ft}$
Lower Left: (429.7437, 1,606.3915) ft
Lower Right: (500.0051, 1,637.9872) ft
X Increments: 10
Y Increments: 10
Starting Angle: 135°
Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: $(538.0094,1,708.4308) \mathrm{ft}$
Lower Left: (548.9525, 1,620.2038) ft
Lower Right: ($641.0569,1,671.1037$) ft
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs $\mathbf{1 0 0}-\mathbf{2 5}^{\circ}$ (A-bed $\mathbf{1 0}^{\circ}-\mathbf{1 8}^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(9.9,1)$
Data Point: ($10,0.625$)
Data Point: $(18,0.625)$
Data Point: $(18.1,1)$
Tmc100-25 ${ }^{\circ}$ (A-bed - 1°-(-5 $\left.{ }^{\circ}\right)$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%

Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$, Modifier Facto
Data Point: $(-90,1)$
Data Point: $(-5.1,1)$
Data Point: $(-5,0.625$
Data Point: $(-1,0.625$
Data Point: $(-0.9,1)$
TQs $\mathbf{1 0 0 - 2 5}{ }^{\circ}$ (A-bed $\mathbf{2}^{\circ}-10^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(1.9,1)$
Data Point: $(2,0.625)$
Data Point: $(2,0.625)$
Data Point: ($10,0.625$
150pcf (Along Bedding $8^{\circ}-20^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.667)$
Data Point: $(20,0.667)$
Data Point: (20.1, 1)
150psf-17 ${ }^{\circ}$ (A-bed $\left.-1^{\circ}-\left(-5^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(-5.1,1)$
Data Point: $(-5,0.75)$
Data Point: $(-1,0.75)$
Data Point: $(-0.9,1$
100psf-25 (A-bed $10^{\circ}-18^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

2-Translational

Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(9.9,1)$
Data Point: $(10,0.444)$
Data Point: $(18,0.444)$
Data Point: (18.1, 1)
100psf-25 ${ }^{\circ}$ (A-bed - $\left.1^{\circ}-\left(-5^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: (-5.1, 1)
Data Point: $(-5.1,1)$
Data Point: $(-5,0.5)$
Data Point: $(-1,0.5)$
Data Point: $(-0.9,1)$

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-200	$1,665.0405$
Point 2	-200	1,773
Point 3	-181	1,782
Point 4	-161	1,788
Point 5	-128	1,769
Point 6	-115	1,769
Point 7	-56	1,730
Point 8	-36	1,730
Point 9	21	1,709
Point 10	31	1,709
Point 11	83	1,685
Point 12	96	1,679
Point 13	114	1,679
Point 14	166	1,655
Point 15	176	1,655
Point 16	235	1,626
Point 17	332	1,626
Point 18	367	1,649
Point 19	443	1,648
Point 20	523	1,678
Point 21	566	1,702

2-Translational
Page 6 of 8

Point 22	592	1,702
Point 23	639	1,726
Point 24	661	1,726
Point 25	731	1,728
Point 26	812	1,733
Point 27	812	1,500
Point 28	-200	1,500
Point 29	703	1,749
Point 30	768	1,750
Point 31	812	1,751
Point 32	542	$1,688.6047$
Point 33	812	1,701

Regions

Regions
\qquad Material Points Area $\left(\mathrm{ft}^{2}\right)$ Region 1 TQs $100-25^{\circ}\left(\mathrm{A}\right.$-bed 10° $\left.-18^{\circ}\right)$ $1,2,3,4,5,6,7,8,9,10,11$ 18,295 Region 2 TQs $100-25^{\circ}\left(\mathrm{A}\right.$-bed 2° $\left.-10^{\circ}\right)$ $24,29,30,31,26,25$ 2,654 Region 3 Tmc100-25 $\left.-\left(-5^{\circ}\right)\right)$ A-bed -1° $32,33,26,25,24,23,22,21$
Region 4
Tmc150-17 $\left.-\left(-5^{\circ}\right)\right)$

Current Slip Surface

Slip Surface: 92,368
Fof $\mathrm{S}: 2.01$
Volume: 1,180.4526 ft ${ }^{3}$
Weight: 141,654.31 lbs
Resisting Force: $88,231.604 \mathrm{lbs}$
Activating Force: $43,801.645 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 300 slip surfaces

Exit: (489.78392, 1,665.544) ft
Entry: $(581.16365,1,702) \mathrm{ft}$
Radius: 54.17577 ft
Center: $(524.56566,1,711.114) \mathrm{ft}$

Slip Slices						
	X (ft)	$Y(\mathrm{ft})$	$\begin{aligned} & \text { PWP } \\ & \text { (psf) } \end{aligned}$	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
$\begin{aligned} & \hline \text { Slice } \\ & 1 \\ & \hline \end{aligned}$	491.29374	1,665.5095	0	74.177567	34.589567	150
$\begin{aligned} & \text { Slice } \\ & 2 \end{aligned}$	494.31339	1,665.4405	0	219.10696	102.17125	150
Slice 3	497.33303	1,665.3715	0	364.03635	169.75294	150
$\begin{aligned} & \text { Slice } \\ & 4 \\ & \hline \end{aligned}$	500.35267	1,665.3025	0	508.96574	237.33462	150
Slice 5	503.37232	1,665.2336	0	653.89513	304.9163	150
Slice 6	506.39196	1,665.1646	0	798.82452	372.49799	150
$\begin{aligned} & \hline \text { Slice } \\ & 7 \\ & \hline \end{aligned}$	509.4116	1,665.0956	0	943.7539	440.07967	150
$\begin{aligned} & \hline \text { Slice } \\ & 8 \\ & \hline \end{aligned}$	512.43125	1,665.0266	0	1,088.6833	507.66136	150
$\begin{aligned} & \text { Slice } \\ & 9 \\ & \hline \end{aligned}$	515.45089	1,664.9576	0	1,233.6127	575.24304	150
$\begin{aligned} & \text { Slice } \\ & 10 \\ & \hline \end{aligned}$	518.47053	1,664.8886	0	1,378.5421	642.82473	150
$\begin{aligned} & \hline \text { Slice } \\ & 11 \end{aligned}$	521.49018	1,664.8197	0	1,523.4715	710.40641	150
$\begin{aligned} & \text { Slice } \\ & 12 \\ & \hline \end{aligned}$	524.58333	1,664.749	0	1,706.9114	795.94584	150
$\begin{aligned} & \text { Slice } \\ & 13 \end{aligned}$	527.75	1,664.6767	0	1,928.8618	899.44302	150
$\begin{aligned} & \hline \text { Slice } \\ & 14 \\ & \hline \end{aligned}$	530.91667	1,664.6043	0	2,150.8122	1,002.9402	150
$\begin{aligned} & \text { Slice } \\ & 15 \end{aligned}$	534.08333	1,664.532	0	2,372.7626	1,106.4374	150
$\begin{aligned} & \text { Slice } \\ & 16 \\ & \hline \end{aligned}$	537.25	1,664.4596	0	2,594.713	1,209.9346	150
$\begin{aligned} & \text { Slice } \\ & 17 \end{aligned}$	540.41667	1,664.3873	0	2,816.6635	1,313.4317	150
$\begin{aligned} & \hline \text { Slice } \\ & 18 \\ & \hline \end{aligned}$	542.74047	1,664.3342	0	2,979.5379	1,389.3813	150
$\begin{aligned} & \text { Slice } \\ & 19 \end{aligned}$	545.08945	1,665.9258	0	1,996.1248	1,674.9476	200
$\begin{aligned} & \text { Slice } \\ & 20 \end{aligned}$	548.30646	1,669.1428	0	1,875.7643	1,573.9532	200

file:///G:/SLOPE\%20RESULTS/Section\%2022-22\%20results/Latest\%20update\%203-25-2... 3/25/2016

Slice 21	551.52347	$1,672.3598$	0	$1,755.4039$	$1,472.9588$	200
Slice 22	554.74047	$1,675.5768$	0	$1,635.0435$	$1,371.9644$	200
Slice 23	557.95748	$1,678.7938$	0	$1,514.6831$	$1,270.97$	200
Slice 24	561.17449	$1,682.0108$	0	$1,394.3226$	$1,169.9756$	200
Slice 25	564.3915	$1,685.2278$	0	$1,273.9622$	$1,068.9812$	200
Slice 26	567.50413	$1,688.3405$	0	$1,086.4229$	911.61708	200
Slice 27	570.52768	$1,691.364$	0	830.40982	696.79657	200
Slice 28	573.56653	$1,694.4029$	0	573.10169	480.88942	200
Slice 29	576.60538	$1,697.4417$	0	315.79357	264.98227	200
Slice 30	579.64423	$1,700.4806$	0	58.485447	49.075117	200

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2015 GEO-SLOPE International Ltd.

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsev
Revision Number: 172
Date: 3/25/2016
Time: 3:34:46 PM
Tool Version: 8.15.1.11236
File Name: Section 22-22 pseudostatic Right SSA for Skyline Ranch.gsz
Firectory: G:\SLOPE RESULTS\Section 22-22 results\Latest update 3-25-2016
Last Solved Date: 3/25/2016
Last Solved Time: 3:35:09 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs $100-25^{\circ}\left(\mathrm{A}\right.$-bed $10^{\circ}-18^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}\left(\right.$ A-bed $\left.10^{\circ}-18^{\circ}\right)$
C-Anisotropic Strength Fn.: 100 psf- 25° (A-bed $10^{\circ}-18^{\circ}$)
Phi-B: 0°
TQs $\mathbf{1 0 0 - 2 5 ^ { \circ }}$ (A-bed $2^{\circ}-10^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $100-25^{\circ}\left(\mathrm{A}\right.$-bed $2^{\circ}-10^{\circ}$)
C-Anisotropic Strength Fn.: 150pcf (Along Bedding $8^{\circ}-20^{\circ}$)
Phi-B: 0
Tmc150-17º (A-bed -1ํ.(-5ํ))
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc100-25 ${ }^{\circ}$ (A-bed $\left.-1^{\circ}-\left(-5^{\circ}\right)\right)$
C-Anisotropic Strength Fn.: 150 psf-17 $\left(\mathrm{A}\right.$-bed $\left.-1^{\circ}-\left(-5^{\circ}\right)\right)$
Phi-B: 0°
Tmc100-25 ${ }^{\circ}$ (A-bed - $\left.1^{\circ}-\left(-5^{\circ}\right)\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40
Phi-Anisotropic Strength Fn.: Tmc100-25 (A-bed $-1^{\circ}-\left(-5^{\circ}\right)$)
C-Anisotropic Strength Fn.: 100 psf- 25° (A-bed $\left.-1^{\circ}-\left(-5^{\circ}\right)\right)$
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-200,1,773) f$

Right Coordinate: $(812,1,751) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: (422.5932, 1,659.817) ft
Lower Left: (429.7437, 1,606.3915) ft
Lower Right: (500.0051, 1,637.9872) ft
X Increments: 10
Y Increments: 10
Starting Angle: 135°
Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: $(538.0094,1,708.4308) \mathrm{ft}$
Lower Left: (548.9525, 1,620.2038) ft
Lower Right: ($641.0569,1,671.1037$) ft
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs $\mathbf{1 0 0}-\mathbf{2 5}^{\circ}$ (A-bed $\mathbf{1 0}^{\circ}-\mathbf{1 8}^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(9.9,1)$
Data Point: ($10,0.625$)
Data Point: $(18,0.625)$
Data Point: $(18.1,1)$
Tmc100-25 ${ }^{\circ}$ (A-bed - 1°-(-5 $\left.{ }^{\circ}\right)$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%

Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$, Modifier Facto
Data Point: $(-90,1)$
Data Point: $(-5.1,1)$
Data Point: $(-5,0.625$
Data Point: $(-1,0.625$
Data Point: $(-0.9,1)$
TQs $\mathbf{1 0 0 - 2 5}{ }^{\circ}$ (A-bed $\mathbf{2}^{\circ}-10^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(1.9,1)$
Data Point: $(2,0.625)$
Data Point: $(2,0.625)$
Data Point: ($10,0.625$
150pcf (Along Bedding $8^{\circ}-20^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(7.9,1)$
Data Point: $(8,0.667)$
Data Point: $(20,0.667)$
Data Point: (20.1, 1)
150psf-17 ${ }^{\circ}$ (A-bed $\left.-1^{\circ}-\left(-5^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(-5.1,1)$
Data Point: $(-5,0.75)$
Data Point: $(-1,0.75$
Data Point: $(-0.9,1$
100psf-25 (A-bed $10^{\circ}-18^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

2-Translational

Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(9.9,1)$
Data Point: $(10,0.444)$
Data Point: $(18,0.444)$
Data Point: (18.1, 1)
100psf-25 ${ }^{\circ}$ (A-bed - $\left.1^{\circ}-\left(-5^{\circ}\right)\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: (-5.1, 1)
Data Point: $(-5.1,1)$
Data Point: $(-5,0.5)$
Data Point: $(-1,0.5)$
Data Point: $(-0.9,1)$

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-200	$1,665.0405$
Point 2	-200	1,773
Point 3	-181	1,782
Point 4	-161	1,788
Point 5	-128	1,769
Point 6	-115	1,769
Point 7	-56	1,730
Point 8	-36	1,730
Point 9	21	1,709
Point 10	31	1,709
Point 11	83	1,685
Point 12	96	1,679
Point 13	114	1,679
Point 14	166	1,655
Point 15	176	1,655
Point 16	235	1,626
Point 17	332	1,626
Point 18	367	1,649
Point 19	443	1,648
Point 20	523	1,678
Point 21	566	1,702

2 - Translational
Page 6 of 8

Point 22	592	1,702
Point 23	639	1,726
Point 24	661	1,726
Point 25	731	1,728
Point 26	812	1,733
Point 27	812	1,500
Point 28	-200	1,500
Point 29	703	1,749
Point 30	768	1,750
Point 31	812	1,751
Point 32	542	$1,688.6047$
Point 33	812	1,701

Regions

Regions
\qquad Material Points Area $\left(\mathrm{ft}^{2}\right)$ Region 1 TQs $100-25^{\circ}\left(\mathrm{A}\right.$-bed 10° $\left.-18^{\circ}\right)$ $1,2,3,4,5,6,7,8,9,10,11$ 18,295 Region 2 TQs $100-25^{\circ}\left(\mathrm{A}\right.$-bed 2° $\left.-10^{\circ}\right)$ $24,29,30,31,26,25$ 2,654 Region 3 Tmc100-25 $\left.-\left(-5^{\circ}\right)\right)$ A-bed -1° $32,33,26,25,24,23,22,21$
Region 4
Tmc150-17 $\left.-\left(-5^{\circ}\right)\right)$

Current Slip Surface

Slip Surface: 92,368
Fof $\mathrm{S}: 1.41$
Volume: 1,180.4526 ft ${ }^{3}$
Weight: $141,654.31 \mathrm{lbs}$
Resisting Force: $83,280.304 \mathrm{lbs}$
Activating Force: 59,030.339 lbs
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 300 slip surfaces

Exit: (489.78392, 1,665.544) ft
Entry: $(581.16365,1,702) \mathrm{ft}$
Radius: 54.17577 ft
Center: $(524.56566,1,711.114) \mathrm{ft}$

Slip Slices						
	X (ft)	Y (ft)	$\begin{aligned} & \text { PWP } \\ & \text { (psf) } \end{aligned}$	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
$\begin{aligned} & \text { Slice } \\ & 1 \\ & \hline \end{aligned}$	491.29374	1,665.5095	0	75.068306	35.004926	150
$\begin{aligned} & \text { Slice } \\ & 2 \\ & \hline \end{aligned}$	494.31339	1,665.4405	0	220.32381	102.73868	150
$\begin{aligned} & \text { Slice } \\ & 3 \end{aligned}$	497.33303	1,665.3715	0	365.57932	170.47244	150
$\begin{aligned} & \hline \text { Slice } \\ & 4 \end{aligned}$	500.35267	1,665.3025	0	510.83482	238.20619	150
Slice 5	503.37232	1,665.2336	0	656.09033	305.93995	150
Slice 6	506.39196	1,665.1646	0	801.34584	373.6737	150
Slice 7	509.4116	1,665.0956	0	946.60134	441.40745	150
$\begin{aligned} & \hline \text { Slice } \\ & 8 \end{aligned}$	512.43125	1,665.0266	0	1,091.8568	509.14121	150
$\begin{aligned} & \text { Slice } \\ & 9 \\ & \hline \end{aligned}$	515.45089	1,664.9576	0	1,237.1124	576.87496	150
$\begin{aligned} & \text { Slice } \\ & 10 \end{aligned}$	518.47053	1,664.8886	0	1,382.3679	644.60872	150
$\begin{aligned} & \hline \text { Slice } \\ & 11 \end{aligned}$	521.49018	1,664.8197	0	1,527.6234	712.34247	150
$\begin{aligned} & \text { Slice } \\ & 12 \\ & \hline \end{aligned}$	524.58333	1,664.749	0	1,711.476	798.07438	150
$\begin{aligned} & \text { Slice } \\ & 13 \\ & \hline \end{aligned}$	527.75	1,664.6767	0	1,933.9259	901.80445	150
Slice 14	530.91667	1,664.6043	0	2,156.3757	1,005.5345	150
$\begin{aligned} & \text { Slice } \\ & 15 \end{aligned}$	534.08333	1,664.532	0	2,378.8256	1,109.2646	150
$\begin{aligned} & \hline \text { Slice } \\ & 16 \end{aligned}$	537.25	1,664.4596	0	2,601.2754	1,212.9947	150
$\begin{aligned} & \hline \text { Slice } \\ & 17 \end{aligned}$	540.41667	1,664.3873	0	2,823.7253	1,316.7247	150
$\begin{aligned} & \text { Slice } \\ & 18 \end{aligned}$	542.74047	1,664.3342	0	2,986.9662	1,392.8452	150
$\begin{aligned} & \text { Slice } \\ & 19 \end{aligned}$	545.08945	1,665.9258	0	1,749.3954	1,467.917	200
$\begin{aligned} & \text { Slice } \\ & 20 \end{aligned}$	548.30646	1,669.1428	0	1,642.325	1,378.0743	200

file:///G:/SLOPE\%20RESULTS/Section\%2022-22\%20results/Latest\%20update\%203-25-2... 3/25/2016

Slice 21	551.52347	$1,672.3598$	0	$1,535.2547$	$1,288.2317$	200
Slice 22	554.74047	$1,675.5768$	0	$1,428.1844$	$1,198.389$	200
Slice 23	557.95748	$1,678.7938$	0	$1,321.1141$	$1,108.5464$	200
Slice 24	561.17449	$1,682.0108$	0	$1,214.0438$	$1,018.7037$	200
Slice 25	564.3915	$1,685.2278$	0	$1,106.9735$	928.86108	200
Slice 26	567.50413	$1,688.3405$	0	940.14223	788.873	200
Slice 27	570.52768	$1,691.364$	0	712.39793	597.77284	200
Slice 28	573.56653	$1,694.4029$	0	483.50161	405.70602	200
Slice 29	576.60538	$1,697.4417$	0	254.6053	213.63921	200
Slice 30	579.64423	$1,700.4806$	0	25.708978	21.572394	200

1 - Circular Mode of Failure

Report generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International

File Information

File Version: 8.15

Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 143
Date: 3/22/2016
Time: 1:17:24 PM
Tool Version: 8.15.5.11777
File Name: Section 23 SSA for Skyline Ranch.gsz
Directory: P:\FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 23-23 results\Latest Update 3-22-16
ast Solved Date: 3/22/2016
Last Solved Time: 1:17:58 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant

dvanced

Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs 25° A-Bed 6-8 ${ }^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn .: TQs 25° (A-Bed $\left.6^{\circ}-8^{\circ}\right)$
C-Anisotropic Strength Fn.: TQs 100 psf (Along Bedding $6^{\circ}-8^{\circ}$)
Phi-B: 0°
Tmc 25° A-bed 8-17 ${ }^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pc
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 25° (Along Bedding $8^{\circ}-17^{\circ}$)
C-Anisotropic Strength Fn.: Tmc 100 psf (A-Bed $8^{\circ}-17^{\circ}$)
Phi-B: 0°

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Tmc $17{ }^{\circ} \mathrm{A}$-Bed $8-17^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pc
Cohesion': 200 psf
Phi': $40{ }^{\circ}$
Phi-Anisotropic Strength Fn.: Tmc 17° (Along Bedding $8^{\circ}-17^{\circ}$)
C-Anisotropic Strength Fn.: Tmc 150 psf (A-Bed $8^{\circ}-17^{\circ}$)
Phi-B: 0°

Slip Surface Entry and Exit
Left Projection: Range
Left-Zone Left Coordinate: $(23.826,1,747.1026) \mathrm{ft}$
Left-Zone Right Coordinate: ($178,1,770.3333$) ft
Left-Zone Increment: 50

1-Circular Mode of Failure

Right Projection: Range
Right-Zone Left Coordinate: $(224.2214,1,787.2149)$ ft
Right-Zone Right Coordinate: $(768,1,932.3566) \mathrm{ft}$
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: $(-200,1,746) \mathrm{ft}$
Right Coordinate: $(810,1,942) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs $25^{\circ}\left(\right.$ A-Bed $\left.6^{\circ}-8^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: $(6,0.625)$
Data Point: $(8,0.625)$
Data Point: $(8.1,1)$
TQs 100 psf (Along Bedding $6^{\circ}-\mathbf{8}^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Vata Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: (5.9, 1)
Data Point: $(6,0.444)$
Data Point: $(8,0.444$
Data Point: (8.1, 1)
Tmc 17° (Along Bedding $8^{\circ}-17^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%

Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.425)$
Data Point: $(17,0.425)$
Data Point: (17.1, 1)
Tmc 150 psf (A-Bed $8^{\circ}-17^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.75)$
Data Point: $(17,0.75)$
Data Point: $(17.1,1)$
Tmc 25° (Along Bedding $8^{\circ}-\mathbf{1 7}^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.625)$
Data Point: $(17,0.625)$
Data Point: $(17.1,1)$
Tmc 100 psf (A-Bed $8^{\circ}-1^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \% Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.5)$
Data Point: $(17,0.5)$
Data Point: $(17.1,1)$

Points

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/22/2016

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	15	1,747
Point 2	101	1,748
Point 3	143	1,747
Point 4	191	1,779
Point 5	204	1,779
Point 6	268	1,805
Point 7	295	1,811
Point 8	420	1,850
Point 9	570	1,890
Point 10	650	1,904
Point 11	779	1,935
Point 12	810	1,942
Point 13	810	1,818
Point 14	556	1,791
Point 15	371	$1,770.9335$
Point 16	255	1,759
Point 17	140	1,746
Point 18	-10	1,731
Point 19	-200	1,746
Point 20	-152	1,746
Point 21	-61	1,746
Point 22	-39	1,709
Point 23	-67	1,690
Point 24	-94	1,678
Point 25	-111	1,677
Point 26	-138	1,676
Point 27	-158	1,681
Point 28	-200	1,691
Point 29	-200	1,500
Point 30	809	1,500
Point 31	273	1,805
Point 32	245	1,720
Point 33	-200	1,627
Point 34	596	$1,795.252$

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs $25^{\circ} \mathrm{A}$-Bed $6-8^{\circ}$	$1,2,3,4,5,6,31,7,8,9,10,11,12,13,34,14,15,16,17,18$	52,306
Region 2	Fill	$19,20,21,1,18,22,23,24,25,26,27,28$	10,854
Region 3	Tmc $17^{\circ} \mathrm{A}$-Bed 8-17	$29,30,13,34,32,33$	$2.3309 \mathrm{e}+005$
Region 4	Tmc $25^{\circ} \mathrm{A}$-bed 8-17	$28,33,32,34,14,15,16,17,18,22,23,24,25,26,27$	27,717

Current Slip Surface

Slip Surface: 91,059
F of $\mathrm{S}: 2.21$
Volume: $1,083.1046 \mathrm{ft}^{3}$
Weight: $129,972.55 \mathrm{lbs}$
Resisting Moment: 9,943,306.7 lbs-ft
Activating Moment: $4,508,734,5 \mathrm{lbs}$-ft
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 150 slip surfaces
Exit: (136.68977, 1,747.1502) ft
Entry: $(224.22138,1,787.2149) \mathrm{ft}$
Radius: 87.952048 ft
Center: (149.81863, 1,834.1169) ft

Slip Slices
$\mathrm{X}(\mathrm{ft})$ Y (f) PWP (psf) Base Normal Stress (psf) Frictional Strength (psf) Cohesive Strength (psf) Slice 1 138.26733 $1,746.9412$ 0 35.879375 30.106371 225 Slice 2 141.42244 $1,746.5809$ 0 67.015711 56.232858 225 Slice 3 143.2404 $1,746.4115$ 0 100.34905 84.202853 225 Slice 4 144.93983 $1,746.3124$ 0 247.96103 208.064 200 Slice 5 147.85788 $1,746.1988$ 0 490.95238 411.95796 200 Slice 6 150.77593 $1,746.1821$ 0 716.26935 601.02134 200 Slice 7 153.69399 $1,746.2624$ 0 924.54681 775.78689 200 Slice 8 156.61204 $1,746.4398$ 0 $1,116.3169$ 936.7011 200 Slice 9 159.53009 $1,746.715$ 0 $1,292.0201$ $1,084.1335$ 200 Slice 10 162.44815 $1,747.0888$ 0 $1,492.8914$ 696.14667 100 Slice 11 165.3662 $1,747.5626$ 0 $1,651.0438$ 769.89436 100 Slice 12 168.28425 $1,748.1381$ 0 $1,795.0676$ 837.05377 100 Slice 13 171.20231 $1,748.8172$ 0 $1,924.91$ 897.60026 100 Slice 14 174.12036 $1,749.6025$ 0 $2,040.46$ 951.48211 100 Slice 177.12145 $1,750.5257$ 0 $2,022.4419$ $1,697.0303$ 225

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/22/2016

15						
Slice 16	180.20557	$1,751.5972$	0	$2,094.3253$	$1,757.3476$	225
Slice 17	183.28969	$1,752.7998$	0	$2,149.2376$	$1,803.4245$	225
Slice 18	186.37382	$1,754.1393$	0	$2,186.935$	$1,835.0563$	225
Slice 19	189.45794	$1,755.6229$	0	$2,207.0754$	$1,851.9561$	225
Slice 20	192.625	$1,757.3073$	0	$2,101.4893$	$1,763.3589$	225
Slice 21	195.875	$1,759.212$	0	$1,874.1925$	$1,572.6342$	225
Slice 22	199.125	$1,761.3117$	0	$1,633.4157$	$1,370.5986$	225
Slice 23	202.375	$1,763.6237$	0	$1,378.7482$	$1,156.9071$	225
Slice 24	205.44438	$1,766.015$	0	$1,179.4645$	989.68827	225
Slice 25	208.33315	$1,768.4825$	0	$1,032.7814$	866.60651	225
Slice 26	211.22192	$1,771.1794$	0	869.08801	729.25143	225
Slice 27	214.11069	$1,774.1368$	0	687.4133	576.80825	225
Slice 28	216.99946	$1,777.3958$	0	486.64944	408.34737	225
Slice 29	219.88823	$1,781.0123$	0	265.57241	222.84171	225
Slice 30	222.777	$1,785.0665$	0	22.934549	19.244372	225

1 - Circular Mode of Failure Seismic

eport generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International Ltd.

File Information

File Version: 8.15

Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 143
Date: 3/22/2016
Time: 1:17:24 PM
Tool Version: 8.15.5.11777
File Name: Section 23 SSA for Skyline Ranch.gsz
Directory: P:\FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 23-23 results\Latest Update 3-22-16
ast Solved Date: 3/22/2016
Last Solved Time: 1:18:00 PM

Project Settings
Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
nit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure Seismic
Kind: SLOPE/W
Parent: 1 - Circular Mode of Failure
Method: Bishop
Settings
Initial Slip Surface Source: Parent Analysis
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Critical Slip Surfaces from Other
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Optimize Critical Slip Surface Location: No

Tension Crack
Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant Advanced

Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs 25° A-Bed 6-8 ${ }^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pc
Cohesion': 225 psf
hi': 40°
Phi-Anisotropic Strength Fn.: TQs 25° (A-Bed $6^{\circ}-8^{\circ}$)
C-Anisotropic Strength Fn.: TQs 100 psf (Along Bedding $6^{\circ}-8^{\circ}$)
Phi-B: 0°
Tmc 25° A-bed 8-17 ${ }^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 25° (Along Bedding $8^{\circ}-17^{\circ}$)
C-Anisotropic Strength Fn.: Tmc 100 psf (A-Bed $8^{\circ}-17^{\circ}$)
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0
Tmc $17^{\circ} \mathrm{A}$-Bed 8-17 ${ }^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 17° (Along Bedding $8^{\circ}-17^{\circ}$)
C-Anisotropic Strength Fn.: Tmc 150 pst (A-Bed $8^{\circ}-17^{\circ}$)
Phi-B: 0°

Slip Surface Limits
Left Coordinate: $(-200,1,746) \mathrm{ft}$
Right Coordinate: $(810,1,942) \mathrm{ft}$

1 - Circular Mode of Failure Seismic

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs 25° (A-Bed $6^{\circ}-8^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \% Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: $(6,0.625)$
Data Point: $(8,0.625)$
Data Point: $(8.1,1)$
TQs 100 psf (Along Bedding $6^{\circ}-8^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: $(-90,1)$ Data Point: (5.9, 1) Data Point: ($6,0.444$ Data Point: $(8,0.444)$ Data Point: $(8.1,1$

Tmc 17° (Along Bedding $8^{\circ}-17^{\circ}$)
Model: Spline Data Point Function
function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor Data Point: (-90, 1)
Data Point: $(7.9,1)$
Data Point: $(8,0.425)$
Data Point: (17, 0.425)
Data Point: $(17.1,1)$
Tmc 150 psf (A-Bed $8^{\circ}-17^{\circ}$)
Model: Spline Data Point Function

- Circular Mode of Failure Seismic

Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.75)$
Data Point: (17, 0.75
Data Point: $(17.1,1)$
Tmc 25° (Along Bedding $8^{\circ}-17^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: (8, 0.625)
Data Point: $(17,0.625)$
Data Point: $(17.1,1)$
Tmc 100 psf (A-Bed $8^{\circ}-17^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(7.9,1)$
Data Point: $(8,0.5)$
Data Point: $(17,0.5)$
Data Point: $(17.1,1)$

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	15	1,747
Point 2	101	1,748
Point 3	143	1,747
Point 4	191	1,779
Point 5	204	1,779
Point 6	268	1,805
Point 7	295	1,811
Point 8	420	1,850

Point 9	570	1,890
Point 10	650	1,904
Point 11	779	1,935
Point 12	810	1,942
Point 13	810	1,818
Point 14	556	1,791
Point 15	371	$1,770.9335$
Point 16	255	1,759
Point 17	140	1,746
Point 18	-10	1,731
Point 19	-200	1,746
Point 20	-152	1,746
Point 21	-61	1,746
Point 22	-39	1,709
Point 23	-67	1,690
Point 24	-94	1,678
Point 25	-111	1,677
Point 26	-138	1,676
Point 27	-158	1,681
Point 28	-200	1,691
Point 29	-200	1,500
Point 30	809	1,500
Point 31	273	1,805
Point 32	245	1,720
Point 33	-200	1,627
Point 34	596	$1,795.252$

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs $25^{\circ} \mathrm{A}$-Bed 6-8		
Region 2	Fill	$1,2,3,4,5,6,31,7,8,9,10,11,12,13,34,14,15,16,17,18$	52,306
Region 3	Tmc $17^{\circ} \mathrm{A}$-Bed 8-17		
Region 4	Tmc $25^{\circ} \mathrm{A}$-bed 8-17		$29,30,21,1,18,22,23,24,25,26,27,28$
	$28,33,32,32,34,14,15,16,17,18,22,23,24,25,26,27$	10,854	

Current Slip Surface

Slip Surface: 1
F of S: 1.61
Volume: 1,083.1046 ft^{3}
Weight: 129,972 55
Resisting Moment: 9,434,171.1 lbs-ft
Resisting Moment: 9,434,171.1 lbs-ft
Activating Moment: $5,876,545.7 \mathrm{lbs}-\mathrm{ft}$
Activating Moment: $5,87,54$ Rank (Analysis): 1 of 1 slip surface
F of S Rank (Analysis): 1 of 1 slip surfaces
F of S Rank (Query): 1 of 1 slip surfaces

Exit: (136.68977, 1,747.1502) ft
Entry: (224.22138, 1,787.2149) ft
Radius: 87.952048 ft
Center: (149.81863, 1,834.1169) ft

Slip Slices						
	X (ft)	Y (ft)	$\begin{aligned} & \text { PWP } \\ & \text { (psf) } \\ & \hline \end{aligned}$	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	138.26733	1,746.9412	0	42.007126	35.248164	225
$\begin{aligned} & \text { Slice } \\ & 2 \\ & \hline \end{aligned}$	141.42244	1,746.5809	0	71.807421	60.253581	225
Slice 3	143.2404	1,746.4115	0	104.42197	87.620438	225
$\begin{aligned} & \text { Slice } \\ & 4 \end{aligned}$	144.93983	1,746.3124	0	251.90147	211.37043	200
$\begin{aligned} & \text { Slice } \\ & 5 \end{aligned}$	147.85788	1,746.1988	0	493.28254	413.91319	200
Slice 6	150.77593	1,746.1821	0	714.80618	599.79361	200
$\begin{aligned} & \text { Slice } \\ & 7 \end{aligned}$	153.69399	1,746.2624	0	917.44647	769.829	200
$\begin{aligned} & \text { Slice } \\ & 8 \end{aligned}$	156.61204	1,746.4398	0	1,102.0315	924.71419	200
Slice 9	159.53009	1,746.715	0	1,269.2606	1,065.0361	200
$\begin{aligned} & \hline \text { Slice } \\ & 10 \\ & \hline \end{aligned}$	162.44815	1,747.0888	0	1,474.1811	687.42196	100
Slice 11	165.3662	1,747.5626	0	1,625.9798	758.20682	100
$\begin{aligned} & \text { Slice } \\ & 12 \\ & \hline \end{aligned}$	168.28425	1,748.1381	0	1,763.096	822.14516	100
$\begin{aligned} & \hline \text { Slice } \\ & 13 \end{aligned}$	171.20231	1,748.8172	0	1,885.5653	879.25354	100
$\begin{aligned} & \hline \text { Slice } \\ & 14 \\ & \hline \end{aligned}$	174.12036	1,749.6025	0	1,993.3626	929.52026	100
$\begin{aligned} & \text { Slice } \\ & 15 \\ & \hline \end{aligned}$	177.12145	1,750.5257	0	1,931.9201	1,621.0734	225
$\begin{aligned} & \hline \text { Slice } \\ & 16 \\ & \hline \end{aligned}$	180.20557	1,751.5972	0	1,990.9839	1,670.6339	225
$\begin{aligned} & \hline \text { Slice } \\ & 17 \\ & \hline \end{aligned}$	183.28969	1,752.7998	0	2,033.24	1,706.0909	225
$\begin{aligned} & \text { Slice } \\ & 18 \end{aligned}$	186.37382	1,754.1393	0	2,058.6223	1,727.3892	225
$\begin{aligned} & \hline \text { Slice } \\ & 19 \end{aligned}$	189.45794	1,755.6229	0	2,066.9723	1,734.3957	225
$\begin{aligned} & \text { Slice } \\ & 20 \end{aligned}$	192.625	1,757.3073	0	1,956.5981	1,641.7807	225

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/22/2016

Slice 21	195.875	$1,759.212$	0	$1,732.9546$	$1,454.1216$	225
Slice 22	199.125	$1,761.3117$	0	$1,498.6536$	$1,257.5197$	225
Slice 23	202.375	$1,763.6237$	0	$1,253.5564$	$1,051.8587$	225
Slice 24	205.44438	$1,766.015$	0	$1,062.0467$	891.163	225
Slice 25	208.33315	$1,768.4825$	0	920.67172	772.5353	225
Slice 26	211.22192	$1,771.1794$	0	764.95724	641.87534	225
Slice 27	214.11069	$1,774.1368$	0	594.37962	498.74372	225
Slice 28	216.99946	$1,777.3958$	0	408.39353	342.68286	225
Slice 29	219.88823	$1,781.0123$	0	206.49947	173.27363	225
Slice 30	222.777	$1,785.0665$	0	-11.59229	-9.7270859	225

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International Ltd.

File Information

File Version: 8.15

Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 141
Date: 3/22/2016
Time: 1:00:43 PM
Tool Version: 8.15.5.11777
File Name: Section 23 SSA for Skyline Ranch.gsz
Directory: P:\FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 23-23 results\Latest Update 3-22-16\}
Last Solved Date: 3/22/2016
Last Solved Time: 1:02:52 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant Advanced

Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs 25° A-Bed 6-8 ${ }^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs 25° (A-Bed $6^{\circ}-8^{\circ}$)
C-Anisotropic Strength Fn.: TQs 100 psf (Along Bedding $6^{\circ}-8^{\circ}$)
Phi-B: 0°
Tmc 25° A-bed 8-17 ${ }^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength $\mathrm{Fn} .:$ Tmc 25° (Along Bedding $8^{\circ}-17^{\circ}$)
C-Anisotropic Strength Fn.: Tmc 100 psf (A-Bed $8^{\circ}-17^{\circ}$)
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pc
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Tmc $17^{\circ} \mathrm{A}$-Bed $8-17^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 17° (Along Bedding $8^{\circ}-17^{\circ}$)
C-Anisotropic Strength Fn.: Tmc 150 psf (A-Bed $8^{\circ}-17^{\circ}$)
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-200,1,746) \mathrm{ft}$
Right Coordinate: $(810,1,942) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: $(50.8505,1,759.0368) \mathrm{ft}$ Lower Left: (86.9521, 1,597.4756) ft Lower Right: ($300.9825,1,637.5428$) ft X Increments: 15 Y Increments: 15 Starting Angle: 135° Ending Angle: 180° Angle Increments: 2

ight Grid

Upper Left: (331.9615, 1,840.5347) ft Lower Left: $(422,1,628)$ ft Lower Right: (681.0585, 1,689.7014) ft X Increments: 15
Y Increments: 15
Starting Angle: 45
Ending Angle: 65
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs 25° (A-Bed $6^{\circ}-8^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: $(6,0.625)$
Data Point: ($8,0.625$)
Data Point: (8.1, 1
TQs 100 psf (Along Bedding $6^{\circ}-8^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%
Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1
Data Point: $(5.9,1)$
Data Point: $(6,0.444)$
Data Point: $(8,0.444)$
Data Point: $(8.1,1)$
Tmc 17° (Along Bedding $8^{\circ}-17^{\circ}$)
Model: Spline Data Point Function
function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \% Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(7.9,1)$
Data Point: $(8,0.425)$
Data Point: $(17,0.425)$
Data Point: $(17.1,1)$
Tmc 150 psf (A-Bed $\left.8^{\circ}-17^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%
Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: (-90, 1) Data Point: $(7.9,1)$ Data Point: $(8,0.75)$ Data Point: $(17,0.75)$ Data Point: $(17.1,1)$

Tmc 25° (Along Bedding $8^{\circ}-17^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: (-90, 1)
Data Point: $(7.9,1)$
Data Point: $(8,0.625)$
Data Point: $(17,0.625)$
Data Point: $(17.1,1)$
Tmc 100 psf (A-Bed $8^{\circ}-17^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%

Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.5)$
Data Point: $(17,0.5)$
Data Point: (17.1, 1)

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	15	1,747
Point 2	101	1,748
Point 3	143	1,747
Point 4	191	1,779
Point 5	204	1,779
Point 6	268	1,805
Point 7	295	1,811
Point 8	420	1,850
Point 9	570	1,890
Point 10	650	1,904
Point 11	779	1,935
Point 12	810	1,942
Point 13	810	1,818
Point 14	556	1,791
Point 15	371	$1,770.9335$
Point 16	255	1,759
Point 17	140	1,746
Point 18	-10	1,731
Point 19	-200	1,746
Point 20	-152	1,746
Point 21	-61	1,746
Point 22	-39	1,709
Point 23	-67	1,690
Point 24	-94	1,678
Point 25	-111	1,677
Point 26	-138	1,676
Point 27	-158	1,681
Point 28	-200	1,691
Point 29	-200	1,500
Point 30	809	1,500
Point 31	273	1,805
Point 32	245	1,720
Point 33	-200	1,627

Point 34	596	$1,795.252$

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs $25^{\circ} \mathrm{A}$-Bed $6-8^{\circ}$	$1,2,3,4,5,6,31,7,8,9,10,11,12,13,34,14,15,16,17,18$	52,306
Region 2	Fill	$19,20,21,1,18,22,23,24,25,26,27,28$	10,854
Region 3	Tmc $17^{\circ} \mathrm{A}$-Bed $8-17^{\circ}$	$29,30,13,34,32,33$	$2.3309 \mathrm{e}+005$
Region 4	Tmc $25^{\circ} \mathrm{A}$-bed $8-17^{\circ}$	$28,33,32,34,14,15,16,17,18,22,23,24,25,26,27$	27,717

Current Slip Surface

Slip Surface: 314,537
F of S: 1.73
Volume: $43,712.194 \mathrm{ft}^{3}$
Weight: $5,245,463.3 \mathrm{lbs}$
Resisting Force: $1,981,755.5 \mathrm{lbs}$
Activating Force: $1,147,535 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 589,824 slip surfaces
F of S Rank (Auery): 1 of 150 slip surface
Exit: (78.688554, 1,747.7406) ft
Entry: (679.98681, 1,911.2061) ft
Entry: (679.98681,
Center: ($346.00856,1,952.0725$) ft

Slip Slices
$\mathrm{X}(\mathrm{ft})$ Y (ft) PWP (psf) Base Normal Stress (psf) Frictional Strength (psf) Cohesive Strength (psf) Slice 1 86.342679 $1,744.5701$ 0 556.60961 467.05092 225 Slice 2 97.498401 $1,739.9493$ 0 $1,262.2849$ $1,059.1828$ 200 Slice 3 110.75 $1,734.4603$ 0 $2,057.5531$ $1,726.4921$ 200 Slice 4 130.25 $1,726.3831$ 0 $3,200.3953$ $2,685.4505$ 200 Slice 5 141.5 $1,721.7232$ 0 $3,859.7272$ $3,238.6957$ 200 Slice 6 151.99337 $1,717.3767$ 0 $5,406.9132$ $4,536.9388$ 200 Slice 7 169.9801 $1,709.9264$ 0 $8,325.4632$ $6,985.8931$ 200 Slice 8 180.41046 $1,705.606$ 0 $10,017.907$ $8,406.0224$ 200 Slice 9 186.42373 $1,705.9972$ 0 $8,068.597$ $2,466.8177$ 150 Slice 197.5 $1,708.3849$ 0 $8,145.2612$ $2,490.2563$ 150

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/22/2016

2-Translational

10						
Slice 11	214.25	$1,711.9956$	0	$8,209.2266$	$2,509.8124$	150
Slice 12	234.75	$1,716.4148$	0	$8,661.116$	$2,647.9689$	150
Slice 13	250	$1,719.7022$	0	$8,997.2777$	$2,750.7438$	150
Slice 14	261.5	$1,722.1812$	0	$9,250.7767$	$2,828.2463$	150
Slice 15	270.5	$1,724.1213$	0	$9,331.7589$	$2,853.005$	150
Slice 16	284	$1,727.0314$	0	$9,342.146$	$2,856.1807$	150
Slice 17	304.5	$1,731.4505$	0	$9,520.738$	$2,910.7817$	150
Slice 18	323.5	$1,735.5463$	0	$9,732.5482$	$2,975.5386$	150
Slice 19	342.5	$1,739.642$	0	$9,944.3584$	$3,040.2955$	150
Slice 20	361.5	$1,743.7378$	0	$10,156.169$	$3,105.0523$	150
Slice 21	383.25	$1,748.4264$	0	$10,398.635$	$3,179.1819$	150
Slice 22	407.75	$1,753.7078$	0	$10,671.759$	$3,262.6842$	150
Slice 23	429.71429	$1,758.4425$	0	$10,865.706$	$3,321.9797$	150
Slice 24	449.14286	$1,762.6307$	0	$10,980.476$	$3,357.0684$	150
Slice 25	468.57143	$1,766.8188$	0	$11,095.246$	$3,392.1571$	150
Slice 26	488	$1,771.007$	0	$11,210.016$	$3,427.2458$	150
Slice 27	507.42857	$1,775.1951$	0	$11,324.786$	$3,462.3346$	150
Slice 28	526.85714	$1,779.3833$	0	$11,439.556$	$3,497.4233$	150
Slice 29	546.28571	$1,783.5714$	0	$11,554.326$	$3,532.512$	150
Slice 30	563	$1,787.1745$	0	$11,653.062$	$3,562.6986$	150
Slice 31	583	$1,791.4858$	0	$11,633.449$	$3,556.7022$	150
Slice 32	597.24842	$1,794.5573$	0	$11,566.63$	$3,536.2736$	150
Slice 33	607.25495	$1,807.3343$	0	$6,216.4244$	$5,216.1994$	225
	250					

Slice 34	624.5098	$1,831.9768$	0	$4,682.6763$	$3,929.2319$	225
Slice 35	641.50327	$1,856.2459$	0	$3,172.1622$	$2,661.7601$	225
Slice 36	664.9934	$1,889.7933$	0	$1,153.6301$	968.01058	225

2 - Translational Seismic

Report generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International Ltd.

File Information

File Version: 8.15

Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 142
Date: 3/22/2016
Time: 1:04:29 PM
Tool Version: 8.15.5.11777
File Name: Section 23 SSA for Skyline Ranch.gsz
Directory: P:\FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 23-23 results\Latest Update 3-22-16\}
Last Solved Date: 3/22/2016
Last Solved Time: 1:04:32 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational Seismic
Kind: SLOPE/W
Parent: 2 - Translational
Method: Spencer
Settings
PWP Conditions Source: (none)
Initial Slip Surface Source: Parent Analysis
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Critical Slip Surfaces from Other
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Optimize Critical Slip Surface Location: No

Tension Crack
Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft
Search Method: Root Finder
Tolerable difference between starting and converged F of $\mathrm{S}: 3$
Maximum iterations to calculate converged lambda: 20
Max Absolute Lambda: 2

Materials

TOs 25° A-Bed 6-8 ${ }^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: TQs $25^{\circ}\left(\mathrm{A}-\mathrm{Bed} 6^{\circ}-8^{\circ}\right)$
C-Anisotropic Strength Fn.: TQs 100 psf (Along Bedding $6^{\circ}-8^{\circ}$)
Phi-B: 0°
Tmc 25° A-bed 8-17 ${ }^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Unit Weight: 120 pc
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 25° (Along Bedding $8^{\circ}-17$
Phi-Anisotropic Strength Fn.: Tmc 25° (Along Bedding 8°
C-Anisotropic Strength Fn.: Tmc 100 psf (A-Bed $8^{\circ}-17^{\circ}$)
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Tmc 17° A-Bed 8-17 ${ }^{\circ}$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 17° (Along Bedding $8^{\circ}-17^{\circ}$)
C-Anisotropic Strength Fn.: Tmc 150 psf (A-Bed $8^{\circ}-17^{\circ}$)
Phi-B: 0°

Slip Surface Limits

Left Coordinate: $(-200,1,746) \mathrm{ft}$
Right Coordinate: $(810,1,942) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

TQs 25° (A-Bed $6^{\circ}-8^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: $(6,0.625)$
Data Point: ($8,0.625$
Data Point: (8.1, 1)
TQs 100 psf (Along Bedding $6^{\circ}-8^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: $(6,0.444)$
Data Point: $(8,0.444)$
Data Point: $(8.1,1)$
Tmc 17° (Along Bedding $8^{\circ}-17^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(7.9,1)$

Data Point: ($8,0.425$)
Data Point: $(17,0.425)$
Data Point: $(17.1,1)$
Tmc 150 psf (A-Bed $8^{\circ}-17^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100% Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: ($7.9,1$
Data Point: $(8,0.75)$
Data Point: $(17,0.75)$
Data Point: $(17.1,1)$
Tmc 25° (Along Bedding $8^{\circ}-17^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%

Y-Intercept:1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.625)$
Data Point: $(17,0.625)$
Data Point: $(17.1,1)$
Tmc 100 psf (A-Bed $\left.8^{\circ}-17^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(7.9,1)$
Data Point: $(8,0.5)$
Data Point: $(17,0.5)$
Data Point: $(17.1,1)$

Points

	$X(\mathrm{ft})$	$Y(\mathrm{ft})$
Point 1	15	1,747
Point 2	101	1,748
Point 3	143	1,747

Point 4	191	1,779
Point 5	204	1,779
Point 6	268	1,805
Point 7	295	1,811
Point 8	420	1,850
Point 9	570	1,890
Point 10	650	1,904
Point 11	779	1,935
Point 12	810	1,942
Point 13	810	1,818
Point 14	556	1,791
Point 15	371	$1,770.9335$
Point 16	255	1,759
Point 17	140	1,746
Point 18	-10	1,731
Point 19	-200	1,746
Point 20	-152	1,746
Point 21	-61	1,746
Point 22	-39	1,709
Point 23	-67	1,690
Point 24	-94	1,678
Point 25	-111	1,677
Point 26	-138	1,676
Point 27	-158	1,681
Point 28	-200	1,691
Point 29	-200	1,500
Point 30	809	1,500
Point 31	273	1,805
Point 32	245	1,720
Point 33	-200	1,627
Point 34	596	$1,795.252$

Regions

	Material	Points	Area (ft^{2})
Region 1	TQs 25° A-Bed 6-8 ${ }^{\circ}$	1,2,3,4,5,6,31,7,8,9,10,11,12,13,34,14,15,16,17,18	52,306
Region 2	Fill	19,20,21,1,18,22,23,24,25,26,27,28	10,854
Region 3	Tmc $17^{\circ} \mathrm{A}$-Bed 8-17 ${ }^{\circ}$	29,30,13,34,32,33	2.3309e+005
Region 4	Tmc 25° A-bed 8-17 ${ }^{\circ}$	28,33,32,34,14,15,16,17,18,22,23,24,25,26,27	27,717

Current Slip Surface

Slip Surface: 1
F of S: 1.33

2-Translational Seismic

Page 6 of 7

Volume: $43,712.194 \mathrm{ft}^{3}$
Weight: $5,245,463.3 \mathrm{lbs}$
Resisting Moment: $5.8921138 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
Resisting Moment: 5.8921138e+008 lbs-ft
Activating Moment: $4.4444677 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
Resisting Force: $2,173,359.7 \mathrm{lbs}$
Activating Force: $1,627,186.9 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 1 slip surfaces
F of S Rank (Query): 1 of 1 slip surfaces
Exit: (78.688554, 1,747.7406) ft
Entry: (679.98681, 1,911.2061) ft
Radius: 293.37541 ft
Center: $(346.00856,1,952.0725) \mathrm{ft}$
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	86.342679	$1,744.5701$	0	$1,242.3928$	$1,042.4914$	225
Slice 2	97.498401	$1,739.9493$	0	$2,561.067$	$2,148.9904$	200
Slice 3	110.75	$1,734.4603$	0	$4,070.4482$	$3,415.5116$	200
Slice 4	130.25	$1,726.3831$	0	$6,239.5089$	$5,235.5696$	200
Slice 5	141.5	$1,721.7232$	0	$7,490.8912$	$6,285.6041$	200
Slice 6	151.99337	$1,717.3767$	0	$10,427.375$	$8,749.6064$	200
Slice 7	169.9801	$1,709.9264$	0	$15,966.644$	$13,397.605$	200
Slice 8	180.41046	$1,705.606$	0	$19,178.81$	$16,092.933$	200
Slice 9	186.42373	$1,705.9972$	0	$7,650.5963$	$2,339.022$	150
Slice 10	197.5	$1,708.3849$	0	$7,723.0176$	$2,361.1634$	150
Slice 11	214.25	$1,711.9956$	0	$7,783.4426$	$2,379.6372$	150
Slice 12	234.75	$1,716.4148$	0	$8,210.3216$	$2,510.1472$	150
Slice 13	250	$1,719.7022$	0	$8,527.8784$	$2,607.2341$	150
Slice 14	261.5	$1,722.1812$	0	$8,767.3464$	$2,680.4468$	150
Slice 15	270.5	$1,724.1213$	0	$8,843.8473$	$2,703.8355$	150
Slice 16	284	$1,727.0314$	0	$8,853.659$	$2,706.8352$	150
	274					

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/22/2016

Slice 17	304.5	$1,731.4505$	0	$9,022.3667$	$2,758.4143$	150
Slice 18	323.5	$1,735.5463$	0	$9,222.454$	$2,819.5871$	150
Slice 19	342.5	$1,739.642$	0	$9,422.5412$	$2,880.76$	150
Slice 20	361.5	$1,743.7378$	0	$9,622.6285$	$2,941.9328$	150
Slice 21	383.25	$1,748.4264$	0	$9,851.6757$	$3,011.9595$	150
Slice 22	407.75	$1,753.7078$	0	$10,109.683$	$3,090.8402$	150
Slice 23	429.71429	$1,758.4425$	0	$10,292.895$	$3,146.8539$	150
Slice 24	449.14286	$1,762.6307$	0	$10,401.313$	$3,180.0006$	150
Slice 25	468.57143	$1,766.8188$	0	$10,509.731$	$3,213.1473$	150
Slice 26	488	$1,771.007$	0	$10,618.15$	$3,246.2941$	150
Slice 27	507.42857	$1,775.1951$	0	$10,726.567$	$3,279.4407$	150
Slice 28	526.85714	$1,779.3833$	0	$10,834.985$	$3,312.5874$	150
Slice 29	546.28571	$1,783.5714$	0	$10,943.403$	$3,345.7341$	150
Slice 30	563	$1,787.1745$	0	$11,036.674$	$3,374.2499$	150
Slice 31	583	$1,791.4858$	0	$11,018.147$	$3,368.5855$	150
Slice 32	597.24842	$1,794.5573$	0	$10,955.025$	$3,349.2872$	150
Slice 33	607.25495	$1,807.3343$	0	$4,605.1492$	$3,864.179$	225
Slice 34	624.5098	$1,831.9768$	0	$3,467.4955$	$2,909.5742$	225
Slice 35	641.50327	$1,856.2459$	0	$2,347.0754$	$1,969.4301$	225
Slice 36	664.9934	$1,889.7933$	0	849.83429	713.09564	225

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/22/2016

1 - Circular Mode of Failure

```
File Information
    Milveversion:.15}\mathrm{ tite: Staticslope Stability Analyses for Skyline Ranch Development project,Tract 60922, Los Angeles CA
    Comments: Run By:Dr.Alexander Bykovisev, Ph.D., P.E
    last Edited By: Alexander Bykon
    Mate:3/2/2016
    Time: 11:39:33 AM
```



```
    M,
```

Project Settings
Length(L) Units: Feet
Timett) Units seonds

Forcesff Units: Pounds
Pressure(p) Units: pff

 Strengt U ints ppr
 Unit weighto of water: 62.4 peft
Unit Weight of Water:
View
Element Thickness: 1
Analysis Settings
1- Circular Mode of Failure
Kind: SLIPOE \mathcal{M}
Method: Bishoo
Metrod: $\left.\begin{array}{l}\text { Sethop } \\ \text { SWW } \\ \text { Sonditions source: (none) }\end{array}\right)$
PWP Condition Source: (none)
Slip Surfaee
Direction of movement: Right to left
Use passive Modem No

Critical stip surfaces ssved: 11
Resisting Side Maximum Conve Angle: 1

Divinin Side Maximum Convex Angle: ${ }^{\circ}{ }^{\circ}$
Optimize Critical Slip Surface location
Tension Crack Tension crack Option: (none)
Fof S Distribution
of f Calculation option: constant
F of C a
Advanced
Advanced
Number of slices: 30
Fif
Fof STolerance: .001
Minimum Slip surface Depth: 0.1 ft
Materials
TQS 17° bedding $6^{\circ}-8^{\circ}$
Model: Anisotropic fn
Unit Weigh: 120 pef
Unit Weight: 120 pef
Conesion:
phi: 40 :

C-Anistoropic Strength fn: Tas 150 psf (Along Bedding $6^{\circ} \cdot 8^{\circ}$)
Phi:B:
Qls
Model: Mohr-Coulomb
Model: Mohr: Coulomb
Unit Weight:10) poft
Cohesion: 150 opf
Cohesion:
Phi:
Phi: 0_{0}
Po
Qs 25° bedding $8-13$

Unit Weight: 120 pef
Cohesion: 225 pst
Conesion": 225 pst
Phil: 40°

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/22/2016

Fill

```
Mode:Mohr-Coulomb
Unit Weigh: 120 pef
MPhi:3\mp@subsup{3}{}{\circ}
Tmc \(17^{\circ}\) bedding \(8^{\circ}-13^{\circ}\)
    Model: Ansotropic Fn
    Col
```


Slip Surface Entry and Exit

Left-zone Increment: 50
Right Projection:
Range

Rightzone Itcrement: 10
Radius Increments: 50
Slip Surface Limits

Seismic Coefficients
Horr Seismic Coef: 0
vert seismic coef: 0
Anisotropic Strength Functions
Tmc 17° (Along Bedding bedding $8^{\circ}-13^{\circ}$)

ion ($)$, Modifier Factor
Pata Point $(-(-90,1)$
Datat Point
and
 Data Point: $(13,0.0 .25)$
Data P Point: $(131.1,1)$
Tmc 150 pst (Along Bedding $8^{\circ}-13^{\circ}$)
Model: Spline Data Point funtion
 Curve Fitto Doatai 100%

Segment Curvaure: 0% | Segment curvature: : |
| :--- |
| |

Data Points: Inclination ($($), Modifier Factor

 Data Point: $(13,0.75)$
Data Point: $(13,1,1)$
TQs 17° (Along Bedding bedding $6^{\circ}-8^{\circ}$)
 Curve fitito 0 fata: 100%
Segment Curature: Sesment turvature: 0%
Data Points : Incination (1), Modifier Factor Data Point: $(-90,1)$
Data Point: $(5.9,1$

TQs 150 psf (Along Bedding $6^{\circ}-8^{\circ}$)
Model: Spline Data Point function
file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/22/2016

```
    Nunction:Modifie Factor vs. Inclination
        cuc
```



```
    M
    pate: Point:(:,9,1)
    MData Point:(8,0,657)
TQs 100 psf (Along Bedding 880-130)
    Model: Spline Data Pointinnuntion
        #Nction:Modifer Factor vs. Inclion
        Curve fitto oata:100%
    Data Points:Inclination (%),Modifie Factor
        M
        Mata Point(:.9, ,1)
        M, Data Point:(:8,0,044)
TQs 25' (Along Bedding bedding 8}\mp@subsup{8}{}{\circ}-1\mp@subsup{3}{}{\circ})(2
    Model:Spline Datat Paint Function
        \unction:Modifief Factor vs.1.ldinm
        \begin{subarray}{c}{\mathrm{ Cure Fitto Data:100%}}\\{\mathrm{ Segment urvature: 0%}}\end{subarray}
    v-ntercep:11 1 Imation), (%odifer Factor
        M
        OD, Pint:(7., (1)
        \
Points
\begin{tabular}{|c|c|c|}
\hline & x(tt) & \(r(t)\) \\
\hline Point 1 & -200 & 1,578 \\
\hline Point 2 & -180 & \({ }_{1,547}\) \\
\hline Point 3 & -158 & 1,530 \\
\hline Point 4 & -131 & 1,522 \\
\hline Point 5 & -111 & 1,518 \\
\hline Point 6 & -88 & 1,521 \\
\hline Point 7 & -131 & 1,536 \\
\hline Point 8 & -159 & 1,549 \\
\hline Point 9 & -70 & 1,508 \\
\hline Point 10 & -34 & 1,508 \\
\hline Point 11 & 14 & 1,508 \\
\hline Point 12 & 126 & 1,994 \\
\hline Point 13 & 200 & 1,519 \\
\hline Point 14 & 253 & 1,537 \\
\hline Point 15 & 294 & 1,550 \\
\hline Point 16 & 411.0219 & 1,589.767 \\
\hline Point 17 & 445.1762 & 1,601.0103 \\
\hline Point 18 & 484.351 & 1,614.0214 \\
\hline Point 19 & 562.5197 & 1,640.3984 \\
\hline Point 20 & 624.593 & 1,559.8269 \\
\hline Point 21 & 657.92 & 1,663.8109 \\
\hline Point 22 & 810 & 1,677 \\
\hline Point 23 & 811 & 1,300 \\
\hline Point 24 & -200 & 1,299 \\
\hline Point 25 & -28 & 1,521 \\
\hline Point 26 & 26 & 1,524 \\
\hline Point 27 & 40 & 1,531 \\
\hline Point 28 & 50 & 1,531 \\
\hline Point 29 & 89 & 1,554 \\
\hline Point 30 & 102 & 1,554 \\
\hline Point 31 & 148 & 1,575 \\
\hline Point 32 & 172 & 1,575 \\
\hline Point 33 & 225 & 1,583 \\
\hline Point 34 & 254 & 1,595 \\
\hline Point 35 & 275 & 1,595 \\
\hline Point 36 & 318 & 1,617 \\
\hline Point 37 & \({ }^{341}\) & 1,618 \\
\hline Point 38 & 391 & 1,644 \\
\hline
\end{tabular}
```

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/22/2016

Regions

	\| Material	Points	Area (tt)
Region	als	1,2,3,4,5,6,7,	1,371
$\begin{array}{\|l} \text { Region } \\ 2 \end{array}$			2.6373 zeO
$\begin{aligned} & \text { Region } \\ & 3 \end{aligned}$	Fill		45,816
$\begin{aligned} & \text { Region } \\ & 4 \end{aligned}$		20,21,22,51,5,5,3,54,55,56	4,213.8
Region 5 5		57,5,2,2,21,20,19,18,17,16	12,895

Current Slip Surface

Slip Slices

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/22/2016

1-Circular Mode of Failure
Page 5 of 5

Slice 19	443	1,636.1724	0	3,227.6068	2,096.0324	200
Slice 20	452.33333	1,640.714	0	3,276.7078	2,127.9189	200
Slice 21	463	1,646.274	0	2,977,3745	1,914,0474	200
Slice 22	474	1,652.3675	0	2,565.1955	1,665.8575	200
Slice 23	484	1,658.2955	0	2,467.9366	1,602.6968	200
Slice 24	494	1,664.5956	0	2,335.0064	1,516.3709	200
Slice 25	504	1,671.2873	0	2,165.6942	1,406.4183	200
Slice 26	514	1,678.3932	0	1,994,9219	1,295.5174	200
Slice 27	524	1,685.9391	0	1,820.4358	1,182.2048	200
Slice 28	534.46759	1,694.3543	0	1,278.4859	830.25845	200
Slice 29	545.40278	1,703.7271	0	378.4311	245.75603	200

1 - Circular Mode of Failure Seismic

1 - Circular Mode of Failure Seismic

```
File Information
    M File Version: 8.15 
    Comments: Run By: Dr.Alexander Bykovisev, Ph.D., P.E
    lastEdited By: Alexander Byko,
    Mevion Number:145
    Time: 11:39:33 AM
    M
```



```
    lol
```

Project Settings

Forceffl Units: Pounds
Peresurepl) Units: psf
sf
Strengt Units. pps
Unit weighto of water 62.4 pot
Unit Weight of Water:
View
Element Thickness: 1
Analysis Settings
1- Circular Mode of Failure Seismic
Kinds. SIOPE/
Parent: 1 - Circual
Parent: 1-Circular Mode of failue
Method: Bishop
Setings
PWP Conditions Source: (none)
nital
Intitia slip Surfacae sourre: Parent Analyss
Sip Surface
Direction of movement: Right to tefft
Ise Passive Mode: No
Sip Surface Option : critcal Slip Surfaces from oot

sip surfacie opitices saved: 1
Critical sip surfaces 5 fir

Optimize critital Slip Surface Location
Tension Craick
Tension Crack Option: (none)
Fof D istribu
Fof Scaculation Option: Constant
Advanced
Number of S Slices: 30
Fof STolerance: 0.01
Mininum Slip surface Depth: 0.1 itt
Materials
TQS 17° bedding $6^{\circ}-8^{\circ}$

Conesion:
Phil: 40
an
and
hi-Anisotropic Strength n .: Tas 17° A Along Bed ding bedding $6^{\circ}-8^{\circ}$

Qls
Model: Mont-Coulome
Unit Weight: 100 poft
Unit Weight: 100 peff
Cohesion:: 150 opf

TQs 25° bedding 8-13

Chineseigh:
Chin:
Phi:
Phisisot


```
1-Circular Mode of Failure Seismic
Fill
    M Model: Mohr:Coulomb
    M Wit Weight:120 pef
    M
Tmc 17 bedding 8}\mp@subsup{8}{}{\circ}-1\mp@subsup{3}{}{\circ
    #Nit Weight:120 peff
    *)
    M,
```

ip Surface Limits
Left Coordinate: $(-200,1,578)$ It
Right Cordinate:
(810.0105, $, 1,72.407)$ ft
Seismic Coefficients
Hor. Seismic Coef. 0.15
vert Seismic coef: 0
Anisotropic Strength Functions
Imc 17° (Along Bedding bedding $8^{\circ}-13^{\circ}$)
Model: Spline Dotat Point function
Function: Modifier Factor vs.. Inclinatio

Y-Intercept: 1
Vata Points: Inclination (\%), Modifier Factor

Tmc 150 psf (Along Bedding $8^{\circ}-13^{\circ}$)
Model: Spline Data Point Function
Function:
Modifier Factor vss. Inclination

Curve Fit to Data: 100
Segment
unvature: 0
Intercept: 1
Sen
Data Points: Inclination (${ }^{(2)}$), Modifier Factor
Data Point
Data Point: $-90,11)$
Data Point: $(7,9,1)$

Qs 17° (Along Bedding bedding $6^{\circ}-8^{\circ}$
Model: Spline Datat Point function
Nodi: spine Datap Pont function

Segment Curvature: 0\%
r-ntereept.
Data Pointss: Inclination (9), Modifier Factor

TQs 150 psf (Along Bedding $6^{\circ}-8^{\circ}$)
Model: Spline Dota Point Function
Curve itito Dotat: 100
Segment curature: 0
$\underset{\substack{\text { Segment } \\ \text { l-nterent: } \\ \text { bata Poins: } \\ \text { and }}}{\text { In }}$
Mantercept: 11 Pints inction ($)$), Modifier Facto
Data Point: (-90, 1

Data Point: (, 0.0 .6671
Data Point: $(8,0.657)$
Data Point: $(8,1,1)$
1 - Circular Mode of Failure Seismic
TQs 100 psf (Along Bedding $8^{\circ}-13^{\circ}$)
Model: Spline Dotata Point function
Function: Modifier Factor vs inclination Curve Fit to Data: 100%
Segment Curvature: 0%

Segment Curvatu
- -ntercept: 1

 Data Point: (-90, 1)
Dotat Point: $7(7,9,1)$ Data Point: $(8,0.0 .44)$
Data Poit:
Dota Point
Doint:
$(13,1,1,14)$
TQs 25° (Along Bedding bedding $8^{\circ}-13^{\circ}$) (2)
Model: Sline Dotat Point function
Function: Modifier factor vs. Incilination
Pata Points Inclination (9), Modifier Factor
Data Point: $:-90,1)$
Data Point $(7.9,1)$
 Data Point: $(13,0.625)$
Data Point: $(13,1,1)$
Points

	$x(t)$	$Y(t)$
Point 1	-200	1,578
Point 2	${ }^{-180}$	1,547
Point 3	-158	1,530
Point 4	-131	1,522
Point 5	-111	1,518
Point 6	-88	1,521
Point 7	-131	1,536
Point 8	-159	1,549
Point 9	-70	1,508
Point 10	-34	1,508
Point 11	14	1,508
Point 12	126	1,994
Point 13	200	1,519
Point 14	253	1,537
Point 15	294	1,550
Point 16	411.0219	1,589,767
Point 17	445.1762	1,601.0003
Point 18	484.351	1,614.0214
Point 19	562.5197	1,640.3984
Point 20	624.593	1,659.826
Point 21	657.92	1,663.8109
Point 22	810	1,677
Point 23	811	1,300
Point 24	-200	1,299
Point 25	-28	1,521
Point 26	26	1,524
Point 27	40	1,531
Point 28	50	1,531
Point 29	89	1,554
Point 30	102	1,554
Point 31	148	1,575
Point 32	172	1,575 1,583
Point 33	225	1,583
Poin 34	$\begin{array}{\|l\|} \hline 254 \\ \hline 275 \end{array}$	1,595 1.595
Point 36	318	1,617
Point 37	341	1,618
Point 38	391	1,664
Point 39	399	1,644
Point 40	429	1,660
Point 41	457	1,676 1,676
Point 43	509	${ }_{1}^{1,697}$
Point 44	529	1,709
Point 45	580	1,708
Point 46	629	1,710
Point 47	676	1,734

1 - Circular Mode of Failure Seismic

Regions

	Material	Points	Area (tr)
${ }_{1}^{\text {Region }}$	Q1s	1,2,3,4,5,6,7,	1,371
${ }_{2}^{\text {Region }}$		6,5,4,3,3, 1, 24, 2, 3, 58,5, 1, 15,14,13,12,59,11, 10,9	2.6373 +0,
$\begin{aligned} & \text { Region } \\ & 3 \end{aligned}$	Fill		45,816
Region 4		20,21,22,51,52,53,54,5,56	4,213.8
$\begin{aligned} & \text { Region } \\ & 5 \end{aligned}$	TQs 25° bedding 8-13	57,5,2,22,21,20,19,18,17,16	12,895

Current Slip Surface

Slip Slices

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/22/2016

1-Circular Mode of Failure Seismic
Page 5 of 5

Silce 28	534.46759	$1,694.343$	0	$1,141.1053$	74.04242	200
Sice 29	545.40278	$1,703.7271$	0	316.1279	205.2559	200

2-Translational

2 - Translational

```
File Information
    l
    Comments: Run By:DP.Al.Aexander Bykovtsev, Ph.D., P.E.
    Last Edited By: Alexander Bykon
    *)
    Time: 11:3:33 AM
    M
```


Project Settings

Foreself) Units: Pounds
Pressurelp) Uuits: psf
fster
Strength Units pps
Unit weight of Water 62.4 pof
Unit Weight of Water:
View:
Element
thickness 1
Analysis Settings
2 - Translational
ind. SLOPEN
Method: Janbu
setinss
PWP Conditions Source: (none)
PPW Conditions Source: (none)
Slip Surfaree
Direction of movement: ight to teft
Usee easise Mode: :no
Slio Surface Ootion: Block
Use Passive Mode: :
Sop
Sip urface O Option: Block
If purface Option: Block
fitical silp surfaces saved: 1
Resisting Side Maximum Convex Angle: 1
Orivin side Maximum Convex Angle: 5°
Restrict blockcossing

Tension Crack Tension Crack Option: (none)
Fof S Distribution Crack Option: (none)
Fofs catculation Option: Constant

ddvanced
Number of Slices: 30

Materials
Tas 17° bedding $6^{\circ}-8$

Conesion: 225 p
Phi: 40 .

Qls
Model: Mohr-Coulomb
Unit Weight: 100
pof
conesion
phi:
Phi
Pe:
Qs 25° bedding 8 -13
Model: Anistropic en
Unit Weight: 120 pef
Cohesion: 22
Phi: 40 :

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/22/2016

2 - Translational

\qquad

Tmc 17° bedding $8^{\circ}{ }^{-13}{ }^{\circ}$
Mode: Anistropich
Unit Weight: 120 pef
Chesion: 200 psf

Phi-B: 0
Slip Surface Limits Left Coordinate: $-(-200,1,578)$ It
Right coordinate: $(800.1055,1,722.407)$ ft

Slip Surface Block

X increments: 10
Y neremens: 10
Startin
Starting Anle: 1355°
Ending Angle:
180°
$\underset{\substack{\text { Anghte } \\ \text { Right } \\ \text { Upoper Le }}}{\substack{\text { and }}}$

Lower Right: $(713,1,1,1$
XIncenens.
Y Increments: 10
Yincrements. 10
Starting Ange: 45
Ending Angle: $55:$
Soding Ange: s5 $^{\circ}$
Angle Incements:
Seismic Coefficients Horr Seismic Coef: 0
vert Seismic coef: 0

Anisotropic Strength Functions
Inc 17° (Along Bedding bedding $8^{\circ}-13^{\circ}$)
Model: Spline Dotat Point Function

Segment Curature: 0

 Dotat Point: $(13,0.245)$
Data Poont: $(13.1,1)$
Tmc 150 psf (Along Bedding $8^{\circ}-13^{\circ}$) Model: Sphin edarapontituction Cunve Fitito Data: 100%
Segment Curvature:
r-nterecept:
Data Points
nen
Data Pointst: Inclination (9), Modifier Factor
Data Point: $-(-0,11)$

Datat Point: $(-90,1)$
Datat Point $(19,9)$

Qs 17° (Along Bedding bedding $6^{\circ}-8^{\circ}$)

Model: spline e atata Point function
Find
$\left.6^{\circ}-8\right)$

Huction : Modifier Factor s s. In
Curve fit to oata: 100%
Curve fitt o Data: 100%
Segment curvature: 0%
file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/22/2016

```
2 - Translational
-Intercept : 11 chination ( 9 ), Modifier Factor Datat Point: \(-90,1\) )
Data Point \((59,1)\)
```



```
Data Point: (8, 0.4.25)
Data Point: \((8,1,1)\)
TQs 150 pff (Along Bedding \(6^{\circ}-8^{\circ}\) )
Model: Spline Datat Point Function
Function: Modifier factors IIS Inclination
```



```
Curve fitt o Data: 1000
Segent curvatur: 0
```



```
Data Point: (-90, 1)
Data Point: \((5,9,1)\)
```



```
Datat Pinit: (:, 0.067\()\)
Data
Point \((81,11)\)
TQs 100 psf (Along Bedding \(8^{\circ}-13^{\circ}\) )
```



```
\begin{tabular}{l} 
Data Point \((-90,1)\) \\
Data Point: \((7,9,1)\) \\
\hline
\end{tabular}
Dotat Point: \(18,0.0444\)
Data Point \((13,0.444)\)
and
Data Pint: (13.0.044)
Data Point ( \((13,1,1)\)
TQS \(25^{\circ}\) (Along Bedding bedding \(8^{\circ}-13^{\circ}\) ) (2)
Model: Ssine Data Point function
Function: Modifier ractor vs, Incination
Curve fit to Data: \(100 \%\)
Segment curature: \(0 \%\)
```


file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/22/2016

Regions

	Material	Points	Area (tt)
${ }_{1}^{\text {Region }}$	Q1s	1,2,3,4,5,6,7,8	1,37
Region 2			2.6373 e+0
$\begin{array}{\|l\|l} \text { Region } \\ 3 \end{array}$	Fill		45,816
$\begin{array}{\|l\|} \hline \text { Region } \\ 4 \end{array}$	Tas 17° bedding	20,21,22,51,5, 5, 53,54,5,56	4,213.8
$\begin{aligned} & \text { Region } \\ & 5 \end{aligned}$	TQs 25° bedding 8-13	57,5,2,2,21,20,19,18,17,16	12,995

Current Slip Surface

Slip Surace: 92,012
Foff: 1.51

Radius: 20.1.124t
Center: ($(362.16098$
, 1,739.7192) ft
Slip Slic

2 - Translational
Page 5 of 5

file://P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/22/2016

2-Translational Seismic

2 - Translational Seismic

```
File Information
    l
    Comments: Run By: Dr.Alexader Bykoovsev, P.D., P.E.
    lug
    Mevision Number. 145
    Filel
```


Project Settings

Forcesf) Units: Pounds
Pressurel() Units: pff

 Strengt U ints. ppt
 Unit weighto of Water: 62.4 pcf
Unit Weight of Water: 22.2
View: 2.
Element Thickness: 1
Analysis Settings
2 - Translational Seismic

Parent: 2 - Transation
Method: Spencer

PWP Conditions Source: (none)
lnitial Slip Surface Source: Parent Analysis
Slip Surface
Direction of movement: Right to Left
Direction of movement: Right
Use passive Mode: No
Sis
Stip Surface Option: Critial Slip Surfaces from Other
Resistintips Side Maxaes savied 1
1
Ronvex Angle:

Optimize Critital Slip Surface Location
Tension Craick
Tension Crack Opption: (none)
of S Distribution
Advanced calcuation Option

Number of Sices: 30
Fof 5 Toleranace: 0.01

 Minimum Slip surface Depth: 0.1 tt
 Search Methot: Root finder
 Tolerabie e differenece between starting and converged F of s : 3

Max Absolutere Lambda: 2

Materials

TQS 17° bedding $6^{\circ}-8^{\circ}$
Model: Anisotropic Fn.

Cohesion: 225

Qls
Model: Mohr-Coulomb Model. Morni-coulomb
Unitheseight 1.100 off
Chosesio: 150 opf Consesion":
Phis
Phis. $8: 0.0$

TQs 25° bedding 8-13
Model: Anistropic F Fn.

```
    M Unit Weight:120 pc 
    Conesion::225 psf
```



```
    C-.Anis
Fill
    Model: Morr-coulomb
        \
        M,
Tmc 17* bedding 8}\mp@subsup{8}{}{\circ}-1\mp@subsup{3}{}{\circ
    M
```



```
    C-Anistropicstrengh f.: TMc 150 psf(Along Bedding 8-13")
```

Slip Surface Limits

Seismic Coefficients
Hor. Seismic Coef: 0.15
Vert Seismic coef: 0
Anisotropic Strength Functions
Imc 17° (Along Bedding bedding $8^{\circ}-13^{\circ}$)
Function: Modifier factor vs. Inclination
Curve itito Datai: 100
Segment Curavatue: 0

on (9 , Modifier Factor
Data Point: -90, 1

Data Point: (13,0.4.5)
Data Point: $(13.1,1)$
Tmc 150 psf (Along Bedding $8^{\circ}-13^{\circ}$)
Model Spline Data Point tunction
Eunction: Modifier Factor vs. Inclination.
Curve fit to Data: 100%
Segment Curvature: 0%
Cegnent
Survature: 0
tercept: 1
V-ntercept: 1 .

Dotat Point: $(7.9,1)$
Data $)$ Point $(8,0,75)$

Qs 17° (Along Bedding bedding $6^{\circ}-8^{\circ}$)

Curve fitito Data: 100%
Segment Curature: 0%

Segmen
-ntercept:

as 150 pst (Along Bedding $6^{\circ}-8^{\circ}$)
Model: Spline Data Point tunction

Curve ift to Data: 100%
s-Intercenent: 1
-Intercept: 11
nata Points : Inclination ($)$), Modifier Factor

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/22/2016

2-Translational Seismic

TQs 100 psf (Along Bedding $8^{\circ}-13^{\circ}$)
Mopel: Spiline Dotat point function
Function: Modifer factor vs. Inclination
Eunction: Moditifir factor vis. Inclina
Cure fit
Segment Curatature: 0%

TQs 25° (Along Bedding bedding $8^{\circ}-13^{\circ}$) (2)
Model: Sline Dotat Point Function
Function: Modifier factor vs. Inclination
Curve fitto onata1 100%
Segment curvatue: 0%

Points

	$\mathrm{x}(\mathrm{tr})$	$Y(t)$
Point 1	-200	1,578
Point 2	-180	1,547
Point 3	-158	1,530
Point 4	-131	1,522
Point 5	-111	1,518
Point 6	-88	${ }_{1,521}$
Point 7	${ }^{131}$	1,536
Point 8	-159	1.549
Point 9	-70	1,508
Point 10	-34	1,508
Point 11	14	1,508
Point 12	126	1,994
Point 13	200	1,519
Point 14	253	1,537
Point 15	294	1,550
Point 16	411.0219	1,589.767
Point 17	445.1762	1,601.0103
Point 18	484.351	1,614.0214
Point 19	562.519	1,640.3984
Point 20	624.593	1,559.8269
Point 21	657.92	1,663.8109
Point 22	810	1,677
Point 23	811	1,300
Point 24	-200	1,299
Point 25	-28	1,521
Point 26	26	1,524
Point 27	40	1,531
Point 28	50	1,531
Point 29	89	1,554
Point 30	102	1,554
Point 31	148	1,575
Point 32	172	1,575
Point 33	225	${ }_{1,583}$
Point 34	254	1,595
Point 35	275	1,595
Point 36	318	1,617
Point 37	341	1,618
Point 38	391	1,644
Point 39	399	1,644
Point 40	429	1,660
Point 41	457	1,676
Point 42	469	1,676
Point 43	509	1,697

Regions

	rial	Points	Area
${ }_{1}^{\text {Region }}$	als	1,2,3,4,5,6,7,8	1,371.5
${ }_{2}^{\text {Region }}$			2.6373 e+0
${ }_{3}^{\text {Region }}$	Fill		45,816
$\begin{aligned} & \text { Region } \\ & { }^{2} \end{aligned}$	$\begin{aligned} & \text { Tostidio } \\ & \text { beding } \\ & 6^{\circ} \end{aligned}$	20,21,2,2,51, ,2, ,3, 5, 4, 5, 5,	4,213.8
$\begin{aligned} & \text { Region } \\ & 5 \end{aligned}$	TQs 25° bedding	57,5,2,2,2,1,20,19,18,17,16	${ }^{12,895}$

Current Slip Surface
Slip Surface:
Foff: 1.131

Resisting Force: $1, .000,319.1 .1 \mathrm{lbs}$
Activating Force: $83,706.69$ bs

Radius: 20.1.124tt.
Center: ($362.16098,1,739.7192$) th
Slip Slices

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/22/2016

2 - Translational Seismic
Page 5 of 5

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/22/2016

3 - Temporary

3 - Temporary

```
File Information
    C,
    Comments: uun By: Dr.,Alexander By,kovisev, Ph.D., P.E
```



```
    M
    Time: 11:5::10.4M
    File: vame: Section 24 24 SSA for Skyline Ranch.gsz
```


Project Settings

Strength Units pps
Unit weight of Water 62.4 pof
Unit Weight of Water:
View:
Element
thickness 1
Analysis Settings

3 - Temporary
Kind: sLope

Method.:Jantu
Settins
PWP Conditions Source: (none)
PSP Conditions Source: (none)
Slip Surfacee
Direction of movement: ight to teft
Direction of movement: R.
Use assive Mode: No.
Slip Surface opotion: liock
Slip Surface Option: Block
Citital Sip surfaces saved; 10
Resisting Side Maximum Convex Angle: 1
Driving Side Maximum Convex Angle: 5°
Driving siide Mxximum Con
Restrict Block Crossing: No
Restrict Block Crossing: No
Optimiz C Citaral Slip surface Location: No
Tension Crack
Tension Crack
Tension Crack Option: (none)
Fof Distribution
Sors catculation Option: Constant
Advanced
Number of Slices: 30
N

Materials

TQS 17° bedding $6^{\circ}-8$

Conesion
Phit: 40°

Qls
Model: Mohr-Coulomb

Unit Weight: 100 off | Conesion" |
| :---: |
| Phi: 20° |

Phi:
Phib:
0 0°
QS 25° bedding 8-13
Model: Ansisotropic F n.

Conesion:
Phi: 40 0°

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/22/2016

```
3 - Temporary
Tmc \(17^{\circ}\) bedding \(8^{\circ}-13^{\circ}\)
```



```
Cohesion: 200 psf
hhi: 40
```


Slip Surface Limits

Slip Surface Block

Seismic Coefficients
Hor Seismic Coef:0
vert Seismic coef:i:

Anisotropic Strength Functions
Imc 17° (Along Bedding bedding $8^{\circ}-13^{\circ}$) Model: Spline Datap Point function Curve fit to Data: 100
Segment Curature: 0
$\underset{\substack{\text { Segment } \\ \text { r-ntercept } 1 \\ \text { Data Points: } \\ \text { In }}}{ }$
Data Points: Incliaration ($)$, Modifier Factor Data Point: $(-90,1)$
Data Point: $(7,9,1)$
 Data Point: $(13,0.0 .25)$
Data 0 oint: $(13.1,1)$
Tmc 150 psf (Along Bedding $8^{\circ}-13^{\circ}$)
Mode: Spline edatia Pont function Curve fit to Data: 100%
Segment Curvature: 0%
$\underset{\substack{\text { Segment } \\ \text { Y-ntercept } \\ \text { Data Points: } \\ \text { In }}}{ }$
tion ${ }^{\circ}$), Modifier Facto: Datat Point: $(-90,1)$
Datat Point $(19,1)$
Pata

a, 17 $^{\circ}$ (Along Bedding bedding $\left.6^{\circ}-8\right)$
Model: Spine o oata Point Function
Eunction: Modifier Facator uvs Incling ination Curve fit to Data: 100%
Segment Curvature: 0%
Segment
l-nterent.
fata
1

Datat Point: $(8,0.025)$
Data
Point: $(8,1,1)$

```
3-Temporary
Model: Spline Data Pooint function Unction: Modifier factoro vs: Inclination Curve fit to Data: \(100 \%\)
Segment curvature: \(0 \%\)
```



``` \begin{tabular}{l} 
Dati Point: \(-(-90,1)\) \\
patat Point: \\
50,1 \\
\hline
\end{tabular}
```



```
        M Data Pont:(8,0.067)
TQs 100 psf (Along Bedding \(8^{\circ}-13^{\circ}\) ) Model: Spline e atata Point function Curve fit to Data: \(100 \%\)
Seement curature: intercept:
Data Points: Inclination
Data Point:
and
an Data Point: \(-(-90,1\)
Data Point: \(7,9,1\)
```



``` Data Point: \((13,0.444)\)
Data Point: \((13,1,1)\)
TQs \(22^{\circ}\) (Along Bedding bedding \(8^{\circ}-13^{\circ}\) ) (2)
Model: Spline Dita Point function
Function: Modifier \(F\) actor vs. Inclination
```



```
Curve fit to Data: 100
Segment curature: 0
--ntereepet: 1
l-Intercept: 1
Data Points : Inclination ( \()\) ), Modifier Factor \begin{tabular}{l} 
Datat Point: \((-90,1)\) \\
Data Point: \((7, \%, 1)\) \\
\hline
\end{tabular}
```



``` Data Point: (13.0.0.65)
Data Point \((13,1,1)\)
Points
\begin{tabular}{|c|c|c|}
\hline & \(x(t)\) & \(Y_{\text {(tr) }}\) \\
\hline Point 1 & -200 & 1,578 \\
\hline Point 2 & -180 & 1,547 \\
\hline Point 3 & -158 & 1,530 \\
\hline Point 4 & -131 & 1,522 \\
\hline Point 5 & -111 & 1,518 \\
\hline Point 6 & -88 & 1,521 \\
\hline Point 7 & -131 & 1,536 \\
\hline Point 8 & -159 & 1,549 \\
\hline Point 9 & -70 & 1,508 \\
\hline Point 10 & -34 & 1,508 \\
\hline Point 11 & 14 & 1,508 \\
\hline Point 12 & 126 & 1,994 \\
\hline Point 13 & 200 & 1,519 \\
\hline Point 14 & 253 & 1,537 \\
\hline Point 15 & 294 & 1,550 \\
\hline Point 16 & 411.0219 & 1,589.767 \\
\hline Point 17 & 445.1762 & 1,601.0103 \\
\hline Point 18 & 484.351 & 1,614.0214 \\
\hline Point 19 & 562.5197 & 1,640.3984 \\
\hline Point 20 & 624.593 & 1,659.8269 \\
\hline Point 21 & 657.92 & 1,663.8109 \\
\hline Point 22 & 810 & 1,677 \\
\hline Point 23 & 811 & 1,300 \\
\hline Point 24 & \(-200\) & 1,299 \\
\hline Point 25 & -28 & 1,521 \\
\hline Point 26 & 26 & 1,524 \\
\hline Point 27 & 40 & 1,531 \\
\hline Point 28 & 50 & 1,531 \\
\hline Point 29 & 89 & 1,554 \\
\hline Point 30 & 102 & 1,554 \\
\hline Point 31 & 148 & 1,575 \\
\hline Point 32 & 172 & 1,575 \\
\hline Point 33 & 225 & 1,583 \\
\hline Point 34 & 254 & 1,595 \\
\hline Point 35 & 275 & 1,595 \\
\hline
\end{tabular}
```


3 - Temporary

Regions

	Material	Poin	Area (tri)
${ }_{1}^{\text {Region }}$	als	1,2,3,4,5,6,7,	1,37
Region 2			2.6373 +0
Region			45,816
Region 4		20,21,22,51, 5, 5, 3, 5, 5, 5, 56	4,213,8
$\begin{array}{\|l\|} \hline \text { Region } \\ 5 \end{array}$	$\underset{\substack{\text { Tas } 25^{\circ} \\ \text { bedding }}}{ }$ 8.13	57,58,22,21,2,0,19,18,17,16	12,895

Current Slip Surface
Slip Surface: 51,674

Slip Surface: 51, ,
Fof S:1.3.

Center

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/22/2016

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/22/2016

1 - Circular Mode of Failure

Ceport senerated using Geostudio 2012. Copright © 1991-2016 GEO-SLOPE International

File Information

File Version: 8.15

Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 168
Date: 3/22/2016
Time: 3:34:50 PM
Tool Version: 8.15.5.11777
File Name: Section 28 SSA for Skyline Ranch.gsz
Directory: P:\FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 28 -28 results\latest Update 3-21-16
Last Solved Date: 3/22/2016
Last Solved Time: 3:35:16 PM

Project Settings
Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
nit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Tmc - 17 bedding 6-12
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 17° (Along Bedding 6-12 ${ }^{\circ}$)
C-Anisotropic Strength Fn.: Tmc 150 psf (Along Bedding 6-12 ${ }^{\circ}$)
Phi-B: 0°
TQs-17 bedding 8-12
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 17° (Along Bedding 8-12 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 150 psf (Along Bedding 8-12 ${ }^{\circ}$)
Phi-B: 0°

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0

Slip Surface Entry and Exit
Left Projection: Range
Left-Zone Left Coordinate: ($21.6156,1,723.1354$) ft
Left-Zone Right Coordinate: $(271.8571,1,760) \mathrm{ft}$
Left-Zone Increment: 50
Right Projection: Range
Right-Zone Left Coordinate: ($314.362,1,784.3497$) ft
Right-Zone Right Coordinate: $(669,1,805) \mathrm{ft}$
Right-Zone Increment: 10
Radius Increments: 50

Slip Surface Limits

Left Coordinate: $(-201,1,500) \mathrm{ft}$
Right Coordinate: $(812,1,752) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc 17° (Along Bedding 6-12 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: $(6,0.425)$
Data Point: $(12,0.425)$
Data Point: $(12.1,1)$
150 psf (Along Bedding 8-12 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(7.9,1)$
Data Point: $(8,0.667)$
Data Point: $(12,0.667)$
Data Point: (12.1, 1)
17° (Along Bedding 8-12)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.425)$
Data Point: $(12,0.425)$
Data Point: $(12.1,1)$

Tmc 150 psf (Along Bedding 6-12 ${ }^{\circ}$)
Model: Spline Data Point Function
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(7.9,1)$
Data Point: $(8,0.75)$
Data Point: $(12,0.75)$
Data Point: (12.1, 1)

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-197	1,708
Point 2	-121	1,714
Point 3	-53	1,726
Point 4	-25	1,725
Point 5	25	1,723
Point 6	72	1,731
Point 7	110	1,739
Point 8	152	1,738
Point 9	188	1,730
Point 10	205	1,721
Point 11	215	1,711
Point 12	270	1,711
Point 13	338	1,745
Point 14	354	1,739
Point 15	374	1,722
Point 16	455	1,735
Point 17	514	1,743
Point 18	574	1,746
Point 19	656	1,747
Point 20	742	1,745
Point 21	812	1,752
Point 22	811	1,501
Point 23	-201	1,500
Point 24	-198.0192	1,655
Point 25	811.9124	1,730
Point 26	277	1,763
Point 27	333	1,795
Point 28	382	1,795

Point 29	471	1,794
Point 30	499	1,805
Point 31	580	1,805
Point 32	715	1,805
Point 33	809	1,805

Regions

	Material	Points	Area (ft^{2})
$\begin{aligned} & \text { Region } \\ & 1 \end{aligned}$	TQs-17 bedding 8-12	1,24,25,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2	39,930
$\begin{aligned} & \text { Region } \\ & 2 \end{aligned}$	Tmc - 17 bedding 6-12	24,23,22,25	$1.9403 \mathrm{e}+005$
$\begin{aligned} & \text { Region } \\ & 3 \end{aligned}$	Fill	10,26,27,28,29,30,31,32,33,21,20,19,18,17,16,15,14,13,12,11	33,691

Current Slip Surface

Slip Surface: 8,487
Fof S: 1.55
Volume: 2,219.2631 ft^{3}
Weight: $266,311.57 \mathrm{lbs}$
Resisting Moment: $41,034,386 \mathrm{lbs}$-ft
Activating Moment: 26,421,804 lbs-ft
F of S Rank (Analysis): 1 of 28,611 slip surfaces
F of S Rank (Query): 1 of 150 slip surfaces
Exit: (205.11201, 1,721.0653) ft
Entry: $(347.48917,1,795) \mathrm{ft}$
Radius: 216.30974 ft
Center: $(183.72094,1,936.3148) \mathrm{ft}$
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Yt})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	207.50828	$1,721.3305$	0	116.34409	75.554737	200
Slice 2	212.30081	$1,721.915$	0	363.90387	236.32194	200
Slice 3	217.09334	$1,722.6087$	0	594.71158	386.21022	200
Slice 4	221.88588	$1,723.4124$	0	809.02271	525.38549	200
Slice 5	226.67841	$1,724.3276$	0	$1,007.0583$	653.99128	200
Slice 6	231.47094	$1,725.3555$	0	$1,189.0064$	772.14976	200
Slice	236.26347	$1,726.498$	0	$1,355.0237$	879.9627	200

7						
Slice 8	241.05601	$1,727.7568$	0	$1,505.2367$	977.51216	200
Slice 9	245.84854	$1,729.1342$	0	$1,639.7422$	$1,064.8611$	200
Slice 10	250.64107	$1,730.6324$	0	$1,758.6082$	$1,142.0535$	200
Slice 11	255.4336	$1,732.2541$	0	$1,861.8741$	$1,209.1152$	200
Slice 12	260.22614	$1,734.0024$	0	$1,949.5509$	$1,266.0532$	200
Slice 13	265.01867	$1,735.8805$	0	$2,021.6213$	$1,312.8562$	200
Slice 14	269.8112	$1,737.8921$	0	$2,078.0389$	$1,349.4942$	200
Slice 15	274.60373	$1,740.0414$	0	$2,118.7281$	$1,375.9181$	200
Slice 16	279.33333	$1,742.3009$	0	$2,140.6919$	$1,390.1816$	200
Slice 17	284	$1,744.6717$	0	$2,144.3123$	$1,392.5327$	200
Slice 18	288.66667	$1,747.1874$	0	$2,132.7539$	$1,385.0266$	200
Slice 19	293.33333	$1,749.8538$	0	$2,105.8339$	$1,367.5445$	200
Slice 20	298	$1,752.6775$	0	$2,063.3378$	$1,339.9473$	200
Slice 21	302.66667	$1,755.6659$	0	$2,005.018$	$1,302.0739$	200
Slice 22	307.33333	$1,758.8273$	0	$1,930.5913$	$1,253.7406$	200
Slice 23	312	$1,762.1712$	0	$1,839.7367$	$1,194.739$	200
Slice 24	316.66667	$1,765.7083$	0	$1,732.0934$	$1,124.8346$	200
Slice 25	321.33333	$1,769.4508$	0	$1,607.2578$	$1,043.7654$	200
Slice 26	326	$1,773.4131$	0	$1,464.7812$	951.24005	200
Slice 27	330.66667	$1,777.6115$	0	$1,304.168$	846.93659	200
Slice 28	335.41486	$1,782.1481$	0	$1,003.941$	651.96689	200
Slice 29	340.24459	$1,787.0566$	0	569.49418	369.83384	200
Slice 30	345.07431	$1,792.2945$	0	123.21477	80.01661	200

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/22/2016

1 - Circular Mode of Failure seismic

Report senerated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International Ltd.

File Information

File Version: 8.15

Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 168
Date: 3/22/2016
Time: 3:34:50 PM
Tool Version: 8.15.5.11777
File Name: Section 28 SSA for Skyline Ranch.gsz
Directory: P:\FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 28 -28 results\latest Update 3-21-16
Last Solved Date: 3/22/2016
Last Solved Time: 3:35:33 PM

Project Settings
Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure seismic
Kind: SLOPE/W
Parent: 1 - Circular Mode of Failure
Method: Bishop
Settings
PWP Conditions Source: (none)
Initial Slip Surface Source: Parent Analysis
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Critical Slip Surfaces from Other
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Optimize Critical Slip Surface Location: No

Tension Crack
Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant Advanced

Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Tmc - 17 bedding 6-12
Model: Anisotropic Fn.
Unit Weight: 120 pc
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 17° (Along Bedding 6-12 ${ }^{\circ}$)
C-Anisotropic Strength Fn.: Tmc 150 psf (Along Bedding 6-12 ${ }^{\circ}$)
Phi-B: 0°
TQs-17 bedding 8-12
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength $\mathrm{Fn} .: 17^{\circ}\left(\right.$ Along Bedding 8-12 ${ }^{\circ}$)
C-Anisotropic Strength Fn.: 150 psf (Along Bedding 8-12 ${ }^{\circ}$)
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pc
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°

Slip Surface Limits
Left Coordinate: $(-201,1,500) \mathrm{ft}$
Right Coordinate: $(812,1,752) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0.1
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc 17° (Along Bedding 6-12 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%

Y-Intercept: 1

Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: $(6,0.425)$
Data Point: (12, 0.425)
Data Point: $(12.1,1)$
150 psf (Along Bedding 8-12 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.667)$
Data Point: $(12,0.667)$
Data Point: $(12.1,1)$
17° (Along Bedding 8-12 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \% Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: (-90, 1)
Data Point: $(7.9,1)$
Data Point: ($8,0.425$)
Data Point: (12, 0.425)
Data Point: $(12.1,1)$
Tmc 150 psf (Along Bedding 6-12 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: (-90, 1)
Data Point: $(7.9,1)$
Data Point: $(8,0.75)$

Data Point: $(12,0.75)$
Data Point: $(12.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-197	1,708
Point 2	-121	1,714
Point 3	-53	1,726
Point 4	-25	1,725
Point 5	25	1,723
Point 6	72	1,731
Point 7	110	1,739
Point 8	152	1,738
Point 9	188	1,730
Point 10	205	1,721
Point 11	215	1,711
Point 12	270	1,711
Point 13	338	1,745
Point 14	354	1,739
Point 15	374	1,722
Point 16	455	1,735
Point 17	514	1,743
Point 18	574	1,746
Point 19	656	1,747
Point 20	742	1,745
Point 21	812	1,752
Point 22	811	1,501
Point 23	-201	1,500
Point 24	-198.0192	1,655
Point 25	811.9124	1,730
Point 26	277	1,763
Point 27	333	1,795
Point 28	382	1,795
Point 29	471	1,794
Point 30	499	1,805
Point 31	580	1,805
Point 32	715	1,805
Point 33	809	1,805

Regions

	Material		Points
Region	TQs-17		Area $\left(\mathrm{ft}^{2}\right)$

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/22/2016

Current Slip Surface

Slip Surface: 1

F of S: 1.15
Volume: $2,219.2631 \mathrm{ft}^{3}$
Weight: $266,311.58 \mathrm{lbs}$
Resisting Moment: 38,620,651 lbs-ft
Activating Moment: $33,588,095 \mathrm{lbs}-\mathrm{ft}$
F of S Rank (Analysis): 1 of 1 slip surfaces
F of S Rank (Query): 1 of 1 slip surfaces
Exit: (205.11201, 1,721.0653) ft
Entry: $(347.48917,1,795) \mathrm{ft}$
Radius: 216.30974 ft
Center: (183.72094, 1,936.3148) ft

Slip Slices
$\mathrm{X}(\mathrm{ft})$ $\mathrm{Y}(\mathrm{ft})$ PWP (psf) Base Normal Stress (psf) Frictional Strength (psf) Cohesive Strength (psf) Slice 1 207.50828 $1,721.3305$ 0 109.90875 71.375575 200 Slice 2 212.30081 $1,721.915$ 0 351.77308 228.44411 200 Slice 3 217.09334 $1,722.6087$ 0 575.84446 373.95777 200 Slice 4 221.88588 $1,723.4124$ 0 782.53903 508.18679 200 Slice 5 226.67841 $1,724.3276$ 0 972.22869 631.3727 200 Slice 6 231.47094 $1,725.3555$ 0 $1,145.2434$ 743.72976 200 Slice 7 236.26347 $1,726.498$ 0 $1,301.8752$ 845.44763 200 Slice 8 241.05601 $1,727.7568$ 0 $1,442.3793$ 936.69208 200 Slice 9 245.84854 $1,729.1342$ 0 $1,566.9765$ $1,017.6065$ 200 Slice 10 250.64107 $1,730.6324$ 0 $1,675.8556$ $1,088.3133$ 200 Slice 11 255.4336 $1,732.2541$ 0 $1,769.1731$ $1,148.9145$ 200 Slice 12 260.22614 $1,734.0024$ 0 $1,847.0564$ $1,199.4925$ 200

Slice 13	265.01867	$1,735.8805$	0	$1,909.6023$	$1,240.1103$	200
Slice 14	269.8112	$1,737.8921$	0	$1,956.8808$	$1,270.8132$	200
Slice 15	274.60373	$1,740.0414$	0	$1,988.9317$	$1,291.6274$	200
Slice 16	279.33333	$1,742.3009$	0	$2,003.1282$	$1,300.8466$	200
Slice 17	284	$1,744.6717$	0	$1,999.9694$	$1,298.7953$	200
Slice 18	288.66667	$1,747.1874$	0	$1,982.4722$	$1,287.4325$	200
Slice 19	293.33333	$1,749.8538$	0	$1,950.5753$	$1,266.7184$	200
Slice 20	298	$1,752.6775$	0	$1,904.1917$	$1,236.5966$	200
Slice 21	302.66667	$1,755.6659$	0	$1,843.21$	$1,196.9945$	200
Slice 22	307.33333	$1,758.8273$	0	$1,767.4928$	$1,147.8232$	200
Slice 23	312	$1,762.1712$	0	$1,676.8768$	$1,088.9765$	200
Slice 24	316.66667	$1,765.7083$	0	$1,571.1725$	$1,020.3313$	200
Slice 25	321.33333	$1,769.4508$	0	$1,450.1661$	941.74887	200
Slice 26	326	$1,773.4131$	0	$1,313.6176$	853.07324	200
Slice 27	330.66667	$1,777.6115$	0	$1,161.2658$	754.13484	200
Slice 28	335.41486	$1,782.1481$	0	882.95874	573.40011	200
Slice 29	340.24459	$1,787.0566$	0	485.22856	315.11111	200
Slice 30	345.07431	$1,792.2945$	0	80.070653	51.99849	200
	1,			2		

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International Ltd.

File Information

File Version: 8.15

Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 168
Date: 3/22/2016
Time: 3:34:50 PM
Tool Version: 8.15.5.11777
File Name: Section 28 SSA for Skyline Ranch.gsz
Directory: P:\FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 28-28 results\latest Update 3-21-16
ast Solved Date: 3/22/2016
Last Solved Time: 3:35:34 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant Advanced

Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Tmc - 17 bedding 6-12
Model: Anisotropic Fn
Unit Weight: 120 pc
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 17° (Along Bedding 6-12 ${ }^{\circ}$)
C-Anisotropic Strength Fn.: Tmc 150 psf (Along Bedding 6-12 ${ }^{\circ}$)
Phi-B: 0°
TQs-17 bedding 8-12
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 17° (Along Bedding 8-12 ${ }^{\circ}$)
C-Anisotropic Strength Fn.: 150 psf (Along Bedding 8-12 ${ }^{\circ}$)
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pc
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°

Slip Surface Limits
Left Coordinate: $(-201,1,500) \mathrm{ft}$
Right Coordinate: $(812,1,752) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: $(197,1,717) \mathrm{ft}$
Lower Left: (185.0015, 1,645.92) ft
Lower Right: $(288,1,641) \mathrm{ft}$
X Increments: 10
Y Increments: 10

Starting Angle: 135°
Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: $(304,1,662) \mathrm{ft}$
Lower Left: $(309,1,729) \mathrm{ft}$
Lower Right: $(416,1,740) \mathrm{ft}$
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc $\mathbf{1 7}^{\circ}$ (Along Bedding 6-12 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Y-Intercept: 1
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(5.9,1)$
Data Point: $(6,0.425)$
Data Point: (12, 0.425)
Data Point: $(12.1,1)$
150 psf (Along Bedding 8-12 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.667)$
Data Point: $(12,0.667)$
Data Point: $(12.1,1)$
17° (Along Bedding 8-12 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination

Curve Fit to Data: 100 \%
Segment Curvature: 0%

-Intercept: 1

-Intercept: 1
Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: $(8,0.425)$ Data Point: ($12,0.425$) Data Point: $(12.1,1)$

Tmc 150 psf (Along Bedding 6-12 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(7.9,1)$
Data Point: $(8,0.75)$
Data Point: $(12,0.75)$
Data Point: $(12.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-197	1,708
Point 2	-121	1,714
Point 3	-53	1,726
Point 4	-25	1,725
Point 5	25	1,723
Point 6	72	1,731
Point 7	110	1,739
Point 8	152	1,738
Point 9	188	1,730
Point 10	205	1,721
Point 11	215	1,711
Point 12	270	1,711
Point 13	338	1,745
Point 14	354	1,739
Point 15	374	1,722
Point 16	455	1,735
Point 17	514	1,743
Point 18	574	1,746
Point 19	656	1,747
Point 20	742	1,745
Point 21	812	1,752

Point 22	811	1,501
Point 23	-201	1,500
Point 24	-198.0192	1,655
Point 25	811.9124	1,730
Point 26	277	1,763
Point 27	333	1,795
Point 28	382	1,795
Point 29	471	1,794
Point 30	499	1,805
Point 31	580	1,805
Point 32	715	1,805
Point 33	809	1,805

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs-17 bedding 8-12	$1,24,25,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2$	39,930
Region 2	Tmc -17 bedding 6-12	$24,23,22,25$	$1.9403 \mathrm{e}+005$
Region 3	Fill	$10,26,27,28,29,30,31,32,33,21,20,19,18,17,16,15,14,13,12,11$	33,691

Current Slip Surface

Slip Surface: 112,565
Fof S: 1.57
Volume: $5,424.7653 \mathrm{ft}^{3}$
Weight: $650,971.84 \mathrm{lbs}$
Resisting Force: $328,059.33 \mathrm{lbs}$
Activating Force: 208,918 .39
F of S Rank (Analysis): 1 of 131,769 slip surface
F of S Rank (Analysis): 1 of 131,769 slip su
F of S Rank (Query): 1 of 150 slip surfaces
Exit: (205.17909, 1,721.1045) ft
Entry: (359.40509, 1,795) ft
Radius: 103.54463 ft
Center: (255.73747, 1,813.4739) ft
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	207.61852	$1,720.094$	0	416.80191	270.67433	200
Slice 2	212.49739	$1,718.0731$	0	$1,122.2986$	728.82924	200
Slice 3	217.37626	$1,716.0522$	0	$1,827.7953$	$1,186.9841$	200

Slice 4	222.25513	$1,714.0313$	0	$2,533.292$	$1,645.1391$	200
Slice 5	227.13399	$1,712.0104$	0	$3,238.7887$	$2,103.294$	200
Slice 6	233.28649	$1,709.462$	0	$4,404.0155$	$3,695.4078$	225
Slice 7	239.54935	$1,708.4367$	0	$3,758.8467$	$1,149.1948$	150.075
Slice 8	244.64894	$1,709.462$	0	$3,983.9226$	$1,218.0074$	150.075
Slice 9	249.74854	$1,710.4873$	0	$4,208.9986$	$1,286.82$	150.075
Slice 10	254.7685	$1,711.4967$	0	$4,243.7852$	$2,755.9464$	200
Slice 11	259.70884	$1,712.49$	0	$4,452.9318$	$2,891.7677$	200
Slice 12	264.64917	$1,713.4833$	0	$4,662.0783$	$3,027.5891$	200
Slice 13	269.5895	$1,714.4766$	0	$4,871.2249$	$3,163.4104$	200
Slice 14	274.52983	$1,715.4699$	0	$5,080.3714$	$3,299.2318$	200
Slice 15	279.45294	$1,716.4598$	0	$5,285.5549$	$3,432.4795$	200
Slice 16	284.5653	$1,717.4876$	0	$5,735.274$	$1,753.4492$	150.075
Slice 17	289.88412	$1,718.5571$	0	$5,962.7151$	$1,822.985$	150.075
Slice 18	295.20294	$1,719.6265$	0	$6,190.1562$	$1,892.5207$	150.075
Slice 19	300.52177	$1,720.6959$	0	$6,417.5973$	$1,962.0564$	150.075
Slice 20	305.84059	$1,721.7653$	0	$6,645.0384$	$2,031.5921$	150.075
Slice 21	310.64136	$1,725.3582$	0	$3,745.3608$	$3,142.7309$	225
Slice 22	314.92408	$1,731.4745$	0	$3,496.1913$	$2,933.6528$	225
Slice 23	319.7212	$1,738.3255$	0	$3,581.4802$	$2,325.8405$	200
Slice 24	325.03272	$1,745.9112$	0	$3,238.8307$	$2,103.3212$	200
Slice 25	330.34424	$1,753.4968$	0	$2,896.1811$	$1,880.802$	200
Slice 26	335.64051	$1,761.0607$	0	$2,440.8986$	$1,585.1381$	200
Slice 27	340.92153	$1,768.6027$	0	$1,872.9832$	$1,216.3295$	200

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/22/2016

2 - Translational
Page 7 of 7

Slice 28	346.20254	$1,776.1448$	0	$1,305.0677$	847.5209	200
Slice 29	351.48356	$1,783.6869$	0	737.15229	478.71229	200
Slice 30	356.76458	$1,791.229$	0	169.23684	109.90369	200

2 - Translational Seismic

$\stackrel{\text { Report generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International Ltd. }}{\text { It }}$

File Information

File Version: 8.15

Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 168
Date: 3/22/2016
Time: 3:34:50 PM
Tool Version: 8.15.5.11777
File Name: Section 28 SSA for Skyline Ranch.gsz
Directory: P:\FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 28-28 results\latest Update 3-21-16\}
Last Solved Date: 3/22/2016
Last Solved Time: 3:35:34 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational Seismic
Kind: SLOPE/W
Parent: 2 - Translational
Method: Janbu
Settings
PWP Conditions Source: (none)
Initial Slip Surface Source: Parent Analysis
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Critical Slip Surfaces from Other
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Optimize Critical Slip Surface Location: No

Tension Crack
Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant Advanced

Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

Tmc - 17 bedding 6-12
Model: Anisotropic Fn.
Unit Weight: 120 pc
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: Tmc 17° (Along Bedding 6-12 ${ }^{\circ}$)
C-Anisotropic Strength Fn.: Tmc 150 psf (Along Bedding 6-12 ${ }^{\circ}$)
Phi-B: 0°
TQs-17 bedding 8-12
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 17° (Along Bedding 8-12 ${ }^{\circ}$)
C-Anisotropic Strength Fn.: 150 psf (Along Bedding 8-12 ${ }^{\circ}$)
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B. 0°

Slip Surface Limits

Left Coordinate: $(-201,1,500) \mathrm{ft}$
Right Coordinate: $(812,1,752) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0.1
Vert Seismic Coef.: 0

Anisotropic Strength Functions

Tmc 17° (Along Bedding 6-12 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor
Data Point: (-90, 1)
Data Point: $(5.9,1)$
Data Point: $(6,0.425)$
Data Point: $(12,0.425)$
Data Point: (12.1, 1)
150 psf (Along Bedding 8-12 ${ }^{\circ}$)
Model: Spline Data Point Function
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(7.9,1)$
Data Point: $(8,0.667)$
Data Point: $(8,0.667)$
Data Point: $(12,0.667)$
Data Point: $(12.1,1)$
17° (Along Bedding $8-12^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \% Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination $\left({ }^{\circ}\right)$, Modifier Factor Data Point: $(-90,1)$
Data Point: $(7.9,1)$
Data Point: ($8,0.425$)
Data Point: (12, 0.425)
Data Point: $(12.1,1)$
Tmc 150 psf (Along Bedding 6-12 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(7.9,1)$
Data Point: $(8,0.75)$
file://P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/22/2016

Data Point: $(12,0.75)$
Data Point: $(12.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-197	1,708
Point 2	-121	1,714
Point 3	-53	1,726
Point 4	-25	1,725
Point 5	25	1,723
Point 6	72	1,731
Point 7	110	1,739
Point 8	152	1,738
Point 9	188	1,730
Point 10	205	1,721
Point 11	215	1,711
Point 12	270	1,711
Point 13	338	1,745
Point 14	354	1,739
Point 15	374	1,722
Point 16	455	1,735
Point 17	514	1,743
Point 18	574	1,746
Point 19	656	1,747
Point 20	742	1,745
Point 21	812	1,752
Point 22	811	1,501
Point 23	-201	1,500
Point 24	-198.0192	1,655
Point 25	811.9124	1,730
Point 26	277	1,763
Point 27	333	1,795
Point 28	382	1,795
Point 29	471	1,794
Point 30	499	1,805
Point 31	580	1,805
Point 32	715	1,805
Point 33	809	1,805

Regions

	Material		Points
Region	TQs-17		Area $\left(\mathrm{ft}^{2}\right)$

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/22/2016

1	bedding 8-12	$1,24,25,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2$	39,930
Region 2	Tmc -17 bedding 6-12	$24,23,22,25$	$1.9403 e+005$
Region 3	Fill	$10,26,27,28,29,30,31,32,33,21,20,19,18,17,16,15,14,13,12,11$	33,691

Current Slip Surface

Slip Surface: 1
F of S: 1.15
Volume: $5,424.7653 \mathrm{ft}^{3}$
Weight: 650,971.84 lbs
Resisting Force: $318,995 \mathrm{lbs}$
Activating Force: $278,106.68 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 1 slip surfaces
F of S Rank (Query): 1 of 1 slip surfaces
Exit: (205.17909, 1,721.1045) ft
Entry: (359.40509, 1,795) ft
Radius: 103.54463 ft
Center: (255.73747, 1,813.4739) ft

Slip Slices
$\mathrm{X}(\mathrm{ft})$ $\mathrm{Yt})$ PWP (psf) Base Normal Stress (psf) Frictional Strength (psf) Cohesive Strength (psf) Slice 1 207.61852 $1,720.094$ 0 476.49161 309.43727 200 Slice 2 212.49739 $1,718.0731$ 0 $1,240.0906$ 805.32426 200 Slice 3 217.37626 $1,716.0522$ 0 $2,003.6891$ $1,301.2109$ 200 Slice 4 222.25513 $1,714.0313$ 0 $2,767.2883$ $1,797.098$ 200 Slice 5 227.13399 $1,712.0104$ 0 $3,530.8865$ $2,292.9845$ 200 Slice 6 233.28649 $1,709.462$ 0 $4,950.2504$ $4,153.7533$ 225 Slice 7 239.54935 $1,708.4367$ 0 $3,700.7945$ $1,131.4464$ 150.075 Slice 8 244.64894 $1,709.462$ 0 $3,922.7957$ $1,199.319$ 150.075 Slice 9 249.74854 $1,710.4873$ 0 $4,144.7973$ $1,267.1917$ 150.075 Slice 10 254.7685 $1,711.4967$ 0 $4,118.873$ $2,674.8274$ 200 Slice 11 259.70884 $1,712.49$ 0 $4,322.2796$ $2,806.9212$ 200 Slice 12 264.64917 $1,713.4833$ 0 $4,525.6871$ $2,939.0155$ 200

Slice 13	269.5895	$1,714.4766$	0	$4,729.0935$	$3,071.1093$	200
Slice 14	274.52983	$1,715.4699$	0	$4,932.5011$	$3,203.2037$	200
Slice 15	279.45294	$1,716.4598$	0	$5,132.0533$	$3,332.7944$	200
Slice 16	284.5653	$1,717.4876$	0	$5,650.2235$	$1,727.4467$	150.075
Slice 17	289.88412	$1,718.5571$	0	$5,874.5574$	$1,796.0324$	150.075
Slice 18	295.20294	$1,719.6265$	0	$6,098.8919$	$1,864.6184$	150.075
Slice 19	300.52177	$1,720.6959$	0	$6,323.2258$	$1,933.2041$	150.075
Slice 20	305.84059	$1,721.7653$	0	$6,547.5603$	$2,001.7901$	150.075
Slice 21	310.64136	$1,725.3582$	0	$3,195.3405$	$2,681.209$	225
Slice 22	314.92408	$1,731.4745$	0	$2,980.3177$	$2,500.7835$	225
Slice 23	319.7212	$1,738.3255$	0	$3,115.0038$	$2,022.9071$	200
Slice 24	325.03272	$1,745.9112$	0	$2,813.4497$	$1,827.0756$	200
Slice 25	330.34424	$1,753.4968$	0	$2,511.8952$	$1,631.2438$	200
Slice 26	335.64051	$1,761.0607$	0	$2,111.2164$	$1,371.0399$	200
Slice 27	340.92153	$1,768.6027$	0	$1,611.4131$	$1,046.4639$	200
Slice 28	346.20254	$1,776.1448$	0	$1,111.6099$	721.88793	200
Slice 29	351.48356	$1,783.6869$	0	611.8066	397.31185	200
Slice 30	356.76458	$1,791.229$	0	112.00332	72.735805	200

Section 29-29 Cir Static Left SSA for Skyline Ranch.gsz

1 - Circular Mode of Failure

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 1
Time: 10:31:37 AM
Tool Version: 8.15.5.11777
File Name: Section 29-29 Cir Static Left SSA for Skyline Ranch.gsz
Directory: P:IFINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 29-29 results\
Last Solved Date: 3/15/2016
Last Solved Time: 10:32:07 AM

Project Settings

Length(L) Units: Fee
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Left to Right
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Optimize Critical Slip Surface Location: №
Tension Crack
F of S Distribution Crack Option: (none)
F istribution
Advan S Calculation Option: Constant anced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials
TQs 11°
Model: Anisotropic Fn.
Unit Weight: 120 pc
Cohesion': 225 ps
Phi-Anisotropic Strength Fn.: 11° (Along Bedding $-10^{\circ}-\left(-25^{\circ}\right)$
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Phi-B: 0°
Qls
Model: Mohr-Coulomb
Unit Weight: 100 pc
Cohesion': 0
Phi: 20°

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Clay
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 150 psf
Phi': 9°
Phi-B: 0°
$\operatorname{Tmc}\left(-12^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 12° (Along Bedding $-10^{\circ}-\left(-25^{\circ}\right)$
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Phi-B: 0°
Phi-B: 0°
Tmc (12°)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 ps
Phi': 40
Phi-Anisotropic Strength Fn.: 12° (Along Bedding $10^{\circ}-25^{\circ}$)
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Phi-B: 0°

Slip Surface Entry and Exit
Left Projection: Range
Left-Zone Left Coordinate: (-22.2728, 1,831.8909) ft

Left-Zone Right Coordinate: $(100,1,854.3684) \mathrm{ft}$
Left-Zone Increment: 50
Right Projection: Range
Right-Zone Left Coordinate: $(253,1,876.0313) \mathrm{ft}$
Right-Zone Right Coordinate: $(1,026.6667,1,782)$ ft
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: $(-49,1,301) \mathrm{ft}$
Right Coordinate: $(2,050,1,863) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

12° (Along Bedding $10^{\circ}-2^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1
Data Point: $(9.9,1)$
Data Point: $(10,0.3)$
Data Point: $(25,0.3)$
Data Point: (25.1, 1
150 pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: ($-90,1$)
Data Point: $(-25.1,1$
Data Point: $(-25,0.667)$
Data Point: $(-10,0.667)$
Data Point: (-9.9, 1)
11° (Along Bedding $-10^{\circ}-\left(-25^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point:

> Data Point: $(-25,0.275)$, Data Point: $(-10,0.275)$ Data Point: $(-9.9,1)$
2° (Along Bedding $-10^{\circ}-\left(-25^{\circ}\right)$
Model: Spline Data Point Functio
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-25.1,1)$
Data Point: $(-25,0.3)$
Data Point: (-9.9, 1)

Points

	$X(\mathrm{ft})$	$Y(\mathrm{ft})$
Point 1	-47	1,882
Point 2	-7	1,838
Point 3	66	1,849
Point 4	218	1,873
Point 5	238	1,857
Point 6	292	1,830
Point 7	439	1,785
Point 8	634	1,739
Point 9	727	1,729
Point 10	793	1,729
Point 11	831	1,733
Point 12	872	1,737
Point 13	900	1,755
Point 14	929	1,767
Point 15	964	1,776
Point 16	1,022	1,779
Point 17	1,050	1,797
Point 18	1,069	1,809
Point 19	1,173	1,810
Point 20	1,224	1,777
Point 21	1,277	1,738
Point 22	1,312	1,753
Point 23	1,340	1,773
Point 24	1,429	1,777
Point 25	1,546	1,783
Point 26	1,643	1,792
Point 27	1,723	1,801
Point 28	1,769	1,808
Point 29	1,794	1,815
Point 30	1,830	1,823
Point 31	1,851	1,830
Point 32	1,862	1,841

Point 33	1,886	1,843
Point 34	1,913	1,853
Point 35	1,955	1,852
Point 36	1,993	1,862
Point 37	2,050	1,863
Point 38	2,049	1,295
Point 39	-49	1,301
Point 40	244	1,878
Point 41	276	1,871
Point 42	302	1,866
Point 43	324	1,861
Point 44	381	1,852
Point 45	402	1,847
Point 46	458	1,846
Point 47	477	1,845
Point 48	502	1,832
Point 49	531	1,823
Point 50	577	1,810
Point 51	601	1,800
Point 52	634	1,790
Point 53	696	1,771
Point 54	734	1,763
Point 55	805	1,769
Point 56	757	1,793
Point 57	890	1,789
Point 58	1,105	1,828
Point 59	1,137	1,828
Point 60	1,293	1,811
Point 61	1,397	1,816
Point 62	1,492	1,824
Point 63	1,449	1,812
Point 64	1,423	1,810
Point 65	1,372	1,791
Point 66	1,537	1,831
Point 67	1,593	1,846
Point 68	1,637	1,860
Point 69	1,671	1,876
Point 70	1,692	1,876
Point 71	1,720	1,864
Point 72	1,749	1,849
Point 73	1,769	1,843
Point 74	1,788	1,843
Point 75	1,809	1,855
Point 76	1,831	1,855
Point 77	1,839	1,857
Point 78	1,904	1,856
Point 79	1,971	$1,856.2105$
Point 80	293.0323	1,831
Point 81	311	1,826
Point 82	353	1,813

file://P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/15/2016

	439	1,787
Point 84	494	1,774
Point 85	634	1,741
Point 86	727	1,731
Point 87	793	1,731
Point 88	830.2778	1,734
Point 89	494.1087	1,772
Point 90	353	1,811.3265
Point 91	-47.6603	1,650
Point 92	1,343.5556	1,775
Point 93	1,368	1,776
Point 94	1,409	1,778
Point 95	1,429	1,779
Point 96	1,474	1,781
Point 97	1,546	1,785
Point 98	1,643	1,794
Point 99	1,723	1,803
Point 100	1,769	1,810
Point 101	1,793	1,816.12
Point 102	1,474	1,779.3077
Point 103	1,408	1,776.0562
Point 104	1,368	1,774.2584
Point 105	1,175	1,297.4995

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Tmc $\left(12^{\circ}\right)$	$38,37,36,79,35,34,33,32,31,30,29,28,27,26,25,102,24,103,104,23,22,21,20,19,105$	$4.4177 \mathrm{e}+005$
Region 2	Fill	$4,40,41,42,43,80,6,5$	2,420
Region 3	Qls	$43,80,81,82,83,84,85,86,87,88,55,54,53,52,51,50,49,48,47,46,45,44$	24,238
Region 4	Fill	$51,56,57,16,15,14,13,12,11,88,55,54,53,52$	10,071
Region 5	Fill	$19,60,61,62,63,64,65,92,23,22,21,20$	9,582
Region 6	Qls	$62,63,64,65,92,93,94,95,96,97,98,99,100,101,73,72,71,70,69,68,67,66$	20,085
Region 7	Fill	$73,74,75,76,77,78,79,35,34,33,32,31,30,29,101$	$3,204.9$
Region 8	Clay	$80,6,90,7,89,8,9,10,11,88,87,86,85,84,83,82,81$	$1,023.3$
Region 9	TQs 11 ${ }^{\circ}$	$91,9,8,89,7,90,6,5,4,3,2,1$	90,409
Region 10	Clay	$92,23,104,103,24,102,25,26,27,28,29,101,100,99,98,97,96,95,94,93$	864.17
Region 11	Tmc $(-$ $\left.122^{\circ}\right)$	$91,39,105,19,59,58,18,17,16,15,14,13,12,11,10,9$	$5.1344 \mathrm{e}+005$

Current Slip Surface

Slip Surface: 131,789
F of S: 3.70
Volume: $26,037.592 \mathrm{ft}^{3}$
Resisting Moment: 2.0433758 e+009 lbs-ft
Activating Moment: 5.5200072e+008 lbs-ft
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 10 slip surfaces
Exit: (776.3304, 1,792.4186) ft
Entry: (99.999997, 1,854.3684) ft
Radius: $1,543.9323 \mathrm{ft}$
Center: (575.54649, 3,323.2396) ft
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	111.8	$1,850.6524$	0	646.10331	125.58976	150.075
Slice 2	135.4	$1,843.4266$	0	$1,941.4647$	377.3825	150.075
Slice 3	159	$1,836.6106$	0	$3,190.6562$	620.20073	150.075
Slice 4	182.6	$1,830.1987$	0	$4,394.1759$	854.14127	150.075
Slice 5	206.2	$1,824.1857$	0	$5,552.4809$	$1,079.293$	150.075
Slice 6	228	$1,818.968$	0	$6,625.0609$	$1,287.7814$	150.075
Slice 7	241	$1,815.9917$	0	$7,278.138$	$1,414.7267$	150.075
Slice 8	260	$1,811.9851$	0	$7,412.2497$	$1,440.7954$	150.075
Slice 9	284	$1,807.1059$	0	$7,400.3269$	$1,438.4778$	150.075
Slice 10	292.51615	$1,805.4713$	0	$7,389.3928$	$1,436.3525$	150.075
Slice 11	297.51615	$1,804.5542$	0	$7,259.2801$	$1,411.0611$	150.075
Slice 12	306.5	$1,802.937$	0	$7,003.0267$	$1,361.2505$	150.075
Slice 13	317.5	$1,801.0387$	0	$6,464.2888$	$5,424.1824$	225
Slice 14	338.5	$1,797.6838$	0	$6,235.7179$	$5,232.3886$	225
Slice 15	367	$1,793.5221$	0	$6,141.564$	$5,153.3841$	225
Slice 16	391.5	$1,790.3528$	0	$5,930.1512$	$4,975.9877$	225
Slice 17	410.83801	$1,788.1438$	0	$5,831.3502$	$4,893.0838$	225
Slice 18	428.51402	$1,786.35$	0	$5,920.9235$	$4,968.2447$	225
Slice 19	438.17601	$1,785.4309$	0	$6,065.567$	960.69143	150
Slice 20	444.43466	$1,784.8941$	0	$6,109.1394$	967.59263	150
Slice 21	453.93466	$1,784.1097$	0	$6,148.6262$	$2,237.9169$	0
Slice 22	467.5	$1,783.122$	0	$6,195.1591$	$2,254.8535$	0
	0					

Slice 23	489.5	$1,781.7578$	0	$5,643.3169$	$2,053.9994$	0
Slice 24	516.5	$1,780.505$	0	$4,681.9156$	$1,704.0779$	0
Slice 25	542.5	$1,779.7038$	0	$3,996.2211$	$1,454.5055$	0
Slice 26	565.5	$1,779.3828$	0	$3,384.5591$	$1,231.8788$	0
Slice 27	589	$1,779.4125$	0	$2,560.9359$	932.10443	0
Slice 28	617.5	$1,779.9657$	0	$2,019.9757$	735.21104	0
Slice 29	647.57166	$1,781.048$	0	$1,936.4795$	704.82091	0
Slice 30	673.12541	$1,782.4407$	0	$1,741.4682$	$1,130.9227$	200
Slice 31	697.08958	$1,784.1458$	0	$1,408.8363$	914.90899	200
Slice 32	721.05375	$1,786.2263$	0	$1,028.5467$	667.94601	200
Slice 33	745.01792	$1,788.6839$	0	600.00183	389.64575	200
Slice 34	766.6652	$1,791.2129$	0	190.4536	123.68202	200

1 - Circular Mode of Failure

File Information
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 120
Date: $3 / 15 / 2016$ AM
Tool Version: 8.15.5.11777
File Name: Section 29-29 Cir Seismic Left SSA for Skyline Ranch.gsz
Directory: P:IFINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 29-29 results\
Last Solved Date: 3/15/2016
Last Solved Time: 10:20:58 AM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
Surface
Direction of movement: Left to Right
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1
Driving Side Maximum Convex Angle: 5°
Optimize Critical Slip Surface Location: №
Tension Crack
F of S Distribution Crack Option: (none)
F istribution
Fof Calculation Option: Constant
nced
Number of Slices: 30
Minimum Slip Surface Depth: 0.1 ft

Materials
TQs 11°
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 ps
Phi-Anisotropic Strength Fn.: 11° (Along Bedding $-10^{\circ}-\left(-25^{\circ}\right)$
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Phi-B: 0°
Qls
Model: Mohr-Coulomb
Unit Weight: 100 pc
Cohesion': 0 p
Phi: 20°

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Clay
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 150 psf
Phi': 9°
nc $\left(-12^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 12° (Along Bedding $-10^{\circ}-\left(-25^{\circ}\right)$
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Phi-B: 0°
Phi-B: 0°
Tmc (12°)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 ps
Phi': 40
Phi-Anisotropic Strength Fn.: 12° (Along Bedding $10^{\circ}-25^{\circ}$)
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Phi-B: 0°

Slip Surface Entry and Exit
Left Projection: Range
Left-Zone Left Coordinate: (-22.2728, 1,831.8909) ft

1-Circular Mode of Failure

Left-Zone Right Coordinate: ($100,1,854.3684$) ft
Left-Zone Increment: 50
Let-Zone Increment: 50
Right Projection: Range
Right Projection: Range
Right-Zone Left Coordinate: $(253,1,876.0313) \mathrm{ft}$
Right-Zone Right Coordinate: $(1,026.6667,1,782)$ ft
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: $(-49,1,301) \mathrm{ft}$
Right Coordinate: $(2,050,1,863) \mathrm{ft}$

Seismic Coefficient

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

12° (Along Bedding $10^{\circ}-25^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(9.9,1)$
Data Point: $(10,0.3)$
Data Point: $(25,0.3)$
Data Point: (25.1, 1
150 pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-25.1,1)$
Data Point: $(-25.1,1)$
Data Point: $(-25,0.667)$
Data Point: $(-25,0.667)$
Data Point: (-9.9, 1)
11° (Along Bedding $-10^{\circ}-\left(-25^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point:

> Data Point: $(-25,0.275)$ Data Point: $(-10,0.275)$ Data Point: $(-9.9,1)$
12° (Along Bedding $-10^{\circ}-\left(-25^{\circ}\right)$
Model: Spline Data Point Functio
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-25.1,1)$
Data Point: $(-25,0.3)$
Data Point: $(-10,0.3)$
Data Point: (-9.9, 1)

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-47	1,822
Point 2	-7	1,838
Point 3	66	1,849
Point 4	218	1,873
Point 5	238	1,857
Point 6	292	1,830
Point 7	439	1,785
Point 8	634	1,739
Point 9	727	1,729
Point 10	793	1,729
Point 11	831	1,733
Point 12	872	1,737
Point 13	900	1,755
Point 14	929	1,767
Point 15	964	1,776
Point 16	1,022	1,779
Point 17	1,050	1,797
Point 18	1,069	1,809
Point 19	1,173	1,810
Point 20	1,224	1,777
Point 21	1,277	1,738
Point 22	1,312	1,753
Point 23	1,340	1,773
Point 24	1,429	1,777
Point 25	1,546	1,783
Point 26	1,643	1,792
Point 27	1,723	1,801
Point 28	1,769	1,808
Point 29	1,794	1,815
Point 30	1,830	1,823
Point 31	1,851	1,830
Point 32	1,862	1,841

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/15/2016

Point 33	1,886	1,843
Point 34	1,913	1,853
Point 35	1,955	1,852
Point 36	1,993	1,862
Point 37	2,050	1,863
Point 38	2,049	1,295
Point 39	-49	1,301
Point 40	244	1,878
Point 41	276	1,871
Point 42	302	1,866
Point 43	324	1,861
Point 44	381	1,852
Point 45	402	1,847
Point 46	458	1,846
Point 47	477	1,845
Point 48	502	1,832
Point 49	531	1,823
Point 50	577	1,810
Point 51	601	1,800
Point 52	634	1,790
Point 53	696	1,771
Point 54	734	1,763
Point 55	805	1,769
Point 56	757	1,793
Point 57	890	1,789
Point 58	1,105	1,828
Point 59	1,137	1,828
Point 60	1,293	1,811
Point 61	1,397	1,816
Point 62	1,492	1,824
Point 63	1,449	1,812
Point 64	1,423	1,810
Point 65	1,372	1,791
Point 66	1,537	1,831
Point 67	1,593	1,846
Point 68	1,637	1,860
Point 69	1,671	1,876
Point 70	1,692	1,876
Point 71	1,720	1,864
Point 72	1,749	1,849
Point 73	1,769	1,843
Point 74	1,788	1,843
Point 75	1,809	1,855
Point 76	1,831	1,855
Point 77	1,839	1,857
Point 78	1,904	1,856
Point 79	1,971	$1,856.2105$
Point 80	293.0323	1,831
Point 81	311	1,826
Point 82	353	1,813

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/15/2016

	439	1,787
Point 84	494	1,774
Point 85	634	1,741
Point 86	727	1,731
Point 87	793	1,731
Point 88	830.2778	1,734
Point 89	494.1087	1,772
Point 90	353	1,811.3265
Point 91	-47.6603	1,650
Point 92	1,343.5556	1,775
Point 93	1,368	1,776
Point 94	1,409	1,778
Point 95	1,429	1,779
Point 96	1,474	1,781
Point 97	1,546	1,785
Point 98	1,643	1,794
Point 99	1,723	1,803
Point 100	1,769	1,810
Point 101	1,793	1,816.12
Point 102	1,474	1,779.3077
Point 103	1,408	1,776.0562
Point 104	1,368	1,774.2584
Point 105	1,175	1,297.4995

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Tmc $\left(12^{\circ}\right)$	$38,37,36,79,35,34,33,32,31,30,29,28,27,26,25,102,24,103,104,23,22,21,20,19,105$	$4.4177 \mathrm{e}+005$
Region 2	Fill	$4,40,41,42,43,80,6,5$	2,420
Region 3	Qls	$43,80,81,82,83,84,85,86,87,88,55,54,53,52,51,50,49,48,47,46,45,44$	24,238
Region 4	Fill	$51,56,57,16,15,14,13,12,11,88,55,54,53,52$	10,071
Region 5	Fill	$19,60,61,62,63,64,65,92,23,22,21,20$	9,582
Region 6	Qls	$62,63,64,65,92,93,94,95,96,97,98,99,100,101,73,72,71,70,69,68,67,66$	20,085
Region 7	Fill	$73,74,75,76,77,78,79,35,34,33,32,31,30,29,101$	$3,204.9$
Region 8	Clay	$80,6,90,7,89,8,9,10,11,88,87,86,85,84,83,82,81$	$1,023.3$
Region 9	TQs 11 ${ }^{\circ}$	$91,9,8,89,7,90,6,5,4,3,2,1$	90,409
Region 10	Clay	$92,23,104,103,24,102,25,26,27,28,29,101,100,99,98,97,96,95,94,93$	864.17
Region 11	Tmc $(-$ $\left.122^{\circ}\right)$	$91,39,105,19,59,58,18,17,16,15,14,13,12,11,10,9$	$5.1344 \mathrm{e}+005$

Current Slip Surface

Slip Surface: 131,789
F of S: 1.68
Weight: $2,836,160.6 \mathrm{lbs}$
Resisting Moment: $2.0043215 \mathrm{e}+009 \mathrm{lbs}-\mathrm{ft}$
Activating Moment: 1.1898783e+009 lbs-ft
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 10 slip surfaces
Exit: (776.3304, 1,792.4186) ft
Entry: ($99.999997,1,854.3684$) ft
Radius: $1,543.9323 \mathrm{ft}$
Center: (575.54649, 3,323.2396) ft
Slip Slices

X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)	
Slice 1	1111.8	$1,850.6524$	0	619.17359	120.35515	150.075
Slice 2	135.4	$1,843.4266$	0	$1,892.7038$	367.90435	150.075
Slice 3	159	$1,836.6106$	0	$3,123.4463$	607.13645	150.075
Slice 4	182.6	$1,830.1987$	0	$4,311.7169$	838.11286	150.075
Slice 5	206.2	$1,824.1857$	0	$5,457.8001$	$1,060.8889$	150.075
Slice 6	228	$1,818.968$	0	$6,521.0424$	$1,267.5622$	150.075
Slice 7	241	$1,815.9917$	0	$7,169.2748$	$1,393.5658$	150.075
Slice 8	260	$1,811.9851$	0	$7,307.9816$	$1,420.5277$	150.075
Slice 9	284	$1,807.1059$	0	$7,304.2614$	$1,419.8046$	150.075
Slice 10	292.51615	$1,805.4713$	0	$7,296.2975$	$1,418.2566$	150.075
Slice 11	297.51615	$1,804.5542$	0	$7,169.3073$	$1,393.5722$	150.075
Slice 12	306.5	$1,802.937$	0	$6,918.7709$	$1,344.8728$	150.075
Slice 13	317.5	$1,801.0387$	0	$6,180.3396$	$5,185.9207$	225
Slice 14	338.5	$1,797.6838$	0	$5,982.6499$	$5,020.0393$	225
Slice 15	367	$1,793.5221$	0	$5,920.8056$	$4,968.1458$	225
Slice 16	391.5	$1,790.3528$	0	$5,740.7116$	$4,817.029$	225
Slice 17	410.83801	$1,788.1438$	0	$5,663.7561$	$4,752.4557$	225
Slice 18	428.51402	$1,786.35$	0	$5,768.4606$	$4,840.3132$	225
Slice 19	438.17601	$1,785.4309$	0	$6,033.9403$	955.68226	150
Slice 20	444.43466	$1,784.8941$	0	$6,078.7652$	962.78182	150
Slice 21	453.93466	$1,784.1097$	0	$6,092.7393$	$2,217.5757$	0
Slice 22	467.5	$1,783.122$	0	$6,145.0686$	$2,236.6221$	0
	0					

Slice 23	489.5	$1,781.7578$	0	$5,606.9006$	$2,040.7449$	0
Slice 24	516.5	$1,780.505$	0	$4,661.1226$	$1,696.5099$	0
Slice 25	542.5	$1,779.7038$	0	$3,986.2575$	$1,450.8791$	0
Slice 26	565.5	$1,779.3828$	0	$3,381.986$	$1,230.9422$	0
Slice 27	589	$1,779.4125$	0	$2,563.5517$	933.0565	0
Slice 28	617.5	$1,779.9657$	0	$2,026.4378$	737.56303	0
Slice 29	647.57166	$1,781.048$	0	$1,947.1675$	708.71101	0
Slice 30	673.12541	$1,782.4407$	0	$1,769.2355$	$1,148.955$	200
Slice 31	697.08958	$1,784.1458$	0	$1,438.0211$	933.8618	200
Slice 32	721.05375	$1,786.2263$	0	$1,055.9534$	685.74418	200
Slice 33	745.01792	$1,788.6839$	0	621.85928	403.84014	200
Slice 34	766.6652	$1,791.2129$	0	204.08524	132.53451	200

Section 29-29 tran Static Left SSA for Skyline Ranch.gsz

Section 29-29 tran Static Left SSA for Skyline Ranch.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/15/2016 11:43:23 AM

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International Ltd.

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 144
Date: $3 / 15 / 2016$
Tool Version: 8.15.5.11777
File Name: Section 29-29 tran Static Left SSA for Skyline Ranch.gsz
Directory: P:IFINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 29-29 results\
Last Solved Date: 3/15/2016
Last Solved Time: 11:43:51 AM

Project Settings

Length(L) Units: Fee
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Jan
Settings
Settings
PWP Conditions Source: ($n o n e$)
Slip Surface
Direction of movement: Left to Right
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: №
Tension Crack
Tension Crack Option: (none)
S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
Minimum Slip Surface Depth: 0.1 ft

Materials
TQs 11°
Model: Anisotropic Fn.
Unit Weight: 120 pc
Cohesion': 225 ps
Phi-Anisotropic Strength Fn.: 11° (Along Bedding $-10^{\circ}-\left(-25^{\circ}\right)$
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Phi-B: 0
Qls
Model: Mohr-Coulomb
Unit Weight: 100 pc
Cohesion': 0
Phi: 20°

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Clay
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 150 psf
Phi': 9°
Phi-B: 0°

$\operatorname{Tmc}\left(-12^{\circ}\right)$

Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40
Phi-Anisotropic Strength Fn.: 12° (Along Bedding - $10^{\circ}-\left(-25^{\circ}\right)$
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Phi-B: 0°
Phi-B: 0°
Tmc ($\mathbf{1 2}^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 ps
Phi': 40
Phi-Anisotropic Strength Fn.: 12° (Along Bedding $10^{\circ}-25^{\circ}$)
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Phi-B: 0°

Slip Surface Limits
Left Coordinate: $(-49,1,301)$ ft
Right Coordinate: $(2,050,1,863) \mathrm{ft}$

2-Translational

Slip Surface Block
Left Grid
Upper Left: $(-3,1,837)$ ft
Lower Left: (-12.7508, 1,787.0822) ft
Lower Right: $(119,1,806) \mathrm{ft}$
X Increments: 10
Y Increments: 10
Starting Angle: $115{ }^{\circ}$
Angle Increments: 2
Right Grid
Upper Left: $(298,1,834) \mathrm{ft}$
Lower Left: ($284,1,817$) ft
Lower Right: (738, 1,714) ft
XIncrements: 10
Y Increments: 10
Ending Angle: 45°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

12° (Along Bedding $10^{\circ}-25^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(9.9,1)$
Data Point: $(10,0.3)$
Data Point: (25.1, 1)
pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-25.1,1)$
Data Point: $(-25,0.667)$
Data Point:(-9,9, 1)
11° (Along Bedding $-10^{\circ}-\left(-25^{\circ}\right)$
Model: Spline Data Point Function
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment
intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-25.1,1)$
Data Point: (-25, 0.275)
Data Point: ($-10,0.27$
Data Point: (-9.9, 1)
12° (Along Bedding $-10^{\circ}-\left(-25^{\circ}\right)$
Model: Spline Data Point Function
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: $(-90,1)$
Data Point: $(-25.1,1)$
Data Point: ($-25,0.3$)
Data Point: $(-10,0.3)$
Data Point: (-9.9, 1)

Points
Oints

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-47	1,822
Point 2	-7	1,838
Point 3	66	1,849
Point 4	218	1,873
Point 5	238	1,857
Point 6	292	1,830
Point 7	439	1,785
Point 8	634	1,739
Point 9	727	1,729
Point 10	793	1,729
Point 11	831	1,733
Point 12	872	1,737
Point 13	900	1,755
Point 14	929	1,767
Point 15	964	1,776
Point 16	1,022	1,779
Point 17	1,050	1,797
Point 18	1,069	1,809
Point 19	1,173	1,810
Point 20	1,224	1,777
Point 21	1,277	1,738
Point 22	1,312	1,753
Point 23	1,340	1,773

2-Translational

Point 24	1,429	1,777
Point 25	1,546	1,783
Point 26	1,643	1,792
Point 27	1,723	1,801
Point 28	1,769	1,808
Point 29	1,794	1,815
Point 30	1,830	1,823
Point 31	1,851	1,830
Point 32	1,862	1,841
Point 33	1,886	1,843
Point 34	1,913	1,853
Point 35	1,955	1,852
Point 36	1,993	1,862
Point 37	2,050	1,863
Point 38	2,049	1,295
Point 39	-49	1,301
Point 40	244	1,878
Point 41	276	1,871
Point 42	302	1,866
Point 43	324	1,861
Point 44	381	1,852
Point 45	402	1,847
Point 46	458	1,846
Point 47	477	1,845
Point 48	502	1,832
Point 49	531	1,823
Point 50	577	1,810
Point 51	601	1,800
Point 52	634	1,790
Point 53	696	1,771
Point 54	734	1,763
Point 55	805	1,769
Point 56	757	1,793
Point 57	890	1,789
Point 58	1,105	1,828
Point 59	1,137	1,828
Point 60	1,293	1,811
Point 61	1,397	1,816
Point 62	1,492	1,824
Point 63	1,449	1,812
Point 64	1,423	1,810
Point 65	1,372	1,791
Point 66	1,537	1,831
Point 67	1,593	1,846
Point 68	1,637	1,860
Point 69	1,671	1,876
Point 70	1,692	1,876
Point 71	1,720	1,864
Point 72	1,749	1,849
Point 73	1,769	1,843

file://P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/15/2016

	1,788	1,843
Point 75	1,809	1,855
Point 76	1,831	1,855
Point 77	1,839	1,857
Point 78	1,904	1,856
Point 79	1,971	$1,856.2105$
Point 80	293.0323	1,831
Point 81	311	1,826
Point 82	353	1,813
Point 83	439	1,787
Point 84	494	1,774
Point 85	634	1,741
Point 86	727	1,731
Point 87	793	1,731
Point 88	830.2778	1,734
Point 89	494.1087	1,772
Point 90	353	$1,811.3265$
Point 91	-47.6603	1,650
Point 92	$1,343.5556$	1,775
Point 93	1,368	1,776
Point 94	1,409	1,778
Point 95	1,429	1,779
Point 96	1,474	1,781
Point 97	1,546	1,785
Point 98	1,643	1,794
Point 99	1,723	1,803
Point 100	1,769	1,810
Point 101	1,793	$1,816.12$
Point 102	1,474	$1,779.3077$
Point 103	1,408	$1,776.0562$
Point 104	1,368	$1,774.2584$
Point 105	1,175	$1,297.4995$

Regions
Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Tcc $\left(12^{\circ}\right)$	$38,37,36,79,35,34,33,32,31,30,29,28,27,26,25,102,24,103,104,23,22,21,20,19,105$	$4.4177 \mathrm{e}+005$
Region 2	Fill	$4,40,41,42,43,80,6,5$	2,420
Region 3	Qls	$43,80,81,82,83,84,85,86,87,88,55,54,53,52,51,50,49,48,47,46,45,44$	24,238
Region 4	Fill	$51,56,57,16,15,14,13,12,11,88,55,54,53,52$	10,071
Region 5	Fill	$19,60,61,62,63,64,65,92,23,22,21,20$	9,582
Region 6	Qls	$62,63,64,65,92,93,94,95,96,97,98,99,100,101,73,72,71,70,69,68,67,66$	20,085
Region 7	Fill	$73,74,75,76,77,78,79,35,34,33,32,31,30,29,101$	$3,204.9$
Region			

8	Clay	$80,6,90,7,89,8,9,10,11,88,87,86,85,84,83,82,81$	$1,023.3$
Region 9	TQs 11°	$91,9,8,89,7,90,6,5,4,3,2,1$	90,409
Region 10	Clay	$92,23,104,103,24,102,25,26,27,28,29,101,100,99,98,97,96,95,94,93$	864.17
Region 11	Tmc (- $\left.12^{\circ}\right)$	$91,39,105,19,59,58,18,17,16,15,14,13,12,11,10,9$	$5.1344 \mathrm{e}+005$

Current Slip Surface

Slip Surface: 131,129
F of S: 1.51
Volume: $22,657.342 \mathrm{ft}^{3}$
Resisting Force: $549,522,64$
Resisting Force: $549,522.64 \mathrm{l}$
Activating Force: $363,229.78 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 10 slip surfaces
Exit: (653.46491, 1,797.6458) ft
Entry: $(126.86547,1,858.6103) \mathrm{ft}$
Radius: 205.08914 ft
Center: $(395.4586,1,873.8515) \mathrm{ft}$

Slip Slices						
	X (ft)	Y (ft)	$\begin{aligned} & \text { PWP } \\ & \text { (psf) } \end{aligned}$	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	127.80813	1,857.2641	0	-18.087581	-15.177283	225
Slice 2	137.67572	1,853.9	0	726.65461	141.24735	150.075
Slice 3	155.52556	1,849.8644	0	1,525.9783	296.62013	150.075
Slice 4	173.3754	1,845.8289	0	2,325.302	451.99292	150.075
Slice 5	191.22524	1,841.7933	0	3,124.6257	607.36571	150.075
Slice 6	209.07508	1,837.7577	0	3,923.9494	762.73849	150.075
Slice 7	228	1,833.4791	0	4,811.5487	935.27033	150.075
Slice 8	241	1,830.54	0	5,445.8675	1,058.5694	150.075
Slice 9	252	1,828.0531	0	5,599.0915	1,088.3531	150.075
Slice	268	1,824.4357	0	5,612.7769	1,091.0133	150.075
Slice 11	284	1,820.8184	0	5,651.1324	1,098.4689	150.075
$\begin{aligned} & \hline \text { Slice } \\ & 12 \end{aligned}$	292.51615	1,818.893	0	5,671.8887	1,102.5035	150.075
Slice 13	297.51615	1,817.7626	0	5,567.6858	1,082.2485	150.075
Slice 14	306.5	1,815.7315	0	5,362.1069	1,042.288	150.075
$\begin{aligned} & \hline \text { Slice } \\ & 15 \\ & \hline \end{aligned}$	317.5	1,813.2446	0	5,088.005	989.00799	150.075
$\begin{aligned} & \hline \text { Slice } \\ & 16 \\ & \hline \end{aligned}$	331.25	1,810.1359	0	4,962.8026	964.67111	150.075
$\begin{aligned} & \hline \text { Slice } \\ & 17 \\ & \hline \end{aligned}$	345.75	1,806.8577	0	5,036.3364	978.96462	150.075
$\begin{aligned} & \text { Slice } \\ & 18 \end{aligned}$	360	1,803.636	0	5,108.6024	993.01172	150.075
Slice						

19	374	$1,800.4708$	0	$5,179.6008$	$1,006.8124$	150.075
Slice 20	391.5	$1,796.5143$	0	$5,186.5087$	$1,008.1552$	150.075
Slice 21	408.82823	$1,792.5967$	0	$5,285.4748$	$1,027.3922$	150.075
Slice 22	422.4847	$1,789.5092$	0	$5,540.5896$	$1,076.9815$	150.075
Slice 23	434.15647	$1,786.8704$	0	$5,796.3894$	918.05788	150
Slice 24	448.5	$1,783.6275$	0	$6,088.1742$	964.27207	150
Slice 25	467.5	$1,779.3319$	0	$6,442.4099$	$1,020.3775$	150
Slice 26	485.5	$1,775.2624$	0	$6,359.3225$	$1,007.2177$	150
Slice 27	498	$1,772.4364$	0	$6,000.3987$	950.3698	150
Slice 28	509.25	$1,769.8929$	0	$5,825.8628$	922.72601	150
Slice 29	523.75	$1,766.6147$	0	$5,706.502$	903.82112	150
Slice 30	538.05	$1,763.3817$	0	$5,607.8907$	888.20263	150
Slice 31	552.17418	$1,760.2039$	0	$5,529.8284$	875.83878	150
Slice 32	568.12418	$1,762.2965$	0	$5,575.1629$	$2,029.1933$	0
Slice 33	589	$1,770.9436$	0	$3,781.3804$	$1,376.3099$	0
Slice 34	609.25	$1,779.3314$	0	$2,301.0854$	837.52658	0
Slice 35	626.03919	$1,786.2857$	0	$1,539.5842$	560.36284	0
Slice 36	644.02165	$1,793.7343$	0	698.70594	453.74494	200

2-Translational

2 - Translational

eport generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International Ltd.

File Information

File Version: 8.15
Title: Static Slope
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 153
Date: 3/15/2016
Time: 12:23:33 PM
Tool Version: 8.15.5.11777
File Name: Section 29-29 tran Seismic Left SSA for Skyline Ranch.gsz
Directory: P:IFINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section $29-29$ results\
Last Solved Date: 3/15/2016
Last Solved Time: 12:26:16 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Spencer
Settings
ip Surface
Direction of movement: Left to Right
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)
S Distribution
F of S C
divanced
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft
Search Method: Root Finder

Tolerable difference between starting and converged F of $\mathrm{S}: 3$ Maximum iterations to calculate converged lambda: 20
Max Absolute Lambda: 2

Materials

TQs 11°
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 11° (Along Bedding $-10^{\circ}-\left(-25^{\circ}\right)$
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Phi-B: 0°
Qls
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 0 psf
Phi': 20
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pc
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Clay
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 150 psf
Phi: 9°
Phi-B: 0
$\operatorname{Tmc}\left(-12^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pc
Cohesion': 200 psf
Phi': 40
Phi-Anisotropic Strength Fn.: 12° (Along Bedding $-10^{\circ}-\left(-22^{\circ}\right)$ C-Anisotropic Strength Fn.: 150 pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Phi-B: 0

Tmc (12°)

Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 12° (Along Bedding $10^{\circ}-25^{\circ}$)
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Phi-B: 0°

2-Translational

Slip Surface Limits
Left Coordinate: $(-49,1,301) \mathrm{ft}$
Right Coordinate: $(2,050,1,863) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: $(-29,1,830)$ ft Lower Left: ($-34,1,792$) ft Lower Right: $(35,1,803)$ ft
X Increments: 8
Y Increments: 8
Starting Angle: 1155°
Ending Angle: 135°
Angle Increments: 2
Right Grid
Upper Left: $(298,1,834) \mathrm{ft}$ Lower Left: $(284,1,817) \mathrm{ft}$ Lower Right: $(738,1,714) \mathrm{ft}$ I Increments: 10
Starting Angle: 0°
Ending Angle: 45°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0.15
Horz Seismic Coef.: 0.15
Vert Seismic Coef: 0

Anisotropic Strength Functions

12° (Along Bedding $10^{\circ}-25^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: ($-90,1$)
Data Point: $(9.9,1)$
Data Point: $(10,0.3)$
Data Point: (25.1 1)
50 pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: (-90, 1)

Data Point: $(-25.1,1)$
Data Point: $(-25,0.667)$
Data Point: $(-10,0.667)$
Data Point: (-9.9, 1)
11° (Along Bedding $-10^{\circ}-\left(-25^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(-25.1,1)$
Data Point: $(-25,0.275)$
Data Point: $(-10,0.275)$
Data Point: (-9.9, 1)
12° (Along Bedding $-10^{\circ}-\left(-25^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept:1
Data Points: Inclination (${ }^{\circ}$, Modifier Factor
Data Point: (-90, 1)
Data Point: $(-25,0.3)$
Data Point: $(-25,0.3)$
Data Point: $(-10,0.3)$
Data Point: (-9.9, 1)

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-47	1,822
Point 2	-7	1,838
Point 3	66	1,849
Point 4	218	1,873
Point 5	238	1,857
Point 6	292	1,830
Point 7	439	1,785
Point 8	634	1,739
Point 9	727	1,729
Point 10	793	1,729
Point 11	831	1,733
Point 12	872	1,737
Point 13	900	1,755
Point 14	929	1,767
Point 15	964	1,776
Point 16	1,022	1,779
Point 17	1,050	1,797
Point 18	1,069	1,809
Point 19	1,173	1,810
Point 20	1,224	1,777

2-Translational

Point 21	1,277	1,738
Point 22	1,312	1,753
Point 23	1,340	1,773
Point 24	1,429	1,777
Point 25	1,546	1,783
Point 26	1,643	1,792
Point 27	1,723	1,801
Point 28	1,769	1,808
Point 29	1,794	1,815
Point 30	1,830	1,823
Point 31	1,851	1,830
Point 32	1,862	1,841
Point 33	1,886	1,843
Point 34	1,913	1,853
Point 35	1,955	1,852
Point 36	1,993	1,862
Point 37	2,050	1,863
Point 38	2,049	1,295
Point 39	-49	1,301
Point 40	244	1,878
Point 41	276	1,871
Point 42	302	1,866
Point 43	324	1,861
Point 44	381	1,852
Point 45	402	1,847
Point 46	458	1,846
Point 47	477	1,845
Point 48	502	1,832
Point 49	531	1,823
Point 50	577	1,810
Point 51	601	1,800
Point 52	634	1,790
Point 53	696	1,771
Point 54	734	1,763
Point 55	805	1,769
Point 56	757	1,793
Point 57	890	1,789
Point 58	1,105	1,828
Point 59	1,137	1,828
Point 60	1,293	1,811
Point 61	1,397	1,816
Point 62	1,492	1,824
Point 63	1,449	1,812
Point 64	1,423	1,810
Point 65	1,372	1,791
Point 66	1,537	1,831
Point 67	1,593	1,846
Point 68	1,637	1,860
Point 69	1,671	1,876
Point 70	1,692	1,876

	1,720	1,864
Point 72	1,749	1,849
Point 73	1,769	1,843
Point 74	1,788	1,843
Point 75	1,809	1,855
Point 76	1,831	1,855
Point 77	1,839	1,857
Point 78	1,904	1,856
Point 79	1,971	$1,856.2105$
Point 80	293.0323	1,831
Point 81	311	1,826
Point 82	353	1,813
Point 83	439	1,787
Point 84	494	1,774
Point 85	634	1,741
Point 86	727	1,731
Point 87	793	1,731
Point 88	830.2778	1,734
Point 89	494.1087	1,772
Point 90	353	$1,811.3265$
Point 91	-47.6603	1,650
Point 92	$1,343.5556$	1,775
Point 93	1,368	1,776
Point 94	1,409	1,778
Point 95	1,429	1,779
Point 96	1,474	1,781
Point 97	1,546	1,785
Point 98	1,643	1,794
Point 99	1,723	1,803
Point 100	1,769	1,810
Point 101	1,793	$1,816.12$
Point 102	1,474	$1,779.3077$
Point 103	1,408	$1,776.0562$
Point 104	1,368	$1,774.2584$
Point 105	1,175	$1,297.4995$

Regions
Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Tmc $\left(12^{\circ}\right)$	$38,37,36,79,35,34,33,32,31,30,29,28,27,26,25,102,24,103,104,23,22,21,20,19,105$	$4.4177 \mathrm{e}+005$
Region 2	Fill	$4,40,41,42,43,80,6,5$	2,420
Region 3	Qls	$43,80,81,82,83,84,85,86,87,88,55,54,53,52,51,50,49,48,47,46,45,44$	24,238
Region 4	Fill	$51,56,57,16,15,14,13,12,11,88,55,54,53,52$	10,071
Region 5	Fill	$19,60,61,62,63,64,65,92,23,22,21,20$	9,582
Region 6	Qls	$62,63,64,65,92,93,94,95,96,97,98,99,100,101,73,72,71,70,69,68,67,66$	20,085

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/15/2016

Region 7	Fill	73,74,75,76,77,78,79,35,34,33,32,31,30,29,101	3,204.9
$\begin{aligned} & \hline \text { Region } \\ & 8 \\ & \hline \end{aligned}$	Clay	80,6,90,7,89,8,9,10,11,88,87,86,85,84,83,82,81	1,023.3
$\begin{aligned} & \hline \text { Region } \\ & 9 \end{aligned}$	TQs 11°	91,9,8,89,7,90,6,5,4,3,2,1	90,409
$\begin{aligned} & \text { Region } \\ & 10 \end{aligned}$	Clay	92,23,104,103,24,102,25,26,27,28,29,101,100,99,98,97,96,95,94,93	864.17
$\begin{aligned} & \text { Region } \\ & 11 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Tmc (- } \\ & \left.12^{\circ}\right) \\ & \hline \end{aligned}$	91,39,105,19,59,58,18,17,16,15,14,13,12,11,10,9	$5.1344 \mathrm{e}+005$

Current Slip Surface

Slip Surface: 87,149
Fof S: 1.27
Volume: $45,171.468 \mathrm{ft}^{3}$
Resisting Moment: $1.9515569 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
Activating Moment: $1.5377598 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
Resisting Force: $1,377,247.4 \mathrm{lbs}$
Activating Force: $1,091,642.3 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 88,209 slip surfaces
F of S Rank (Query): 1 of 10 slip surfaces
Exit: $(851.58859,1,790.1552) \mathrm{ft}$
Entry: $(38.221416,1$, ,
Radius: 303.08677 ft
Center: (447.65985, 1,858.4789) ft

Slip Slices						
	X (ft)	Y (ft)	$\begin{aligned} & \text { PWP } \\ & \text { (psf) } \end{aligned}$	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	39.110708	1,842.9071	0	-36.768767	-30.852659	225
Slice 2	53	1,838.6753	0	946.45563	183.97234	150.075
Slice 3	78.666667	1,834.0855	0	1,912.2245	371.69879	150.075
Slice 4	104	1,829.5553	0	2,875.902	559.01873	150.075
Slice 5	129.33333	1,825.0251	0	3,839.5796	746.33867	150.075
Slice 6	154.66667	1,820.4949	0	4,803.2571	933.65861	150.075
Slice 7	180	1,815.9648	0	5,766.9347	1,120.9785	150.075
Slice 8	205.33333	1,811.4346	0	6,730.6122	1,308.2985	150.075
Slice 9	228	1,807.3812	0	7,631.7272	1,483.4575	150.075
Slice 10	241	1,805.0565	0	8,176.7863	1,589.4063	150.075
$\begin{aligned} & \hline \text { Slice } \\ & 11 \\ & \hline \end{aligned}$	260	1,801.6589	0	8,230.399	1,599.8275	150.075
$\begin{aligned} & \hline \text { Slice } \\ & 12 \\ & \hline \end{aligned}$	284	1,797.3671	0	8,146.0417	1,583.4301	150.075
$\begin{aligned} & \hline \text { Slice } \\ & 13 \\ & \hline \end{aligned}$	292.51615	1,795.8443	0	8,120.679	1,578.5001	150.075
$\begin{aligned} & \hline \text { Slice } \\ & 14 \\ & \hline \end{aligned}$	297.51615	1,794.9501	0	7,993.0409	1,553.6898	150.075
$\begin{aligned} & \hline \text { Slice } \\ & 15 \\ & \hline \end{aligned}$	306.5	1,793.3436	0	7,745.9285	1,505.656	150.075
$\begin{aligned} & \hline \text { Slice } \\ & 16 \\ & \hline \end{aligned}$	317.5	1,791.3766	0	7,421.6728	1,442.6271	150.075

Slice 17	338.5	$1,787.6213$	0	$7,223.8813$	$1,404.1803$	150.075
Slice 18	367	$1,782.5248$	0	$7,211.723$	$1,401.8169$	150.075
Slice 19	391.5	$1,778.1437$	0	$7,121.9923$	$1,384.3751$	150.075
Slice 20	420.5	$1,772.9578$	0	$7,274.2399$	$1,413.969$	150.075
Slice 21	448.5	$1,767.9507$	0	$7,643.9994$	$1,485.843$	150.075
Slice 22	467.5	$1,764.5531$	0	$7,880.4055$	$1,531.7957$	150.075
Slice 23	485.5	$1,761.3343$	0	$7,700.9061$	$1,496.9045$	150.075
Slice 24	498	$1,759.099$	0	$7,285.7355$	$1,416.2035$	150.075
Slice 25	516.5	$1,755.7908$	0	$6,958.0789$	$1,352.5135$	150.075
Slice 26	542.5	$1,751.1414$	0	$6,638.2361$	$1,290.3424$	150.075
Slice 27	565.5	$1,747.0284$	0	$6,388.7918$	$1,241.8553$	150.075
Slice 28	589	$1,742.8261$	0	$5,982.4759$	$1,162.8755$	150.075
Slice 29	617.5	$1,737.7296$	0	$5,971.4305$	$1,160.7285$	150.075
Slice 30	647.58886	$1,732.349$	0	$6,498.5141$	$1,263.1832$	150.075
Slice 31	674.76659	$1,727.489$	0	$7,011.5846$	$1,362.914$	150.075
Slice 32	690.47773	$1,724.6795$	0	$7,309.2311$	$1,553.625$	133.4
Slice 33	694.3	$1,725.0042$	0	$14,486.502$	$12,155.618$	200
Slice 34	702.34895	$1,728.3381$	0	$13,724.759$	$11,516.44$	225
Slice 35	710.61456	$1,731.7619$	0	$7,982.9602$	$1,264.3767$	150
Slice 36	723.26561	$1,737.0021$	0	$8,237.4249$	$2,998.1775$	0
Slice 37	745.5	$1,746.2119$	0	$6,917.9506$	$2,517.9281$	0
Slice 38	767.59147	$1,755.3625$	0	$5,549.5905$	$2,019.8858$	0
Slice 39	788.77441	$1,764.1367$	0	$4,262.9598$	$1,551.5905$	0
Slice 40	812.42156	$1,773.9317$	0	$3,470.8949$	$2,254.0255$	200
Slice 41	838.53291	$1,784.7474$	0	$1,261.0242$	818.91869	200
	0					

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/15/2016

1 - Circular Mode of Failure

Report generated using GeoStudio 2012. Copyright © 1991-2016 GEO-SLOPE International Ltd

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 150
Date: 3/15/2016
Time: 1:51:23 PM
Tool Version: 8.15.5.11777
File Name: Section 29-29 tran Static right SSA for Skyline Ranch.gsz
Directory: P:\FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 29-29 results\}
Last Solved Date: 3/15/2016
Last Solved Time: 1:52:05 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: $5{ }^{\circ}$
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs 11°
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 11° (Along Bedding $-10^{\circ}-\left(-25^{\circ}\right)$
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Phi-B: 0°

Qls
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 0 psf
Phi': 20°
Phi-B: 0°

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Clay
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 150 psf
Phi': 9°
Phi-B: 0°

Tmc (-12 $\left.{ }^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 12° (Along Bedding $-10^{\circ}-\left(-25^{\circ}\right)$
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Phi-B: 0°
$\operatorname{Tmc}\left(12^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 12° (Along Bedding $10^{\circ}-25^{\circ}$)
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Phi-B: 0°

Slip Surface Entry and Exit

Left Projection: Range
Left-Zone Left Coordinate: $(1,155,1,819) \mathrm{ft}$

Left-Zone Right Coordinate: (1,447, 1,820.2105) ft
Left-Zone Increment: 50
Right Projection: Range
Right-Zone Left Coordinate: $(1,705,1,870.4286) \mathrm{ft}$
Right-Zone Right Coordinate: $(2,006,1,862.2281) \mathrm{ft}$
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: $(-49,1,301) \mathrm{ft}$
Right Coordinate: $(2,050,1,863) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

12° (Along Bedding $\mathbf{1 0}^{\circ}-25^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(9.9,1)$
Data Point: $(10,0.3)$
Data Point: $(25,0.3)$
Data Point: $(25.1,1)$
150 pcf (Along Bedding $\mathbf{1 0}^{\circ}-2^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-25.1,1)$
Data Point: $(-25,0.667)$
Data Point: $(-10,0.667)$
Data Point: $(-9.9,1)$
11° (Along Bedding -10$-\left(-25^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: (-25.1, 1)

Data Point: $(-25,0.275)$
Data Point: $(-10,0.275)$
Data Point: (-9.9, 1)

12° (Along Bedding $-10^{\circ}-\left(-25^{\circ}\right)$

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0 \%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-25.1,1)$
Data Point: $(-25,0.3)$
Data Point: $(-10,0.3)$
Data Point: $(-9.9,1)$

Points

	X (ft)	Y (ft)
Point 1	-47	1,822
Point 2	-7	1,838
Point 3	66	1,849
Point 4	218	1,873
Point 5	238	1,857
Point 6	292	1,830
Point 7	439	1,785
Point 8	634	1,739
Point 9	727	1,729
Point 10	793	1,729
Point 11	831	1,733
Point 12	872	1,737
Point 13	900	1,755
Point 14	929	1,767
Point 15	964	1,776
Point 16	1,022	1,779
Point 17	1,050	1,797
Point 18	1,069	1,809
Point 19	1,173	1,810
Point 20	1,224	1,777
Point 21	1,277	1,738
Point 22	1,312	1,753
Point 23	1,340	1,773
Point 24	1,429	1,777
Point 25	1,546	1,783
Point 26	1,643	1,792
Point 27	1,723	1,801
Point 28	1,769	1,808
Point 29	1,794	1,815
Point 30	1,830	1,823
Point 31	1,851	1,830
Point 32	1,862	1,841

Point 33	1,886	1,843
Point 34	1,913	1,853
Point 35	1,955	1,852
Point 36	1,993	1,862
Point 37	2,050	1,863
Point 38	2,049	1,295
Point 39	-49	1,301
Point 40	244	1,878
Point 41	276	1,871
Point 42	302	1,866
Point 43	324	1,861
Point 44	381	1,852
Point 45	402	1,847
Point 46	458	1,846
Point 47	477	1,845
Point 48	502	1,832
Point 49	531	1,823
Point 50	577	1,810
Point 51	601	1,800
Point 52	634	1,790
Point 53	696	1,771
Point 54	734	1,763
Point 55	805	1,769
Point 56	757	1,793
Point 57	890	1,789
Point 58	1,105	1,828
Point 59	1,137	1,828
Point 60	1,293	1,811
Point 61	1,397	1,816
Point 62	1,492	1,824
Point 63	1,449	1,812
Point 64	1,423	1,810
Point 65	1,372	1,791
Point 66	1,537	1,831
Point 67	1,593	1,846
Point 68	1,637	1,860
Point 69	1,671	1,876
Point 70	1,692	1,876
Point 71	1,720	1,864
Point 72	1,749	1,849
Point 73	1,769	1,843
Point 74	1,788	1,843
Point 75	1,809	1,855
Point 76	1,831	1,855
Point 77	1,839	1,857
Point 78	1,904	1,856
Point 79	1,971	1,856.2105
Point 80	293.0323	1,831
Point 81	311	1,826
Point 82	353	1,813

	439	1,787
Point 84	494	1,774
Point 85	634	1,741
Point 86	727	1,731
Point 87	793	1,731
Point 88	830.2778	1,734
Point 89	494.1087	1,772
Point 90	353	$1,811.3265$
Point 91	-47.6603	1,650
Point 92	$1,343.5556$	1,775
Point 93	1,368	1,776
Point 94	1,409	1,778
Point 95	1,429	1,779
Point 96	1,474	1,781
Point 97	1,546	1,785
Point 98	1,643	1,794
Point 99	1,723	1,803
Point 100	1,769	1,810
Point 101	1,793	$1,816.12$
Point 102	1,474	$1,779.3077$
Point 103	1,408	$1,776.0562$
Point 104	1,368	$1,774.2584$
Point 105	1,175	$1,297.4995$

Regions

	Material	Points	Area (ft ${ }^{2}$)
Region 1	$\begin{aligned} & \text { Tmc } \\ & \left(12^{\circ}\right) \end{aligned}$	$38,37,36,79,35,34,33,32,31,30,29,28,27,26,25,102,24,103,104,23,22,21,20,19,105$	$4.4177 \mathrm{e}+005$
Region 2	Fill	4,40,41,42,43,80,6,5	2,420
Region 3	Qls	$43,80,81,82,83,84,85,86,87,88,55,54,53,52,51,50,49,48,47,46,45,44$	24,238
Region 4	Fill	51,56,57,16,15,14,13,12,11,88,55,54,53,52	10,071
Region 5	Fill	19,60,61,62,63,64,65,92,23,22,21,20	9,582
Region 6	Qls	62,63,64,65,92,93,94,95,96,97,98,99,100,101,73,72,71,70,69,68,67,66	20,085
Region 7	Fill	$73,74,75,76,77,78,79,35,34,33,32,31,30,29,101$	3,204.9
Region 8	Clay	80,6,90,7,89,8,9,10,11,88,87,86,85,84,83,82,81	1,023.3
Region 9	TQs 11°	91,9,8,89,7,90,6,5,4,3,2,1	90,409
$\begin{aligned} & \text { Region } \\ & 10 \end{aligned}$	Clay	$92,23,104,103,24,102,25,26,27,28,29,101,100,99,98,97,96,95,94,93$	864.17
Region 11	$\begin{aligned} & \text { Tmc (- } \\ & \left.12^{\circ}\right) \end{aligned}$	91,39,105,19,59,58,18,17,16,15,14,13,12,11,10,9	$5.1344 \mathrm{e}+005$

Current Slip Surface

Slip Surface: 130,058
F of S: 1.59
Volume: 3,237.8706 ft ${ }^{3}$
Weight: $325,573.28 \mathrm{lbs}$
Resisting Moment: 57,192,827 lbs-ft
Activating Moment: 36,024,456 lbs-ft
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 10 slip surfaces
Exit: $(1,447,1,820.2105) \mathrm{ft}$
Entry: $(1,705,1,870.4286) \mathrm{ft}$
Radius: 462.56384 ft
Center: $(1,491.2654,2,280.6515) \mathrm{ft}$
Slip Slices

	X (ft)	Y (ft)	$\begin{aligned} & \text { PWP } \\ & \text { (psf) } \end{aligned}$	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	1,451.2033	1,819.8451	0	100.7886	65.452884	200
Slice 2	1,459.6098	1,819.1913	0	265.74556	172.57718	200
Slice 3	1,468.0164	1,818.6914	0	409.35663	265.8393	200
Slice 4	1,477.1648	1,818.3291	0	503.4809	183.25206	0
Slice 5	1,487.0549	1,818.1332	0	565.47841	205.81731	0
Slice 6	1,496.5	1,818.1392	0	654.39473	238.1802	0
Slice 7	1,505.5	1,818.3286	0	771.71651	280.88184	0
Slice 8	1,514.5	1,818.6935	0	870.65977	316.89424	0
Slice 9	1,523.5	1,819.2342	0	951.41788	346.28779	0
$\begin{aligned} & \text { Slice } \\ & 10 \end{aligned}$	1,532.5	1,819.9514	0	1,014.1604	369.12421	0
Slice 11	1,541	1,820.7867	0	1,101.3036	400.84175	0
Slice 12	1,549	1,821.7225	0	1,214.3309	441.98032	0
Slice 13	1,557	1,822.8	0	1,312.7235	477.79227	0
Slice 14	1,565	1,824.0202	0	1,396.5431	508.30012	0
Slice 15	1,573	1,825.3843	0	1,465.8378	533.52131	0
$\begin{aligned} & \text { Slice } \\ & 16 \end{aligned}$	1,581	1,826.8934	0	1,520.6417	553.46833	0
$\begin{aligned} & \text { Slice } \\ & 17 \end{aligned}$	1,589	1,828.5492	0	1,560.9758	568.14872	0
$\begin{aligned} & \text { Slice } \\ & 18 \end{aligned}$	1,597.4	1,830.4512	0	1,608.3996	585.40958	0
$\begin{aligned} & \text { Slice } \\ & 19 \end{aligned}$	1,606.2	1,832.6172	0	1,661.09	604.5873	0
$\begin{aligned} & \text { Slice } \\ & 20 \end{aligned}$	1,615	1,834.9675	0	1,695.8648	617.24431	0
$\begin{aligned} & \text { Slice } \\ & 21 \end{aligned}$	1,623.8	1,837.505	0	1,712.6724	623.36179	0
$\begin{aligned} & \text { Slice } \\ & 22 \end{aligned}$	1,632.6	1,840.233	0	1,711.4402	622.91327	0

Slice 23	$1,641.25$	$1,843.1018$	0	$1,752.7865$	637.96213	0
Slice 24	$1,649.75$	$1,846.1087$	0	$1,836.3781$	668.38695	0
Slice 25	$1,658.25$	$1,849.304$	0	$1,901.6944$	692.16017	0
Slice 26	$1,666.75$	$1,852.6919$	0	$1,948.5683$	638.03267	0
Slice 27	$1,676.25$	$1,856.7256$	0	$1,752.9803$	0	
Slice 28	$1,686.75$	$1,861.4647$	0	$1,313.7877$	297.74251	0
Slice 29	$1,695.25$	$1,865.51$	0	818.04084	0	0
Slice 30	$1,701.75$	$1,868.7677$	0	273.49302	0	0

Section 29-29 pseudostatic right SSA for Skyline Ranch.gsz

1 - Circular Mode of Failure

File Information
File Version: 8.15
Title: Static Slope
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 1
Time: 2:04:00 PM
Tool Version: 8.15.5.11777
File Name: Section 29-29 pseudostatic right SSA for Skyline Ranch.gsz
Directory: P:IFINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 29-29 results\
Last Solved Date: 3/15/2016
Last Solved Time: 2:05:08 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular Mode of Failure
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 1
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Optimize Critical Slip Surface Location: No
Tension Crack
F of S Distribution
F of S Calcula
Advan S Calculation Option: Constant
nced
Number of Slices: 30
Minimum Slip Surface Depth: 0.1 ft

Materials
TQs 11°
Model: Anisotropic Fn.
Unit Weight: 120 pc
Cohesion': 225 ps
Phi-Anisotropic Strength Fn.: 11° (Along Bedding $-10^{\circ}-\left(-25^{\circ}\right)$
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Phi-B: 0°
Qls
Model: Mohr-Coulomb
Unit Weight: 100 pc
Cohesion': 0
Phi': 20°

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Clay
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 150 psf
Phi': 9°
Phi-B: 0°
$\operatorname{Tmc}\left(-12^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 12° (Along Bedding $-10^{\circ}-\left(-25^{\circ}\right)$
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Phi-B: 0°
Phi-B: 0°
Tmc (12°)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 ps
Phi': 40
Phi-Anisotropic Strength Fn.: 12° (Along Bedding $10^{\circ}-25^{\circ}$)
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Phi-B: 0°

Slip Surface Entry and Exit
Left Projection: Range
Left-Zone Left Coordinate: $(1,155,1,819) \mathrm{ft}$

Left-Zone Right Coordinate: $(1,534,1,830.5333)$ ft
Left-Zone Increment: 50
Right Projection: Range
Right-Zone Left Coordinate: $(1,776,1,843)$ ft
Right-Zone Right Coordinate: (2,006, 1,862.2281)
Right-Zone Increment: 50
Radius Increments: 50

Slip Surface Limits

Left Coordinate: $(-49,1,301) \mathrm{ft}$
Right Coordinate: $(2,050,1,863) \mathrm{ft}$

Seismic Coefficient

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

12° (Along Bedding $10^{\circ}-2^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1
Data Point: $(9.9,1)$
Data Point: $(10,0.3)$
Data Point: $(25,0.3)$
Data Point: (25.1, 1
150 pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$, Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-25.1,1)$
Data Point: $(-25,0.667)$
Data Point: (-9.9, 1)
11° (Along Bedding $-10^{\circ}-\left(-25^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point:

> Data Point: $(-25,0.275)$ Data Point: $(-10,0.275)$ Data Point: $(-9.9,1)$
12° (Along Bedding $-10^{\circ}-\left(-25^{\circ}\right)$
Model: Spline Data Point Functio
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-25.1,1)$
Data Point: $(-25,0.3)$
Data Point: $(-10,0.3)$
Data Point: (-9.9, 1)

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-47	1,822
Point 2	-7	1,838
Point 3	66	1,849
Point 4	218	1,873
Point 5	238	1,857
Point 6	292	1,830
Point 7	439	1,785
Point 8	634	1,739
Point 9	727	1,729
Point 10	793	1,729
Point 11	831	1,733
Point 12	872	1,737
Point 13	900	1,755
Point 14	929	1,767
Point 15	964	1,776
Point 16	1,022	1,779
Point 17	1,050	1,797
Point 18	1,069	1,809
Point 19	1,173	1,810
Point 20	1,224	1,777
Point 21	1,277	1,738
Point 22	1,312	1,753
Point 23	1,340	1,773
Point 24	1,429	1,777
Point 25	1,546	1,783
Point 26	1,643	1,792
Point 27	1,723	1,801
Point 28	1,769	1,808
Point 29	1,794	1,815
Point 30	1,830	1,823
Point 31	1,851	1,830
Point 32	1,862	1,841

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/15/2016

Point 33	1,886	1,843
Point 34	1,913	1,853
Point 35	1,955	1,852
Point 36	1,993	1,862
Point 37	2,050	1,863
Point 38	2,049	1,295
Point 39	-49	1,301
Point 40	244	1,878
Point 41	276	1,871
Point 42	302	1,866
Point 43	324	1,861
Point 44	381	1,852
Point 45	402	1,847
Point 46	458	1,846
Point 47	477	1,845
Point 48	502	1,832
Point 49	531	1,823
Point 50	577	1,810
Point 51	601	1,800
Point 52	634	1,790
Point 53	696	1,771
Point 54	734	1,763
Point 55	805	1,769
Point 56	757	1,793
Point 57	890	1,789
Point 58	1,105	1,828
Point 59	1,137	1,828
Point 60	1,293	1,811
Point 61	1,397	1,816
Point 62	1,492	1,824
Point 63	1,449	1,812
Point 64	1,423	1,810
Point 65	1,372	1,791
Point 66	1,537	1,831
Point 67	1,593	1,846
Point 68	1,637	1,860
Point 69	1,671	1,876
Point 70	1,692	1,876
Point 71	1,720	1,864
Point 72	1,749	1,849
Point 73	1,769	1,843
Point 74	1,788	1,843
Point 75	1,809	1,855
Point 76	1,831	1,855
Point 77	1,839	1,857
Point 78	1,904	1,856
Point 79	1,971	$1,856.2105$
Point 80	293.0323	1,831
Point 81	311	1,826
Point 82	353	1,813

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/15/2016

	439	1,787
Point 84	494	1,774
Point 85	634	1,741
Point 86	727	1,731
Point 87	793	1,731
Point 88	830.2778	1,734
Point 89	494.1087	1,772
Point 90	353	1,811.3265
Point 91	-47.6603	1,650
Point 92	1,343.5556	1,775
Point 93	1,368	1,776
Point 94	1,409	1,778
Point 95	1,429	1,779
Point 96	1,474	1,781
Point 97	1,546	1,785
Point 98	1,643	1,794
Point 99	1,723	1,803
Point 100	1,769	1,810
Point 101	1,793	1,816.12
Point 102	1,474	1,779.3077
Point 103	1,408	1,776.0562
Point 104	1,368	1,774.2584
Point 105	1,175	1,297.4995

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Tmc $\left(12^{\circ}\right)$	$38,37,36,79,35,34,33,32,31,30,29,28,27,26,25,102,24,103,104,23,22,21,20,19,105$	$4.4177 \mathrm{e}+005$
Region 2	Fill	$4,40,41,42,43,80,6,5$	2,420
Region 3	Qls	$43,80,81,82,83,84,85,86,87,88,55,54,53,52,51,50,49,48,47,46,45,44$	24,238
Region 4	Fill	$51,56,57,16,15,14,13,12,11,88,55,54,53,52$	10,071
Region 5	Fill	$19,60,61,62,63,64,65,92,23,22,21,20$	9,582
Region 6	Qls	$62,63,64,65,92,93,94,95,96,97,98,99,100,101,73,72,71,70,69,68,67,66$	20,085
Region 7	Fill	$73,74,75,76,77,78,79,35,34,33,32,31,30,29,101$	$3,204.9$
Region 8	Clay	$80,6,90,7,89,8,9,10,11,88,87,86,85,84,83,82,81$	$1,023.3$
Region 9	TQs 11 ${ }^{\circ}$	$91,9,8,89,7,90,6,5,4,3,2,1$	90,409
Region 10	Clay	$92,23,104,103,24,102,25,26,27,28,29,101,100,99,98,97,96,95,94,93$	864.17
Region 11	Tmc $(-$ $\left.122^{\circ}\right)$	$91,39,105,19,59,58,18,17,16,15,14,13,12,11,10,9$	$5.1344 \mathrm{e}+005$

Current Slip Surface

Slip Surface: 79,822
Fof $\mathrm{S}: 1.25$
Weight: $2,150,374,1 \mathrm{ft}^{3}$
Resisting Moment: $5.8700498 \mathrm{e}+008 \mathrm{lbs}-\mathrm{ft}$
Activating Moment: 4.6976221e+008 lbs-ft
F of S Rank (Analysis): 1 of 132,651 slip surfaces
F of S Rank (Query): 1 of 10 slip surfaces
Exit: $(1,382.0225,1,815.2799) \mathrm{ft}$
Entry: $(1,936.4936,1,856.1021) \mathrm{ft}$
Radius: 967.25342 ft
Center: (1,591.2339, 2,759.6368) ft
Slip Slices

p Slices
X (ft) $\mathrm{Y}(\mathrm{ft})$ PWP (psf) Base Normal Stress (psf) Frictional Strength (psf) Cohesive Strength (psf) Slice 1 $1,389.5113$ $1,813.683$ 0 302.46824 196.42517 200 Slice 2 $1,407.3968$ $1,810.0732$ 0 942.00415 611.74465 200 Slice 3 $1,420.3968$ $1,807.5932$ 0 $1,283.5706$ 467.18149 0 Slice 4 1,436 $1,805.0121$ 0 $1,672.0621$ 608.58082 0 Slice 5 $1,459.75$ $1,801.4231$ 0 $2,199.6843$ 800.61963 0 Slice 6 $1,481.25$ $1,798.7176$ 0 $2,565.0977$ 933.61921 0 Slice 7 $1,503.25$ $1,796.4595$ 0 $3,009.0854$ $1,095.2175$ 0 Slice 8 $1,525.75$ $1,794.6684$ 0 $3,527.8679$ $1,284.0389$ 0 Slice 9 $1,546.3333$ $1,793.4712$ 0 $4,057.7864$ $1,476.9135$ 0 Slice 10 1,565 $1,792.7842$ 0 $4,607.9819$ $1,677.1683$ 0 Slice 11 $1,583.6667$ $1,792.458$ 0 $5,115.8578$ $1,862.0199$ 0 Slice 12 1,604 $1,792.5302$ 0 $5,675.1717$ $2,065.5936$ 0 Slice 13 1,626 $1,793.071$ 0 $6,277.1567$ $2,284.6982$ 0 Slice 14 $1,637.2588$ $1,793.479$ 0 $6,573.1048$ $2,392.4145$ 0 Slice 15 $1,640.2588$ $1,793.6304$ 0 $6,740.8743$ $1,067.6496$ 150 Slice 16 1,650 $1,794.1956$ 0 $7,129.9054$ $1,129.2661$ 150 Slice 17 1,664 $1,795.1499$ 0 $7,673.1976$ $1,215.3151$ 150 Slice 18 $1,681.5$ $1,796.6622$ 0 $7,829.5383$ $1,240.077$ 150 Slice 19 1,699 $1,798.4313$ 0 $7,339.1616$ $1,162.409$ 150 Slice 20 1,713 $1,800.1044$ 0 $6,568.7137$ $1,040.382$ 150 Slice 21 $1,721.5$ $1,801.1966$ 0 $6,081.7127$ 963.24867 150 Slice 22 1,736 $1,803.3684$ 0 $5,119.2065$ 810.80265 150

Slice 23	1,759	$1,807.0977$	0	$3,784.6327$	599.42693	150
Slice 24	$1,773.8979$	$1,809.8009$	0	$3,325.5117$	526.7093	150
Slice 25	$1,783.3979$	$1,811.6757$	0	$3,315.3385$	704.69696	200
Slice 26	$1,790.5$	$1,813.135$	0	$3,498.3113$	743.58902	200
Slice 27	$1,793.5$	$1,813.76882$	0	$3,702.1245$	786.91086	200
Slice 28	$1,801.5$	$1,815.5455$	0	$4,031.921$	857.01126	200
Slice 29	1,820	$1,819.8937$	0	$4,007.9025$	851.90597	200
Slice 30	1,835	$1,823.6132$	0	$3,681.7091$	782.57142	200
Slice 31	1,845	$1,826.2862$	0	$3,470.6193$	737.70291	200
Slice 32	$1,856.5$	$1,829.486$	0	$3,074.6337$	653.53356	200
Slice 33	1,874	$1,834.7232$	0	$2,433.1881$	517.19011	200
Slice 34	1,895	$1,841.3691$	0	$1,627.8242$	346.00471	200
Slice 35	$1,908.5$	$1,845.9089$	0	$1,092.5696$	232.23284	200
Slice 36	$1,920.1717$	$1,850.0649$	0	622.18265	132.249	200
Slice 37	$1,931.9185$	$1,854.3803$	0	121.01553	78.588401	200

Section 29-29 tran Static right SSA for Skyline Ranch.gsz

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International Ltd.

File Information

File Version: 8.15
Title: Static Slope
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 1
Time: 1:51:23 PM
Tool Version: 8.15.5.11777
File Name: Section 29-29 tran Static right SSA for Skyline Ranch.gsz
Directory: P:IFINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 29-29 results\}
Last Solved Date: 3/15/2016
Last Solved Time: 1:52:10 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Jan
Settings
Settings
PWP Conditions Source: ($n o n e$)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: №
Tension Crack
Tension Crack Option: (none)
S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
Minimum Slip Surface Depth: 0.1 ft

Materials
TQs 11°
Model: Anisotropic Fn.
Unit Weight: 120 pc
Cohesion': 225 ps
Phi-Anisotropic Strength Fn.: 11° (Along Bedding $-10^{\circ}-\left(-25^{\circ}\right)$
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Phi-B: 0
Qls
Model: Mohr-Coulomb
Unit Weight: 100 pc
Cohesion': 0
Phi': 20°
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Clay
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 150 psf
Phi': 9°
mc (-12°)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 12° (Along Bedding - $10^{\circ}-\left(-25^{\circ}\right)$
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Phi-B: 0°
Phi-B: 0°
Tmc ($\mathbf{1 2}^{\circ}$)
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 ps
Phi': 40
Phi-Anisotropic Strength Fn.: 12° (Along Bedding $10^{\circ}-25^{\circ}$)
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Phi-B: 0

Slip Surface Limits
Left Coordinate: $(-49,1,301)$ ft
Right Coordinate: $(2,050,1,863) \mathrm{ft}$

2-Translational

Slip Surface Block
Left Grid
Upper Left: $(1,339,1,783) \mathrm{ft}$
Lower Left: $(1,340,1,763) \mathrm{ft}$
Lower Right: $(1,703,1,786)$ ft
X Increments: 8
Y Increments: 8
Starting Angle: 135°
Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: $(1,735,1,810) \mathrm{ft}$ Lower Left: ($1,737,1,797$) ft Lower Right: $(1,850,1,824)$ ft
X Increments: 8
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Horz Seismic Coef.: 0

Anisotropic Strength Functions

12° (Along Bedding $10^{\circ}-25^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(9.9,1)$
Data Point: $(10,0.3)$
Data Point: (25.1.1)
pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: ($-90,1$)
Data Point: $(-25.1,1)$
Data Point: $(-25,0.667)$
Data Point:(-9,9, 1)
11° (Along Bedding $-10^{\circ}-\left(-25^{\circ}\right)$
Model: Spline Data Point Function
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-25.1,1)$
Data Point: $(-25,0.275)$
Data Point: (-10, 0.2
Data Point: (-9.9, 1)
12° (Along Bedding $-10^{\circ}-\left(-25^{\circ}\right)$
Model: Spline Data Point Function
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(-25.1,1)$
Data Point: $(-25,0.3)$
Data Point: $(-10,0.3)$
Data Point: (-9.9, 1)

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-47	1,822
Point 2	-7	1,838
Point 3	66	1,849
Point 4	218	1,873
Point 5	238	1,857
Point 6	292	1,830
Point 7	439	1,785
Point 8	634	1,739
Point 9	727	1,729
Point 10	793	1,729
Point 11	831	1,733
Point 12	872	1,737
Point 13	900	1,755
Point 14	929	1,767
Point 15	964	1,776
Point 16	1,022	1,779
Point 17	1,050	1,797
Point 18	1,069	1,809
Point 19	1,173	1,810
Point 20	1,224	1,777
Point 21	1,277	1,738
Point 22	1,312	1,753
Point 23	1,340	1,773

2-Translational

Point 24	1,429	1,777
Point 25	1,546	1,783
Point 26	1,643	1,792
Point 27	1,723	1,801
Point 28	1,769	1,808
Point 29	1,794	1,815
Point 30	1,830	1,823
Point 31	1,851	1,830
Point 32	1,862	1,841
Point 33	1,886	1,843
Point 34	1,913	1,853
Point 35	1,955	1,852
Point 36	1,993	1,862
Point 37	2,050	1,863
Point 38	2,049	1,295
Point 39	-49	1,301
Point 40	244	1,878
Point 41	276	1,871
Point 42	302	1,866
Point 43	324	1,861
Point 44	381	1,852
Point 45	402	1,847
Point 46	458	1,846
Point 47	477	1,845
Point 48	502	1,832
Point 49	531	1,823
Point 50	577	1,810
Point 51	601	1,800
Point 52	634	1,790
Point 53	696	1,771
Point 54	734	1,763
Point 55	805	1,769
Point 56	757	1,793
Point 57	890	1,789
Point 58	1,105	1,828
Point 59	1,137	1,828
Point 60	1,293	1,811
Point 61	1,397	1,816
Point 62	1,492	1,824
Point 63	1,449	1,812
Point 64	1,423	1,810
Point 65	1,372	1,791
Point 66	1,537	1,831
Point 67	1,593	1,846
Point 68	1,637	1,860
Point 69	1,671	1,876
Point 70	1,692	1,876
Point 71	1,720	1,864
Point 72	1,749	1,849
Point 73	1,769	1,843

file://P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/15/2016

	1,788	1,843
Point 75	1,809	1,855
Point 76	1,831	1,855
Point 77	1,839	1,857
Point 78	1,904	1,856
Point 79	1,971	$1,856.2105$
Point 80	293.0323	1,831
Point 81	311	1,826
Point 82	353	1,813
Point 83	439	1,787
Point 84	494	1,774
Point 85	634	1,741
Point 86	727	1,731
Point 87	793	1,731
Point 88	830.2778	1,734
Point 89	494.1087	1,772
Point 90	353	$1,811.3265$
Point 91	-47.6603	1,650
Point 92	$1,343.5556$	1,775
Point 93	1,368	1,776
Point 94	1,409	1,778
Point 95	1,429	1,779
Point 96	1,474	1,781
Point 97	1,546	1,785
Point 98	1,643	1,794
Point 99	1,723	1,803
Point 100	1,769	1,810
Point 101	1,793	$1,816.12$
Point 102	1,474	$1,779.3077$
Point 103	1,408	$1,776.0562$
Point 104	1,368	$1,774.2584$
Point 105	1,175	$1,297.4995$

Regions

	Material	Points	Area (ft ${ }^{2}$)
Region 1	$\begin{array}{\|l\|} \hline \text { Tmc } \\ \left(12^{\circ}\right) \\ \hline \end{array}$	38,37,36,79,35,34,33,32,31,30,29,28,27,26,25,102,24,103,104,23,22,21,20,19,105	4.4177e+005
Region 2	Fill	4,40,41,42,43,80,6,5	2,420
$\begin{aligned} & \text { Region } \\ & 3 \end{aligned}$	Qls	43,80,81,82,83,84,85,86,87,88,55,54,53,52,51,50,49,48,47,46,45,44	24,238
$\begin{aligned} & \text { Region } \\ & 4 \\ & \hline \end{aligned}$	Fill	51,56,57,16,15,14,13,12,11,88,55,54,53,52	10,071
$\begin{aligned} & \text { Region } \\ & 5 \end{aligned}$	Fill	19,60,61,62,63,64,65,92,23,22,21,20	9,582
Region 6	Qls	62,63,64,65,92,93,94,95,96,97,98,99,100,101,73,72,71,70,69,68,67,66	20,085
Region 7	Fill	73,74,75,76,77,78,79,35,34,33,32,31,30,29,101	3,204.9
Region			

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/15/2016

8	Clay	$80,6,90,7,89,8,9,10,11,88,87,86,85,84,83,82,81$	$1,023.3$
Region 9	TQs 11°	$91,9,8,89,7,90,6,5,4,3,2,1$	90,409
Region 10	Clay	$92,23,104,103,24,102,25,26,27,28,29,101,100,99,98,97,96,95,94,93$	864.17
Region 11	Tmc $(-$ $\left.12^{\circ}\right)$	$91,39,105,19,59,58,18,17,16,15,14,13,12,11,10,9$	$5.1344 \mathrm{e}+005$

Current Slip Surface

Slip Surface: 23,682
F of S: 2.83
Volume: $14,099.861 \mathrm{ft}^{3}$
Resisting Force: $309,180.06 \mathrm{Ib}$
Activating Force: $109,309.83 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 59,049 slip surfaces
F of S Rank (Query): 1 of 10 slip surfaces
Exit: $(1,475.4155,1,822.6034) \mathrm{ft}$
Entry: $(1,756.2086,1,846.8374)$ ft
Radius: 115.60361 ft
Center: $(1,614.2434,1,852.8959) \mathrm{ft}$

Slip Slices						
	X (ft)	Y (ft)	$\begin{aligned} & \text { PWP } \\ & \text { (psf) } \end{aligned}$	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	1,477.7462	1,821.638	0	186.56553	121.15707	200
Slice 2	1,486.0384	1,818.2033	0	583.91652	212.52823	0
Slice 3	1,496.5	1,813.8699	0	1,144.1647	416.4419	0
Slice 4	1,505.5	1,810.142	0	1,685.9154	613.62304	0
Slice 5	1,514.5	1,806.4141	0	2,227.6661	810.80417	0
Slice 6	1,523.5	1,802.6862	0	2,769.4168	1,007.9853	0
Slice 7	1,532.5	1,798.9583	0	3,311.1675	1,205.1664	0
Slice 8	1,541.2503	1,795.3338	0	3,888.3151	1,415.2309	0
Slice 9	1,549.7509	1,791.8127	0	4,500.8594	1,638.1788	0
$\begin{aligned} & \hline \text { Slice } \\ & 10 \end{aligned}$	1,558.2515	1,788.2916	0	5,113.4037	1,861.1267	0
$\begin{aligned} & \text { Slice } \\ & 11 \end{aligned}$	1,564.4742	1,785.7141	0	5,412.4329	857.24515	150
$\begin{aligned} & \hline \text { Slice } \\ & 12 \end{aligned}$	1,567.2647	1,784.973	0	5,261.5893	4,414.9976	200
$\begin{aligned} & \hline \text { Slice } \\ & 13 \end{aligned}$	1,572.2356	1,785.5052	0	5,453.7896	863.79542	150
Slice 14	1,580.5414	1,786.4179	0	5,584.1954	884.44967	150
$\begin{aligned} & \text { Slice } \\ & 15 \end{aligned}$	1,588.8471	1,787.3305	0	5,714.6012	905.10391	150
$\begin{aligned} & \hline \text { Slice } \\ & 16 \end{aligned}$	1,597.4	1,788.2704	0	5,870.8939	929.85825	150
$\begin{aligned} & \text { Slice } \\ & 17 \end{aligned}$	1,606.2	1,789.2373	0	6,053.0736	958.71267	150
$\begin{aligned} & \hline \text { Slice } \\ & 18 \end{aligned}$	1,615	1,790.2043	0	6,235.2533	987.5671	150
Slice						

19	$1,623.8$	$1,791.1712$	0	$6,417.433$	$1,016.4215$	150
Slice 20	$1,632.6$	$1,792.1382$	0	$6,599.6126$	$1,045.276$	150
Slice 21	1,640	$1,792.9513$	0	$6,798.2507$	$1,076.7371$	150
Slice 22	$1,647.6667$	$1,793.7938$	0	$7,073.0962$	$1,120.2684$	150
Slice 23	1,657	$1,794.8193$	0	$7,407.6907$	$1,173.2629$	150
Slice 24	$1,666.3333$	$1,795.8449$	0	$7,742.2852$	$1,226.2575$	150
Slice 25	$1,676.25$	$1,796.9345$	0	$7,852.2482$	$1,243.6739$	150
Slice 26	$1,686.75$	$1,798.0883$	0	$7,737.5797$	$1,225.5122$	150
Slice 27	$1,696.6667$	$1,799.178$	0	$7,430.5081$	$1,176.8769$	150
Slice 28	1,706	$1,800.2035$	0	$6,931.0337$	$1,097.7679$	150
Slice 29	$1,715.3333$	$1,801.2291$	0	$6,431.5592$	$1,018.6589$	150
Slice 30	$1,721.5$	$1,801.9067$	0	$6,088.3303$	964.29679	150
Slice 31	$1,729.5$	$1,802.7858$	0	$5,589.7084$	885.32283	150
Slice 32	$1,736.371$	$1,804.2956$	0	$4,471.162$	708.1625	150
Slice 33	$1,742.871$	$1,818.2349$	0	$2,657.9544$	967.4163	0
Slice 34	$1,752.6043$	$1,839.108$	0	690.09124	251.17267	0

Section 29-29 pseudostatic right SSA for Skyline Ranch.gsz

2-Translational

2 - Translational

eport generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International Ltd.

File Information

File Version: 8.15
Title: Static Slope
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 155
Date: 3/15/2016
Time: 2:04:00 PM
Tool Version: 8.15.5.11777
File Name: Section 29-29 pseudostatic right SSA for Skyline Ranch.gsz
Directory: P:IFINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 29-29 results\
Last Solved Date: 3/15/2016
Last Solved Time: 2:05:19 PM

Project Settings

Length(L) Units: Fee
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: pst
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Spencer
Settings
PWP
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)
S Distribution
F of S C
divanced
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft
Search Method: Root Finder

Tolerable difference between starting and converged F of $\mathrm{S}: 3$ Maximum iterations to calculate converged lambda: 20
Max Absolute Lambda: 2

Materials

TQs 11°
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 11° (Along Bedding $-10^{\circ}\left(-25^{\circ}\right)$
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Phi-B: 0°
Qls
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 0 psf
Phi': 20
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pc
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Clay
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 150 psf
Phi: 9°
Phi-B: 0
$\operatorname{Tmc}\left(-12^{\circ}\right)$
Model: Anisotropic Fn.
Unit Weight: 120 pc
Cohesion': 200 psf
Phi': 40
Phi-Anisotropic Strength Fn.: 12° (Along Bedding $-10^{\circ}-\left(-22^{\circ}\right)$ C-Anisotropic Strength Fn.: 150 pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Phi-B: 0

Tmc (12°)

Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 12° (Along Bedding $10^{\circ}-25^{\circ}$)
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Phi-B: 0°

2-Translational

Slip Surface Limits
Left Coordinate: $(-49,1,301) \mathrm{ft}$
Right Coordinate: $(2,050,1,863) \mathrm{ft}$

Slip Surface Block

Left Grid
Upper Left: $(1,339,1,783) \mathrm{ft}$
Lower Left: $(1,340,1,763) \mathrm{ft}$ Lower Right: ($1,703,1,786$) ft
X Increments: 8
X Increments:
Y
Increment
8
Starting Angle: 135°
Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: $(1,735,1,810) \mathrm{ft}$
Lower Left: $(1,737,1,797) \mathrm{ft}$ Lower Right: $(1,850,1,824)$ ft
X Increments: 8
Y Increments: $8{ }^{\text {Starting Angle: } 45^{\circ}}$
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vorrt Seismic Coef.: 0

Anisotropic Strength Functions

12° (Along Bedding $10^{\circ}-25^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: ($-90,1$)
Data Point: $(9.9,1)$
Data Point: $(10,0.3)$
Data Point: (25.1 1)
50 pcf (Along Bedding $10^{\circ}-25^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: (-90, 1)

Data Point: $(-25.1,1)$
Data Point: $(-25,0.667)$
Data Point: $(-10,0.667)$
Data Point: $(-9.9,1)$
11° (Along Bedding $-10^{\circ}-\left(-25^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(-25.1,1)$
Data Point: $(-25,0.275)$
Data Point: $(-10,0.275)$
Data Point: (-9.9, 1)
12° (Along Bedding $-10^{\circ}-\left(-25^{\circ}\right)$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept:1
Data Points: Inclination (${ }^{\circ}$, Modifier Factor
Data Point: (-90, 1)
Data Point: $(-25,0.3)$
Data Point: $(-25,0.3)$
Data Point: $(-10,0.3)$
Data Point: (-9.9, 1)

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-47	1,822
Point 2	-7	1,838
Point 3	66	1,849
Point 4	218	1,873
Point 5	238	1,857
Point 6	292	1,830
Point 7	439	1,785
Point 8	634	1,739
Point 9	727	1,729
Point 10	793	1,729
Point 11	831	1,733
Point 12	872	1,737
Point 13	900	1,755
Point 14	929	1,767
Point 15	964	1,776
Point 16	1,022	1,779
Point 17	1,050	1,797
Point 18	1,069	1,809
Point 19	1,173	1,810
Point 20	1,224	1,777

2-Translational

Point 21	1,277	1,738
Point 22	1,312	1,753
Point 23	1,340	1,773
Point 24	1,429	1,777
Point 25	1,546	1,783
Point 26	1,643	1,792
Point 27	1,723	1,801
Point 28	1,769	1,808
Point 29	1,794	1,815
Point 30	1,830	1,823
Point 31	1,851	1,830
Point 32	1,862	1,841
Point 33	1,886	1,843
Point 34	1,913	1,853
Point 35	1,955	1,852
Point 36	1,993	1,862
Point 37	2,050	1,863
Point 38	2,049	1,295
Point 39	-49	1,301
Point 40	244	1,878
Point 41	276	1,871
Point 42	302	1,866
Point 43	324	1,861
Point 44	381	1,852
Point 45	402	1,847
Point 46	458	1,846
Point 47	477	1,845
Point 48	502	1,832
Point 49	531	1,823
Point 50	577	1,810
Point 51	601	1,800
Point 52	634	1,790
Point 53	696	1,771
Point 54	734	1,763
Point 55	805	1,769
Point 56	757	1,793
Point 57	890	1,789
Point 58	1,105	1,828
Point 59	1,137	1,828
Point 60	1,293	1,811
Point 61	1,397	1,816
Point 62	1,492	1,824
Point 63	1,449	1,812
Point 64	1,423	1,810
Point 65	1,372	1,791
Point 66	1,537	1,831
Point 67	1,593	1,846
Point 68	1,637	1,860
Point 69	1,671	1,876
Point 70	1,692	1,876

	1,720	1,864
Point 72	1,749	1,849
Point 73	1,769	1,843
Point 74	1,788	1,843
Point 75	1,809	1,855
Point 76	1,831	1,855
Point 77	1,839	1,857
Point 78	1,904	1,856
Point 79	1,971	$1,856.2105$
Point 80	293.0323	1,831
Point 81	311	1,826
Point 82	353	1,813
Point 83	439	1,787
Point 84	494	1,774
Point 85	634	1,741
Point 86	727	1,731
Point 87	793	1,731
Point 88	830.2778	1,734
Point 89	494.1087	1,772
Point 90	353	$1,811.3265$
Point 91	-47.6603	1,650
Point 92	$1,343.5556$	1,775
Point 93	1,368	1,776
Point 94	1,409	1,778
Point 95	1,429	1,779
Point 96	1,474	1,781
Point 97	1,546	1,785
Point 98	1,643	1,794
Point 99	1,723	1,803
Point 100	1,769	1,810
Point 101	1,793	$1,816.12$
Point 102	1,474	$1,779.3077$
Point 103	1,408	$1,776.0562$
Point 104	1,368	$1,774.2584$
Point 105	1,175	$1,297.4995$

Regions

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Tmc $\left(12{ }^{\circ}\right)$	$38,37,36,79,35,34,33,32,31,30,29,28,27,26,25,102,24,103,104,23,22,21,20,19,105$	$4.4177 \mathrm{e}+005$
Region 2	Fill	$4,40,41,42,43,80,6,5$	2,420
Region 3	Qls	$43,80,81,82,83,84,85,86,87,88,55,54,53,52,51,50,49,48,47,46,45,44$	24,238
Region 4	Fill	$51,56,57,16,15,14,13,12,11,88,55,54,53,52$	10,071
Region 5	Fill	$19,60,61,62,63,64,65,92,23,22,21,20$	9,582
Region 6	Qls	$62,63,64,65,92,93,94,95,96,97,98,99,100,101,73,72,71,70,69,68,67,66$	20,085

$\begin{aligned} & \text { Region } \end{aligned}$	Fill	73,74,75,76,77,78,79,35,34,33,32,31,30,29,101	3,204.9
$\begin{aligned} & \text { Region } \\ & 8 \\ & \hline \end{aligned}$	Clay	80,6,90,7,89, $8,9,10,11,88,87,86,85,84,83,82,81$	1,023.3
Region 9	TQs 11°	91,9,8,89,7,90,6,5,4,3,2,1	90,409
$\begin{aligned} & \text { Region } \\ & 10 \end{aligned}$	Clay	92,23,104,103,24,102,25,26,27,28,29,101,100,99,98,97,96,95,94,93	864.17
$\begin{aligned} & \hline \text { Region } \\ & 11 \end{aligned}$	$\begin{aligned} & \text { Tmc (- } \\ & \left.12^{\circ}\right) \\ & \hline \end{aligned}$	91,39,105,19,59,58,18,17,16,15,14,13,12,11,10,9	5.1344e+005

Current Slip Surface

Slip Surface: 23,680
F of $\mathrm{S}: 1.26$
Volume: $14,544.184 \mathrm{ft}^{3}$
Weight: $1,455,027 \mathrm{lbs}$
Resisting Moment: $24,828,372 \mathrm{lbs}$-ft
Activating Moment: 19,734,169 lbs-ft
Resisting Force: $337,183.67 \mathrm{lbs}$
Activating Force: $268,468.8 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 59,049 slip surfaces
F of S Rank (Query): 1 of 10 slip surfaces
Exit: $(1,475.4155,1,822.6034) \mathrm{ft}$
$5,1,843)$
Radius: 119.6971 ft ,

Slip Slices						
	X (ft)	$Y(\mathrm{ft})$	$\begin{aligned} & \text { PWP } \\ & \text { (psf) } \end{aligned}$	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	1,477.7462	1,821.638	0	438.53267	284.78645	200
Slice 2	1,486.0384	1,818.2033	0	759.72367	276.5168	0
Slice 3	1,497.625	1,813.404	0	1,576.7607	573.89397	0
Slice 4	1,508.875	1,808.7441	0	2,457.8388	894.58016	0
Slice 5	1,520.125	1,804.0842	0	3,338.9169	1,215.2664	0
Slice 6	1,531.375	1,799.4243	0	4,219.9949	1,535.9525	0
Slice 7	1,541.2503	1,795.3338	0	5,059.0194	1,841.3325	0
Slice 8	1,549.7509	1,791.8127	0	5,855.9902	2,131.4061	0
Slice 9	1,558.2515	1,788.2916	0	6,652.961	2,421.4798	0
$\begin{aligned} & \hline \text { Slice } \\ & 10 \end{aligned}$	1,564.4742	1,785.7141	0	6,355.0757	1,006.5451	150
$\begin{aligned} & \hline \text { Slice } \\ & 11 \end{aligned}$	1,567.2647	1,784.973	0	5,725.9629	4,804.6533	200
$\begin{aligned} & \hline \text { Slice } \\ & 12 \\ & \hline \end{aligned}$	1,574.312	1,785.7334	0	5,280.3356	836.323	150
$\begin{aligned} & \hline \text { Slice } \\ & 13 \end{aligned}$	1,586.7707	1,787.1024	0	5,467.7746	866.01042	150
$\begin{aligned} & \hline \text { Slice } \\ & 14 \end{aligned}$	1,598.5	1,788.3912	0	5,670.6009	898.13495	150
$\begin{aligned} & \hline \text { Slice } \\ & 15 \end{aligned}$	1,609.5	1,789.5999	0	5,888.8145	932.69659	150
$\begin{aligned} & \text { Slice } \\ & 16 \end{aligned}$	1,620.5	1,790.8086	0	6,107.0281	967.25823	150

Slice 17	$1,631.5$	$1,792.0173$	0	$6,325.2417$	$1,001.8199$	150
Slice 18	1,640	$1,792.9513$	0	$6,537.405$	$1,035.4232$	150
Slice 19	$1,647.6667$	$1,793.7938$	0	$6,800.7715$	$1,077.1364$	150
Slice 20	1,657	$1,794.8193$	0	$7,121.3915$	$1,127.9176$	150
Slice 21	$1,666.3333$	$1,795.8449$	0	$7,442.0116$	$1,178.6988$	150
Slice 22	$1,676.25$	$1,796.9345$	0	$7,547.382$	$1,195.3879$	150
Slice 23	$1,686.75$	$1,798.0883$	0	$7,437.5026$	$1,177.9847$	150
Slice 24	$1,696.6667$	$1,799.178$	0	$7,143.256$	$1,131.3806$	150
Slice 25	1,706	$1,800.2035$	0	$6,664.6422$	$1,055.5756$	150
Slice 26	$1,715.3333$	$1,801.2291$	0	$6,186.0284$	979.77065	150
Slice 27	$1,721.5$	$1,801.9067$	0	$5,857.1346$	927.67899	150
Slice 28	$1,729.5$	$1,802.7858$	0	$5,379.3378$	852.0034	150
Slice 29	$1,736.8718$	$1,804.3718$	0	$3,554.7949$	563.02421	150
Slice 30	$1,743.3718$	$1,810.8718$	0	$2,680.63$	975.66955	0
Slice 31	1,754	$1,821.5$	0	$1,698.282$	618.12409	0
Slice 32	1,764	$1,831.5$	0	849.14099	309.06204	0
Slice 33	$1,770.533$	$1,838.033$	0	346.86608	126.24893	0
Slice 34	$1,773.783$	$1,841.283$	0	49.030317	31.84066	200

Section 32-32 Static Circular SSA for Skyline Ranch.gsz

Section 32-32 Static Circular SSA for Skyline Ranch.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/14/2016 7:30:41 PM

Materials
\square TQs
\square Qls
\square Fill
\square Clay

Name: TQs
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 11° (Along Bedding 10-25 ${ }^{\circ}$)
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding 10-25 ${ }^{\circ}$)
Name: Qls
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 0 psf
Phi': 20°
Name: Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°

Name: Clay

Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 150 psf
Phi': 9°

2 - Circular

Report generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International Ltd.

File Information

File Version: 8.15

Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 145
Date: 3/14/2016
Time: 7:30:41 PM
Tool Version: 8.15.5.11777
file Name: Section 32-32 Static Circular SSA for Skyline Ranch.gsz
Directory: P:\FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 32-32 results\
Last Solved Date: 3/14/2016
Last Solved Time: 7:30:43 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Circular
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)
F of S Distribution

F of S Calculation Option: Constant

Advanced

Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 11° (Along Bedding 10-25 ${ }^{\circ}$)
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding 10-25 ${ }^{\circ}$)
Phi-B: 0°
Qls
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 0 psf
Phi': 20°
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Clay
Model: Mohr-Coulomb
Unit Weight: 100 pc
Cohesion': 150 psf
Phi': 9°
Phi-B: 0

Slip Surface Entry and Exit

Left Projection: Range
Left-Zone Left Coordinate: (-189.3733, 1,793.5717) ft
Left-Zone Right Coordinate: $(193,1,845) \mathrm{ft}$
Left-Zone Increment: 15
Right Projection: Range
Right-Zone Left Coordinate: (236, 1,861.3415) ft
Right-Zone Right Coordinate: ($565,1,895$) ft
Right-Zone Increment: 8
Radius Increments: 8

Slip Surface Limits

Left Coordinate: (-199, 1,792) ft
Right Coordinate: $(566,1,650) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

11° (Along Bedding $10-25^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(9.9,1)$
Data Point: $(10,0.275)$
Data Point: $(25,0.275)$
Data Point: $(25.1,1)$
150 pcf (Along Bedding 10-25 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(9.9,1)$
Data Point: $(10,0.667)$
Data Point: $(25,0.667)$
Data Point: $(25.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-199	1,792
Point 2	-101	1,808
Point 3	45	1,827
Point 4	176	1,843
Point 5	92	1,823

Point 6	44	1,814
Point 7	-8	1,801
Point 8	-43	1,786
Point 9	-73	1,768
Point 10	-106	1,744
Point 11	-155	1,720
Point 12	-199	1,720
Point 13	193	1,845
Point 14	222	1,814
Point 15	153	1,801
Point 16	96	1,788
Point 17	44	1,779
Point 18	-3	1,773
Point 19	-39	1,769
Point 20	231	1,860
Point 21	272	1,871
Point 22	293	1,862
Point 23	386	1,865
Point 24	422	1,880
Point 25	450	1,893
Point 26	527	1,894
Point 27	565	1,895
Point 28	444	1,859
Point 29	398	1,850
Point 30	345	1,837
Point 31	264	1,823
Point 32	-199	1,650
Point 33	566	1,650
Point 34	-39	1,771
Point 35	-3	1,775
Point 36	44	1,781
Point 37	96	1,790
Point 38	153	1,803
Point 39	220.129	1,816
Point 40	-69.6667	1,770

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Fill	$1,2,3,4,5,6,7,8,40,9,10,11,12$	12,311
Region 2	Qls	$4,5,6,7,8,40,34,35,36,37,38,39,13$	$8,037.7$
Region 3	Fill	$13,20,21,22,23,24,25,26,27,28,29,30,31,14,39$	9,613
Region 4	TQs	$12,32,33,27,28,29,30,31,14,15,16,17,18,19,9,10,11$	$1.1986 \mathrm{e}+005$
Region 5	Clay	$34,40,9,19,18,17,16,15,14,39,38,37,36,35$	595.29

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/14/2016

Current Slip Surface

Slip Surface: 1,140
Fof S: 2.47
Volume: $683.94696 \mathrm{ft}^{3}$
Weight: 77,569.632 lbs
Resisting Moment: 2,366,953.7 lbs-ft
Activating Moment: $956,929.48 \mathrm{lbs}$-ft
F of S Rank (Analysis): 1 of 1,296 slip surfaces
F of S Rank (Query): 1 of 10 slip surfaces
Exit: $(167.45638,1,841.9565) \mathrm{ft}$
Entry: (236.00001, 1,861.3415) ft
Entry: (236.00001,
Center: (193.51323, 1,880.6964) ft

Slip Slices
X (ft) Y (ft) PWP (psf) Base Normal Stress (psf) Frictional Strength (psf) Cohesive Strength (psf) Slice 1 168.01281 $1,841.5936$ 0 125.6967 81.628394 200 Slice 2 169.8077 $1,840.5004$ 0 206.55409 75.179541 0 Slice 3 172.28462 $1,839.1374$ 0 377.79763 137.50709 0 Slice 4 174.76154 $1,837.9614$ 0 525.41828 191.23661 0 Slice 5 177.21429 $1,836.9654$ 0 653.46478 237.84173 0 Slice 6 179.64286 $1,836.1348$ 0 764.25891 278.1675 0 Slice 7 182.07143 $1,835.4498$ 0 858.27573 312.38682 0 Slice 8 184.5 $1,834.9037$ 0 936.66198 340.91708 0 Slice 9 186.92857 $1,834.4917$ 0 $1,000.308$ 364.08235 0 Slice 10 189.35714 $1,834.2101$ 0 $1,049.9006$ 382.13257 0 Slice 11 191.78571 $1,834.0565$ 0 $1,085.9596$ 395.25695 0 Slice 12 194.18384 $1,834.0286$ 0 $1,176.0515$ 428.04774 0 Slice 13 196.55153 $1,834.1228$ 0 $1,319.2579$ 480.17062 0 Slice 14 198.91922 $1,834.3381$ 0 $1,448.3558$ 527.15842 0 Slice 201.2869 $1,834.6761$ 0 $1,563.3683$ 569.01951 0

15						
Slice 16	203.65946	$1,835.1408$	0	$1,578.1098$	$1,024.8365$	200
Slice 17	206.0369	$1,835.7367$	0	$1,590.747$	$1,033.0432$	200
Slice 18	208.41434	$1,836.4683$	0	$1,586.9123$	$1,030.5529$	200
Slice 19	210.79178	$1,837.3426$	0	$1,566.2181$	$1,017.1139$	200
Slice 20	213.16922	$1,838.3684$	0	$1,528.0941$	992.35594	200
Slice 21	215.54665	$1,839.557$	0	$1,471.7568$	955.77003	200
Slice 22	217.92409	$1,840.9233$	0	$1,396.162$	906.67819	200
Slice 23	220.30153	$1,842.4862$	0	$1,299.9364$	844.18857	200
Slice 24	222.67897	$1,844.2714$	0	$1,181.2736$	767.12808	200
Slice 25	225.05641	$1,846.3138$	0	$1,037.7743$	673.93853	200
Slice 26	227.43384	$1,848.6631$	0	866.1895	562.51004	200
Slice 27	229.81128	$1,851.3944$	0	661.98714	429.89947	200
Slice 28	232.25	$1,854.7318$	0	397.1737	257.92762	200
Slice 29	234.75001	$1,858.9691$	0	61.14504	39.708053	200

Section 32-32 Pseudostatic Circular SSA for Skyline Ranch.gsz
Section 32-32 Pseudostatic Circular SSA for Skyline Ranch.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/14/2016 7:33:45 PM

Materials
\square TQs
\square Qis
\square Fill
\square Clay

$\underbrace{1.50}$

Name: TQs
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 11° (Along Bedding 10-25 ${ }^{\circ}$)
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding 10-25º

Name: Qls
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 0 psf
Phi': 20°
Name: Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Name: Clay
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 150 psf
Phi': 9°

2 - Circular

Report generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International Ltd.

File Information

File Version: 8.15

Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 148
Date: 3/14/2016
Time: 7:33:45 PM
Tool Version: 8.15.5.11777
File Name: Section 32-32 Pseudostatic Circular SSA for Skyline Ranch.gsz
Directory: P:\FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 32-32 results\
Last Solved Date: 3/14/2016
Last Solved Time: 7:35:00 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Circular
Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)
F of S Distribution

F of S Calculation Option: Constant

Advanced

Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 11° (Along Bedding 10-25 ${ }^{\circ}$)
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding 10-25 ${ }^{\circ}$)
Phi-B: 0°
Qls
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 0 psf
Phi': 20°
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Clay
Model: Mohr-Coulomb
Unit Weight: 100 pc
Cohesion': 150 psf
Phi': 9°
Phi-B: 0°

Slip Surface Entry and Exit

Left Projection: Range
Left-Zone Left Coordinate: (-189.3733, 1,793.5717) ft
Left-Zone Right Coordinate: $(193,1,845) \mathrm{ft}$
Left-Zone Increment: 15
Right Projection: Range
Right-Zone Left Coordinate: ($236,1,861.3415$) ft
Right-Zone Right Coordinate: ($565,1,895$) ft
Right-Zone Increment: 8
Radius Increments: 8

2 - Circular

Slip Surface Limits
Left Coordinate: $(-199,1,792) \mathrm{ft}$
Right Coordinate: $(566,1,650) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

11° (Along Bedding $10-25^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: (9.9, 1)
Data Point: $(10,0.275)$
Data Point: $(25,0.275)$
Data Point: $(25.1,1)$
150 pcf (Along Bedding 10-25 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(9.9,1)$
Data Point: $(10,0.667)$
Data Point: $(25,0.667)$
Data Point: $(25.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-199	1,792
Point 2	-101	1,808
Point 3	45	1,827
Point 4	176	1,843
Point 5	92	1,823

2 - Circular

Point 6	44	1,814
Point 7	-8	1,801
Point 8	-43	1,786
Point 9	-73	1,768
Point 10	-106	1,744
Point 11	-155	1,720
Point 12	-199	1,720
Point 13	193	1,845
Point 14	222	1,814
Point 15	153	1,801
Point 16	96	1,788
Point 17	44	1,779
Point 18	-3	1,773
Point 19	-39	1,769
Point 20	231	1,860
Point 21	272	1,871
Point 22	293	1,862
Point 23	386	1,865
Point 24	422	1,880
Point 25	450	1,893
Point 26	527	1,894
Point 27	565	1,895
Point 28	444	1,859
Point 29	398	1,850
Point 30	345	1,837
Point 31	264	1,823
Point 32	-199	1,650
Point 33	566	1,650
Point 34	-39	1,771
Point 35	-3	1,775
Point 36	44	1,781
Point 37	96	1,790
Point 38	153	1,803
Point 39	220.129	1,816
Point 40	-69.6667	1,770

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Fill	$1,2,3,4,5,6,7,8,40,9,10,11,12$	12,311
Region 2	Qls	$4,5,6,7,8,40,34,35,36,37,38,39,13$	$8,037.7$
Region 3	Fill	$13,20,21,22,23,24,25,26,27,28,29,30,31,14,39$	9,613
Region 4	TQs	$12,32,33,27,28,29,30,31,14,15,16,17,18,19,9,10,11$	$1.1986 \mathrm{e}+005$
Region 5	Clay	$34,40,9,19,18,17,16,15,14,39,38,37,36,35$	595.29

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/14/2016

Current Slip Surface

Slip Surface: 409
Fof S: 1.50
Volume: $8,922.7997 \mathrm{ft}^{3}$
Weight: 950,631.04 lbs
Resisting Moment: 89,120,255 lbs-ft
Activating Moment: $59,457,999 \mathrm{lbs}$-ft
F of S Rank (Analysis): 1 of 1,296 slip surfaces
F of S Rank (Query): 1 of 10 slip surfaces
Exit: (-62.248402, 1,813.043) ft
Entry: $(236.00001,1,861.3415) \mathrm{ft}$
Radius: 253.94132 ft
Center: (54.245628, 2,038.6873) ft

Slip Slices
$\mathrm{X}(\mathrm{ft})$ $\mathrm{Y}(\mathrm{ft})$ PWP (psf) Base Normal Stress (psf) Frictional Strength (psf) Cohesive Strength (psf) Slice 1 -56.969911 $1,810.4707$ 0 578.22517 375.50382 200 Slice 2 - 46.412931 $1,805.6186$ 0 $1,471.1247$ 955.35957 Slice 3 -35.85595 $1,801.3352$ 0 $2,235.4162$ $1,451.6963$ 200 Slice 4 - 25.298969 $1,797.5899$ 0 $2,888.2895$ $1,875.6771$ Slice 5 - 14.010239 $1,794.1706$ 0 $3,146.189$ $1,145.1191$ Slice 6 -2.8 $1,791.2938$ 0 $3,514.9653$ $1,279.3427$ 0 Slice 7 7.6 $1,789.1229$ 0 $3,818.9909$ $1,389.999$ 0 Slice 8 18 $1,787.4009$ 0 $4,070.8519$ $1,481.6689$ 0 Slice 9 28.4 $1,786.1187$ 0 $4,273.0767$ $1,555.2727$ 0 Slice 10 38.8 $1,785.2697$ 0 $4,427.7433$ $1,611.5668$ 0 Slice 11 44.5 $1,784.9335$ 0 $4,498.9212$ $1,637.4734$ 0 Slice 12 50.676482 $1,784.8345$ 0 $4,550.2441$ $1,656.1534$ 0 Slice 13 62.029447 $1,784.9288$ 0 $4,614.7252$ $1,679.6226$ 0 Slice 14 73.779447 $1,785.5717$ 0 $4,667.1826$ 739.20911 150 Slice 85.926482 $1,786.8043$ 0 $4,647.8258$ 736.14329 150

15						
Slice 16	94	$1,787.8852$	0	$4,607.0939$	729.69198	150
Slice 17	97.885731	$1,788.5312$	0	$4,572.2288$	724.1699	150
Slice 18	105.21448	$1,789.9756$	0	$4,465.3719$	867.98037	150.075
Slice 19	116.10051	$1,792.4584$	0	$4,298.8008$	835.60222	150.075
Slice 20	126.83516	$1,795.4046$	0	$4,113.5171$	651.5171	150
Slice 21	137.41843	$1,798.8183$	0	$3,860.2757$	611.4076	150
Slice 22	148.25838	$1,802.8651$	0	$3,408.9882$	$1,240.7702$	0
Slice 23	159.35503	$1,807.6006$	0	$3,039.5252$	$1,106.2967$	0
Slice 24	170.45168	$1,812.9808$	0	$2,619.5193$	953.42707	0
Slice 25	180.25	$1,818.2669$	0	$2,215.7282$	806.4591	0
Slice 26	188.75	$1,823.3511$	0	$1,836.3519$	668.37741	0
Slice 27	198.39963	$1,829.7309$	0	$1,625.7714$	591.7324	0
Slice 28	208.33272	$1,836.9181$	0	$1,197.8709$	777.90643	200
Slice 29	217.39963	$1,844.1829$	0	837.51494	543.88856	200
Slice 30	226.46654	$1,852.1717$	0	429.58776	278.97755	200
Slice 31	233.5	$1,858.8496$	0	59.738781	38.794818	200

Section 32-32 Static SSA for Skyline Ranch.gsz

Section 32-32 Static SSA for Skyline Ranch.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/14/2016 7:10:28 PM

Materials
\square TQs
\square Qls
\square Fill
\square Clay

Name: TQs
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 11° (Along Bedding 10-25 ${ }^{\circ}$)
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding 10-25

Name: Qls
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 0 psf
Phi': 20°

Name: Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°

Name: Clay
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 150 psf
Phi': 9°

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International Ltd.

File Information

File Version: 8.15

Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 142
Date: 3/14/2016
Time: 7:10:28 PM
Tool Version: 8.15.5.11777
File Name: Section 32-32 Static SSA for Skyline Ranch.gsz
Directory: P:\FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 32-32 results\}
Last Solved Date: 3/14/2016
Last Solved Time: 7:10:40 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
orce(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: No
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant

Advanced

Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs
Model: Anisotropic Fn
Unit Weight: 120 pc
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 11° (Along Bedding 10-25 ${ }^{\circ}$)
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding $10-25^{\circ}$)
Phi-B: 0°
Phi-B: 0°
Qls
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 0 psf
Phi': 20°
Phi-B: 0°
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Clay
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 150 psf
Phi': 9°
Phi-B: 0°

Slip Surface Limits

Left Coordinate: (-199, 1,792) ft
Right Coordinate: $(566,1,650) \mathrm{ft}$

Slip Surface Block
Left Grid
Upper Left: (-56, 1,774) ft

Lower Left: $(-53,1,763) \mathrm{ft}$
Lower Right: $(152,1,796) \mathrm{ft}$
X Increments: 10
Y Increments: 10
Starting Angle: 135°
Starting Angle: 135°
Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: $(156,1,808) \mathrm{ft}$
Lower Left: $(160,1,797) \mathrm{ft}$
Lower Right: $(381,1,840) \mathrm{ft}$
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

11° (Along Bedding $10-25^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(9.9,1)$
Data Point: $(10,0.275)$
Data Point: $(25,0.275)$
Data Point: $(25.1,1)$
150 pcf (Along Bedding 10-25 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: (-90, 1)
Data Point: $(9.9,1)$
Data Point: $(10,0.667)$
Data Point: $(25,0.667)$
Data Point: $(25.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-199	1,792
Point 2	-101	1,808
Point 3	45	1,827
Point 4	176	1,843
Point 5	92	1,823
Point 6	44	1,814
Point 7	-8	1,801
Point 8	-43	1,786
Point 9	-73	1,768
Point 10	-106	1,744
Point 11	-155	1,720
Point 12	-199	1,720
Point 13	193	1,845
Point 14	222	1,814
Point 15	153	1,801
Point 16	96	1,788
Point 17	44	1,779
Point 18	-3	1,773
Point 19	-39	1,769
Point 20	231	1,860
Point 21	272	1,871
Point 22	293	1,862
Point 23	386	1,865
Point 24	422	1,880
Point 25	450	1,893
Point 26	527	1,894
Point 27	565	1,895
Point 28	444	1,859
Point 29	398	1,850
Point 30	345	1,837
Point 31	264	1,823
Point 32	-199	1,650
Point 33	566	1,650
Point 34	-39	1,771
Point 35	-3	1,775
Point 36	44	1,781
Point 37	96	1,790
Point 38	153	1,803
Point 39	220.129	1,816
Point 40	-69.6667	1,770

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Fill	$1,2,3,4,5,6,7,8,40,9,10,11,12$	12,311
Region 2	Qls	$4,5,6,7,8,40,34,35,36,37,38,39,13$	$8,037.7$
Region 3	Fill	$13,20,21,22,23,24,25,26,27,28,29,30,31,14,39$	9,613
Region 4	TQs	$12,32,33,27,28,29,30,31,14,15,16,17,18,19,9,10,11$	$1.1986 \mathrm{e}+005$
Region 5	Clay	$34,40,9,19,18,17,16,15,14,39,38,37,36,35$	595.29

Current Slip Surface

Slip Surface: 58,226
F of S: 2.01
Volume: $7,017.266 \mathrm{ft}^{3}$
Resisting Force: $224,845.48 \mathrm{lbs}$
Activating Force: $112,133.11 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surfaces
F of S Rank (Query): 1 of 150 slip surfaces
Exit: ($55.128474,1,828.2371$) ft
Entry: $(280.83853,1,867.2121) \mathrm{ft}$
Entry: (280.83853, 1,8
Radius: 103.22832 ft
Radius: 103.22832 ft
Center: $(162.93593,1,876.9558) \mathrm{ft}$
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	58.493995	$1,826.843$	0	298.11963	193.60115	200
Slice 2	65.225036	$1,824.0549$	0	798.65605	518.6533	200
Slice 3	71.956078	$1,821.2668$	0	$1,299.1925$	843.70546	200
Slice 4	79.491199	$1,818.1457$	0	$1,641.5874$	597.48896	0
Slice 5	87.8304	$1,814.6915$	0	$2,113.531$	769.26236	0
Slice 6	95.717463	$1,811.4246$	0	$2,555.8182$	930.24174	0
Slice 7	103.15239	$1,808.3449$	0	$2,968.449$	$1,080.4271$	0
Slice 8	110.58731	$1,805.2653$	0	$3,381.0799$	$1,230.6124$	0
Slice 9	118.02224	$1,802.1856$	0	$3,793.7107$	$1,380.7978$	0
Slice	125.45717	$1,799.106$	0	$4,206.3416$	$1,530.9831$	0

10						
Slice 11	129.73731	$1,797.3331$	0	$4,280.3957$	677.94808	150
Slice 12	134.08333	$1,797.7982$	0	$4,032.6616$	638.71085	150
Slice 13	141.65	$1,799.1946$	0	$3,968.8212$	628.59953	150
Slice 14	149.21667	$1,800.5911$	0	$3,904.9808$	618.4882	150
Slice 15	156.83333	$1,801.9967$	0	$3,840.7185$	608.31005	150
Slice 16	164.5	$1,803.4116$	0	$3,776.0344$	598.06509	150
Slice 17	172.16667	$1,804.8265$	0	$3,711.3503$	587.82013	150
Slice 18	180.25	$1,806.3182$	0	$3,650.9842$	578.25909	150
Slice 19	188.75	$1,807.8869$	0	$3,594.9363$	569.38198	150
Slice 20	196.39112	$1,809.2971$	0	$3,735.0052$	591.56671	150
Slice 21	203.17337	$1,810.5487$	0	$4,071.191$	644.81331	150
Slice 22	209.95563	$1,811.8004$	0	$4,407.3768$	698.0599	150
Slice 23	216.73788	$1,813.0521$	0	$4,743.5625$	751.3065	150
Slice 24	221.05526	$1,813.8488$	0	$4,957.5681$	785.20165	150
Slice 25	222.38045	$1,814.0934$	0	$4,794.7604$	$3,113.7538$	200
Slice 26	226.88969	$1,814.9256$	0	$5,108.7652$	993.04336	150.075
Slice 27	234.95	$1,816.4131$	0	$5,249.6059$	$1,020.42$	150.075
Slice 28	242.85	$1,817.871$	0	$5,327.5959$	$1,035.5797$	150.075
Slice 29	247.09422	$1,819.0202$	0	$3,298.7701$	$2,767.9968$	225
Slice 30	251.49037	$1,825.2985$	0	$3,198.1739$	$2,076.9184$	200
Slice 31	259.69422	$1,837.0149$	0	$2,418.0563$	$1,570.3041$	200
Slice 32	267.89807	$1,848.7312$	0	$1,637.9386$	$1,063.6898$	200
Slice 33	276.41926	$1,860.9007$	0	575.15923	373.51277	200

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/14/2016

Section 32-32 Pseudostatic SSA for Skyline Ranch.gsz

Section 32-32 Pseudostatic SSA for Skyline Ranch.gsz Run By: Dr. Alexander Bykovtsev, Ph.D., P.E. 3/14/2016 7:18:27 PM

Materials
\square TQs
\square Qls
\square Fill
\square Clay

$e^{1.11}$

Name: TQs
Model: Anisotropic Fn.
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 11° (Along Bedding 10-25 ${ }^{\circ}$)
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding 10-25 ${ }^{\circ}$)

Name: Qls
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 0 psf
Phi': 20°

Name: Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°

Name: Clay
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 150 psf
Phi': 9°

2 - Translational

Report generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International Ltd.

File Information

File Version: 8.15

Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 145
Date: 3/14/2016
Time: 7:18:27 PM
Tool Version: 8.15.5.11777
File Name: Section 32-32 Pseudostatic SSA for Skyline Ranch.gsz
Directory: P:\FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 32-32 results\
Last Solved Date: 3/14/2016
Last Solved Time: 7:18:30 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
orce(F) Units: Pounds
Pressure(p) Units: psf
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational
Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Initial Slip Surface Source: Other GeoStudio Analysis
Slip Surface Other Analysis: ".\Section 32-32 Static SSA for Skyline Ranch.gsz" - 2 - Translational [(last) Slip Surface

Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Critical Slip Surfaces from Other
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Optimize Critical Slip Surface Location: No
Tension Crack

Tension Crack Option: (none)

F of S Distribution

F of S Calculation Option: Constant Advanced

Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 225 psf
Phi': 40°
Phi-Anisotropic Strength Fn.: 11° (Along Bedding 10-25 ${ }^{\circ}$
C-Anisotropic Strength Fn.: 150 pcf (Along Bedding 10-25 ${ }^{\circ}$)
Phi-B: 0°
Qls
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 0 psf
Phi': 20°
Phi-B: 0

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pc
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Clay
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 150 psf
Phi': 9°
Phi-B: 0

Slip Surface Limits

Left Coordinate: (-199, 1,792) ft
Right Coordinate: $(566,1,650) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0.15

2-Translational

Vert Seismic Coef.: 0

Anisotropic Strength Functions

11° (Along Bedding $\mathbf{1 0 - 2 5}{ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(9.9,1)$
Data Point: $(10,0.275)$
Data Point: $(25,0.275)$
Data Point: $(25.1,1)$
150 pcf (Along Bedding 10-25 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100 \%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(9.9,1)$
Data Point: $(10,0.667)$
Data Point: $(25,0.667)$
Data Point: $(25.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-199	1,792
Point 2	-101	1,808
Point 3	45	1,827
Point 4	176	1,843
Point 5	92	1,823
Point 6	44	1,814
Point 7	-8	1,801
Point 8	-43	1,786
Point 9	-73	1,768
Point 10	-106	1,744
Point 11	-155	1,720
Point 12	-199	1,720
Point 13	193	1,845

Point 14	222	1,814
Point 15	153	1,801
Point 16	96	1,788
Point 17	44	1,779
Point 18	-3	1,773
Point 19	-39	1,769
Point 20	231	1,860
Point 21	272	1,871
Point 22	293	1,862
Point 23	386	1,865
Point 24	422	1,880
Point 25	450	1,893
Point 26	527	1,894
Point 27	565	1,895
Point 28	444	1,859
Point 29	398	1,850
Point 30	345	1,837
Point 31	264	1,823
Point 32	-199	1,650
Point 33	566	1,650
Point 34	-39	1,771
Point 35	-3	1,775
Point 36	44	1,781
Point 37	96	1,790
Point 38	153	1,803
Point 39	220.129	1,816
Point 40	-69.6667	1,770

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	Fill	$1,2,3,4,5,6,7,8,40,9,10,11,12$	12,311
Region 2	Qls	$4,5,6,7,8,40,34,35,36,37,38,39,13$	$8,037.7$
Region 3	Fill	$13,20,21,22,23,24,25,26,27,28,29,30,31,14,39$	9,613
Region 4	TQs	$12,32,33,27,28,29,30,31,14,15,16,17,18,19,9,10,11$	$1.1986 \mathrm{e}+005$
Region 5	Clay	$34,40,9,19,18,17,16,15,14,39,38,37,36,35$	595.29

Current Slip Surface

Slip Surface: 1
Fof S : 1.11
Volume: 7,017.266 ft ${ }^{3}$
Weight: 766,942.76 lbs
Resisting Force: $219,345.96 \mathrm{lbs}$

Activating Force: $197,437.04 \mathrm{lbs}$
of S Rank (Analysis): 1 of 10 slip surfaces
F of S Rank (Query): 1 of 10 slip surfaces
Exit: $(55.128474,1,828.2371) \mathrm{ft}$
Entry: $(280.83853,1,867.2121) \mathrm{ft}$
Radius: 103.22832 ft
Center: $(162.93593,1,876.9558) \mathrm{ft}$

Slip Slices
X (ft) Y (ft) PWP (psf) Base Normal Stress (psf) Frictional Strength (psf) Cohesive Strength (psf) Slice 1 58.493995 $1,826.843$ 0 384.74201 249.85438 200 Slice 2 65.225036 $1,824.0549$ 0 956.81481 621.3628 200 Slice 3 71.956078 $1,821.2668$ 0 $1,528.8874$ 992.87105 200 Slice 4 79.491199 $1,818.1457$ 0 $1,756.8443$ 639.43901 0 Slice 5 87.8304 $1,814.6915$ 0 $2,261.9234$ 823.27279 0 Slice 6 95.717463 $1,811.4246$ 0 $2,735.2638$ 995.5546 0 Slice 7 103.15239 $1,808.3449$ 0 $3,176.8657$ $1,156.2845$ 0 Slice 8 110.58731 $1,805.2653$ 0 $3,618.4676$ $1,317.0145$ 0 Slice 9 118.02224 $1,802.1856$ 0 $4,060.0695$ $1,477.7444$ 0 Slice 10 125.45717 $1,799.106$ 0 $4,501.6714$ $1,638.4744$ 0 Slice 11 129.73731 $1,797.3331$ 0 $4,427.065$ 701.17821 150 Slice 12 134.08333 $1,797.7982$ 0 $3,975.6012$ 629.67337 150 Slice 13 141.65 $1,799.1946$ 0 $3,912.4922$ 619.67789 150 Slice 14 149.21667 $1,800.5911$ 0 $3,849.3834$ 609.68244 150 Slice 15 156.83333 $1,801.9967$ 0 $3,785.8574$ 599.6209 150 Slice 16 164.5 $1,803.4116$ 0 $3,721.9145$ 589.49335 150 Slice 17 172.16667 $1,804.8265$ 0 $3,657.9715$ 579.36577 150 Slice 18 180.25 $1,806.3182$ 0 $3,598.2973$ 569.9143 150 Slice $\|$

19	188.75	$1,807.8869$	0	$3,542.8915$	561.13889	150
Slice 20	196.39112	$1,809.2971$	0	$3,681.3554$	583.06942	150
Slice 21	203.17337	$1,810.5487$	0	$4,013.6891$	635.70591	150
Slice 22	209.95563	$1,811.8004$	0	$4,346.0226$	688.34236	150
Slice 23	216.73788	$1,813.0521$	0	$4,678.3562$	740.97882	150
Slice 24	221.05526	$1,813.8488$	0	$4,889.9094$	774.48557	150
Slice 25	222.38045	$1,814.0934$	0	$4,572.7126$	$2,969.5543$	200
Slice 26	226.88969	$1,814.9256$	0	$5,026.5448$	977.06132	150.075
Slice 27	234.95	$1,816.4131$	0	$5,165.4164$	$1,004.0552$	150.075
Slice 28	242.85	$1,817.871$	0	$5,242.316$	$1,019.003$	150.075
Slice 29	247.09422	$1,819.0202$	0	$2,472.4263$	$2,074.612$	225
Slice 30	251.49037	$1,825.2985$	0	$2,485.8764$	$1,614.347$	200
Slice 31	259.69422	$1,837.0149$	0	$1,864.2451$	$1,210.6549$	200
Slice 32	267.89807	$1,848.7312$	0	$1,242.6135$	806.96266	200
Slice 33	276.41927	$1,860.9007$	0	395.74496	256.99978	200

1 - Circular
1 - Circular

1 - Circular

eport generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLopE International Ltd.

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexander Bykovtsec
Revision Number: 1
Date: $3 / 14 / 2016$
Time: 6:22:47 PM
Tool Version: 8.15.5.11777
File Name: Section 34-34 Static Circular SSA for Skyline Ranch.gsz
Directory: P:\FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 34-34 results\}

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(F) Units: Pounds
Pressure(p) Units: p
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular

Kind: SLOPE/W
Method: Bishop
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Entry and Exit
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1°
Optimize Critical Slip Surface Location: ${ }^{\circ}$
Tension Crack
Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
F of S Tolerance: 0.01
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion:
Phi-Anisotropic Strength Fn.: 11° (TQs Along Bedding $10^{\circ}-25^{\circ}$)
C-Anisotropic Strength Fn.: 150 pcf (TQs Along Bedding 10-25 ${ }^{\circ}$)
Phi-B: 0°
Qls
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 0 psf
Phi': 20
Phi-B: 0

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B:
Clay
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 150 psf
Phi': 9°
Phi-B: $0{ }^{\circ}$
Tmc
Model: Anisotropic F
Unit Weight: 120 pcf
Phi': 40°
Phi: 40
Phi-Anisotropic Strength Fn.: 12° (Tmc Along Bedding 10-25 ${ }^{\circ}$)
C-Anisotropic Strength Fn.: 150 pcf (Tmc Along Bedding 10-25
Phi-B: 0°

Slip Surface Entry and Exit
Left Projection: Range
Left-Zone Left Coordinate: (-180.0022, 1,731.9235) ft
Left-Zone Right Coordina
Right Projection: Range
Right Projection: Range
Right-Zone Left Coordinate: (399.3113, 1,821.7223) ft
Right-Zone Right Coordinate: ($806.1524,1,852.1889$) ft
Right-Zone Increment: 50
Radius Increments: 8

Slip Surface Limits
Left Coordinate: (-200, 1,738) ft
Right Coordinate: $(809,1,600) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

12° (Tmc Along Bedding $10-25^{\circ}$)
Model: Spline Data Point Function
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Cegment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: (-90, 1) Data Point: $(9.9,1)$
Data Point: $(10,0.3)$
Data Point: $(25,0.3)$
Data Point: $(25.1,1)$
150 pcf (Tmc Along Bedding $\mathbf{1 0 - 2 5}$)
Model: Spline Data Point Function
Modet: Spline Data Point Function
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: ($(-90,1)$
Data Point: $(9.9,1)$
Data Point: $(25,0.75)$
Data Point: $(25.1,1)$
11° (TQs Along Bedding $10^{\circ}-25^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(9.9,1)$
Data Point: $(10,0.275)$
Data Point: $(25,0.275)$
Data Point: (25.1, 1)
150 pcf (TQs Along Bedding $10-25^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: $(-90,1$
Data Point: $(9.9,1)$

Data Point: $(10,0.667)$ Data Point: $(25,0.667)$ Data Point: (25.1,1)

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-200	1,738
Point 2	-153	1,722
Point 3	-112	1,710
Point 4	-26	1,712
Point 5	92	1,723
Point 6	215	1,738
Point 7	337	1,756
Point 8	466	1,781
Point 9	530	1,792
Point 10	627	1,816
Point 11	710	1,836
Point 12	767	1,835
Point 13	808	1,853
Point 14	809	1,600
Point 15	-200	1,600
Point 16	-42	1,730
Point 17	-2	1,746
Point 18	71	1,752
Point 19	140	1,755
Point 20	156	1,763
Point 21	186	1,760
Point 22	193	1,768
Point 23	228	1,778
Point 24	249	1,786
Point 25	275	1,798
Point 26	289	1,802
Point 27	334	1,802
Point 28	373	1,807
Point 29	397	1,821
Point 30	429	1,831
Point 31	482	1,840
Point 32	-182	$1,731.8723$
Point 33	-138	1,733
Point 34	-106	1,740
Point 35	-67	1,754
Point 36	-25	1,765
Point 37	6	1,773
Point 38	108	1,776
Point 39	171	1,790
Point 40	231	1,798
Point 41	293	1,810
Point 42	353	1,820
Point 43	539	1,849
Point 44	571	1,856

Point 45	599	1,862
Point 46	661	1,837
Point 47	-106	$1,711.7143$
Point 48	-69	1,713
Point 49	-26	1,714
Point 50	39	1,720
Point 51	92	1,725
Point 52	215	1,740
Point 53	337	1,758
Point 54	466	1,783
Point 55	528	1,794
Point 56	38.3636	1,718
Point 57	-69	1,711
Point 58	497	1,756
Point 59	647	1,756
Point 60	808.3834	1,756

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs	$13,12,11,10,9,8,7,58,59,60$	22,189
Region 2	Qls	$31,30,29,28,27,26,25,24,23,22,21,20,19,18,17,16,47,48,49,50,51,52,53,54,55$	21,534
Region 3	Fill	$32,33,34,35,36,37,38,39,40,41,42,29,28,27,26,25,24,23,22,21,20,19,18,17,16,47,3,2$	11,851
Region 4	Fill	$31,43,44,45,46,11,10,9,55$	7,412
Region 5	Clay	$47,3,57,4,56,5,6,7,8,9,95,54,53,52,51,50,49,48$	$1,274.4$
Region 6	Tmc	$7,6,5,56,4,57,3,2,32,1,15,14,60,59,58$	$1.4185 \mathrm{e}+005$

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/14/2016

1 - Circular
1 - Circular

1 - Circular

keport generated using Geostudio 2012. Copyrigh © 1991 -2016 GEO-SLOPE International Ltd.

File Information

File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexand
Revision Number:
Date: $3 / 14 / 2016$
Time: 6:31:32 PM
Tool Version: 8.15.5.11777
File Name: Section 34-34 Pseudostatic Circular SSA for Skyline Ranch.gsz
Directory: P:\/FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section $34-34$ results\}
Last Solved Date: 3/14/2016
Last Solved Time: 6:31:38 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(f) Units: Pounds
Pressure(p) Units: ps
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

1 - Circular
 Kind: SLOPE/W

Method: Bishop
Settings
PWP
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1
Driving Side Maximum Convex Angle: 5°
Optimize Critical Slip Surface Location: No
Tension Crack
Tension Crack Option: (none)
F of S Distribution
Fof S Calculation Option: Constant
Advanced
Number of Slices: 30
Minimum Slip Surface Depth: 0.1 ft

Materials

TQs
Model: Anisotropic Fn
Unit Weight: 120 pc
Cohesion': 225 psf
Phi-Anisotropic Strength Fn.: 11° (TQs Along Bedding $10^{\circ}-25^{\circ}$)
C-Anisotropic Strength Fn.: 150 pcf (TQs Along Bedding 10-25 ${ }^{\circ}$) Phi-B: 0
Qls
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 0 psf
Phi': 20
Phi-B: 0
Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Clay
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 150 ps
Phi: ${ }^{\circ}{ }^{\circ}$
Tmc
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion:
Phi': 40
Phi-Anisotropic Strength Fn.: $12^{\circ}($ Tmc Along Bedding 10-25 $)$
C-Anisotropic Strength Fn.: 150 pcf (Tmc Along Bedding 10-25
Phi-B: 0

Slip Surface Entry and Exit

Left Projection: Range
Left-Zone Left Coordinate: (-180.0022, 1,731.9235) ft
Left-Zone Right Coordinate: ($303.4238,1,811.7373$) ft
Left-Zone Increment: 50
Right-Zone Left Coordinate: (399.3113, 1,821.7223) ft
Right-Zone Right Coordinate: $(806.1524,1,852.1889) \mathrm{ft}$
Right-Zone Increment: 50
Radius Increments: 8

Slip Surface Limits

1 - Circular

Left Coordinate: $(-200,1,738) \mathrm{ft}$ Right Coordinate: $(809,1,600)$ ft

Seismic Coefficients

Horz Seismic Coef.: 0.15
Vert Seismic Coef.: 0

Anisotropic Strength Functions

12° (Tmc Along Bedding $\mathbf{1 0 - 2 5}$)

Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%

Segment Curvature: 0%

Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1$
Data Point: $(9.9,1)$
Data Point: $(25,0.3)$
Data Point: $(25.1,1)$
150 pcf (Tmc Along Bedding 10-25 ${ }^{\circ}$
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(9.9,1)$
Data Point: $(10,0.75)$
Data Point: (25.1, 1)
$11{ }^{\circ}$ (TQs Along Bedding $10^{\circ}-25^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment
intercept: 1
Y-Intercept: 1
Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(10,0.275)$
Data Point: (25, 0.275
Data Point: (25.1, 1)
150 pcf (TQs Along Bedding $\mathbf{1 0 - 2 5 ^ { \circ }}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Sercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor

1 - Circular

> Data Point: $(-90,1)$ Data Point: $(9.9,1)$ Data Point: $(10,0.667)$ Data Point: $(25,0.667)$

Data Point: $(25.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-200	1,738
Point 2	-153	1,722
Point 3	-112	1,710
Point 4	-26	1,712
Point 5	92	1,723
Point 6	215	1,738
Point 7	337	1,756
Point 8	466	1,781
Point 9	530	1,792
Point 10	627	1,816
Point 11	710	1,836
Point 12	767	1,835
Point 13	808	1,853
Point 14	809	1,600
Point 15	-200	1,600
Point 16	-42	1,730
Point 17	-2	1,746
Point 18	71	1,752
Point 19	140	1,755
Point 20	156	1,763
Point 21	186	1,760
Point 22	193	1,768
Point 23	228	1,778
Point 24	249	1,786
Point 25	275	1,798
Point 26	289	1,802
Point 27	334	1,802
Point 28	373	1,807
Point 29	397	1,821
Point 30	429	1,831
Point 31	482	1,840
Point 32	-182	$1,731.8723$
Point 33	-138	1,733
Point 34	-106	1,740
Point 35	-67	1,754
Point 36	-25	1,765
Point 37	6	1,773
Point 38	108	1,776
Point 39	171	1,790
Point 40	231	1,798
Point 41	293	1,810
Point 42	353	1,820

Point 43	539	1,849
Point 44	571	1,856
Point 45	599	1,862
Point 46	661	1,837
Point 47	-106	$1,711.7143$
Point 48	-69	1,713
Point 49	-26	1,714
Point 50	39	1,720
Point 51	92	1,725
Point 52	215	1,740
Point 53	337	1,758
Point 54	466	1,783
Point 55	528	1,794
Point 56	38.3636	1,718
Point 57	-69	1,711
Point 58	497	1,756
Point 59	647	1,756
Point 60	808.3834	1,756

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs	$13,12,11,10,9,8,7,58,59,60$	22,189
Region 2	Qls	$31,30,29,28,27,26,25,24,23,22,21,20,19,18,17,16,47,48,49,50,51,52,53,54,55$	21,534
Region 3	Fill	$32,33,34,35,36,37,38,39,40,41,42,29,28,27,26,25,24,23,22,21,20,19,18,17,16,47,3,2$	11,851
Region 4	Fill	$31,43,44,45,46,11,10,9,55$	7,412
Region 5	Clay	$47,3,57,4,56,5,6,7,8,9,55,54,53,52,51,50,49,48$	$1,274.4$
Region 6	Tmc	$7,6,5,56,4,57,3,2,32,1,15,14,60,59,58$	$1.4185 \mathrm{e}+005$

Current Slip Surface

Slip Surface: 2,072
F of S: 1.15
Volume: $31,196.875 \mathrm{ft}^{3}$
Weight: $3,377,512.5 \mathrm{lbs}$
Resisting Moment: $1.6197742 \mathrm{e}+009 \mathrm{lbs}-\mathrm{ft}$
Activating Moment: $1.407829 \mathrm{e}+009 \mathrm{lbs}$-ft
F of S Rank (Analysis): 1 of 23,409 slip surfaces
F of S Rank (Query): 1 of 10 slip surfaces
Exit: (-140.6174, 1,732.9329) ft
Entry:
Radius: $1,408.7149 \mathrm{ft}$
Center: $(15.826145,3,132.9341) \mathrm{ft}$
Slip Slices

	$\mathrm{X}(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)

Slice 1	-139.3087	$1,732.7879$	0	43.265788	28.097131	200
Slice 2	-122	$1,731.0699$	0	707.65624	459.55733	200
Slice 3	-96.25	$1,728.7186$	0	$1,871.3863$	$1,215.2925$	200
Slice 4	-76.75	$1,727.2983$	0	$2,902.8856$	$1,885.156$	200
Slice 5	61.423662	$1,726.3499$	0	$3,614.1575$	$2,347.0613$	200
Slice 6	-	48.923662	$1,725.725$	0	$3,972.66882$	$1,445.933$
Slice 7	-33.5	$1,725.1087$	0	$4,402.5096$	$1,602.3825$	0
Slice 8	-13.5	$1,724.5714$	0	$4,903.1048$	$1,784.5842$	0
Slice 9	2	$1,724.2927$	0	$5,296.6407$	$1,927.8195$	0
Slice 10	16.833333	$1,724.2611$	0	$5,419.9439$	$1,972.6982$	0
Slice 11	38.5	$1,724.4433$	0	$5,416.3775$	$1,971.4002$	0
Slice 12	60.166667	$1,724.9588$	0	$5,379.8108$	$1,958.091$	0
Slice 13	89.5	$1,726.2689$	0	$5,284.666$	$1,923.4611$	0
Slice 14	110.62986	$1,727.4153$	0	$5,262.4941$	$1,915.3912$	0
Slice 15	126.62986	$1,728.64766$	0	$5,593.0299$	885.84891	150
Slice 16	148	$1,730.4565$	0	$5,873.0408$	930.19828	150
Slice 17	163.5	$1,732.001$	0	$6,053.8869$	958.84149	150
Slice 18	178.5	$1,733.6635$	0	$6,224.5288$	985.86852	150
Slice 19	189.5	$1,734.9703$	0	$6,197.4844$	981.5851	150
Slice 20	204	$1,736.8878$	0	$6,086.5979$	964.0224	150
Slice 21	221.5	$1,739.3298$	0	$6,011.597$	952.14343	150
Slice 22	229.5	$1,740.5193$	0	$5,967.4133$	945.14541	150
Slice 23	240	$1,742.2002$	0	$5,945.5174$	941.67745	150
Slice 24	262	$1,745.9583$	0	$5,878.3605$	931.04083	150
Slice 25	281.58431	$1,749.5305$	0	$5,806.6062$	919.67608	150
Slice 26	288.58431	$1,750.8774$	0	$5,623.0211$	$2,046.6123$	0
Slice 27	291	$1,751.3578$	0	$5,625.3534$	$2,047.4612$	0
Slice 28	303.25	$1,753.8925$	0	$5,608.1025$	$2,041.1824$	0
Slice 29	323.75	$1,758.3249$	0	$5,551.3661$	$2,020.532$	0
Slice 30	343.5	$1,762.8931$	0	$5,446.5927$	$1,982.3976$	0
Slice	363	$1,767.7082$	0	$5,131.633$	$1,867.7617$	0

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/14/2016

1 - Circular							Page 7 of 7
31							
$\begin{aligned} & \text { Slice } \\ & 32 \end{aligned}$	385	1,773.51	0	4,474.106	1,628.4414	0	
$\begin{aligned} & \text { Slice } \\ & 33 \end{aligned}$	413	1,781.4709	0	4,076.1201	1,483.5864	0	
$\begin{aligned} & \hline \text { Slice } \\ & 34 \\ & \hline \end{aligned}$	442.25	1,790.3816	0	3,897.4706	1,418.5633	0	
$\begin{aligned} & \text { Slice } \\ & 35 \end{aligned}$	468.75	1,799.0893	0	3,493.0032	1,271.3492	0	
$\begin{aligned} & \text { Slice } \\ & 36 \end{aligned}$	495.36643	1,808.4278	0	3,301.8007	1,201.7572	0	
$\begin{aligned} & \hline \text { Slice } \\ & 37 \\ & \hline \end{aligned}$	523.86643	1,819.1192	0	2,655.782	1,724.685	200	
$\begin{aligned} & \hline \text { Slice } \\ & 38 \\ & \hline \end{aligned}$	555	1,831.6004	0	1,976.7156	1,283.6941	200	
$\begin{aligned} & \text { Slice } \\ & 39 \end{aligned}$	585	1,844.4137	0	1,341.458	871.15303	200	
$\begin{aligned} & \text { Slice } \\ & 40 \\ & \hline \end{aligned}$	605.59662	1,853.639	0	480.20556	311.84914	200	

file://P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/14/2016

2-Translational

2 - Translational

eport generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLoPE International Ltd.

File Information
File Version: 8.15
File Version: 8.15
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexand
Revision Number: 160
Revision Number.
Date: $3 / 14 / 2016$
Time: 5:56:57 PM
Tool Version: 8.15.5.11777
File Name: Section $34-34$ Static SSA for Skyline Ranch.gsz
Directory: P:IFINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section 34-34 results\}
Last Solved Date: 3/14/2016
Last Solved Time: 6:27:12 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(f) Units: Pounds
Pressure(p) Units: ps
Unit Weight of Water: 62.4 pcf
View: 2D
Element Thickness: 1

Analysis Settings

2 - Translational

Kind: SLOPE/W
Method: Janbu
Settings
PWP Conditions Source: (none)
Slip Surface
Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Block
Resisting Side Maximum Convex Angle: 1°
Driving Side Maximum Convex Angle: 5°
Restrict Block Crossing: №
Optimize Critical Slip Surface Location: №
Tension Crack
Tension Crack Option: (none)
Stribution
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
Minimum Slip Surface Depth: 0.1 ft

2 - Translational

Materials
TQs
Model: Anisotropic Fn
Unit Weight: 120 pc
Cohesion': 225 psf
Phi-Anisotropic Strength Fn.: 11° (TQs Along Bedding $10^{\circ}-25^{\circ}$)
C-Anisotropic Strength Fn.: 150 pcf (TQs Along Bedding 10-25 ${ }^{\circ}$)
Phi-B: 0
Qls
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 0 psf
Phi': 20

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33°
Phi-B: 0°
Clay
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 150 ps
Phi: ${ }^{\circ}{ }^{\circ}$
Tmc
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion
Phi': 40
Phi-Anisotropic Strength Fn.: 12° (Tmc Along Bedding 10-25 ${ }^{\circ}$)
C-Anisotropic Strength Fn.: 150 pcf (Tmc Along Bedding 10-25)
Phi-B: 0°

Slip Surface Limits
Left Coordinate: (-200, 1,738) tt
Right Coordinate: $(809,1,600)$

Slip Surface Block
Left Grid
Upper Left: (-113.3841, 1,716.1673) ft
Lower Left: (-112.1694, 1,683.1928) ft
Lower Right: (512.8207, 1,778.1756) ft
X Increments: 10
Increments: 10
Starting Angle: 135°

2-Translational

Ending Angle: 180°
Ending Angle: 180°
Angle Increments: 2
Right Grid
Upper Left: (515.9588, 1,809.2079) ft
Lower Left: (524.9799, 1,784.4482) ft
Lower Right: (719.9715, 1,820.9519) ft
X Increments: 10
Y Increments: 10
Starting Angle: 45°
Ending Angle: 65°
Angle Increments: 2

Seismic Coefficients

Horz Seismic Coef.: 0
Vert Seismic Coef.: 0

Anisotropic Strength Functions

12° (Tmc Along Bedding $10-25^{\circ}$)
Model: Spline Data Point Function
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100% Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(9.9,1)$
Data Point: $(10,0.3)$
Data Point: $(25,0.3$
Data Point: $(25.1,1)$
150 pcf (Tmc Along Bedding 10-25 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(9.9,1)$
Data Point: $(10,0.75)$
Data Point: $(25.1,1)$
$11{ }^{\circ}$ (TQs Along Bedding $10^{\circ}-25^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(9.9,1)$
Data Point: ($25,0.275$)

Data Point: (25.1, 1)
150 pcf (TQs Along Bedding $10-25^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segcept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(9.9,1)$
Data Point. $(10,0.667)$
Data Point: $(25.1,1)$

Points

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$
Point 1	-200	1,778
Point 2	-153	1,722
Point 3	-112	1,710
Point 4	-26	1,712
Point 5	92	1,723
Point 6	215	1,738
Point 7	337	1,756
Point 8	466	1,781
Point 9	530	1,792
Point 10	627	1,816
Point 11	710	1,836
Point 12	767	1,835
Point 13	808	1,853
Point 14	809	1,600
Point 15	-200	1,600
Point 16	-42	1,730
Point 17	-2	1,746
Point 18	71	1,752
Point 19	140	1,755
Point 20	156	1,763
Point 21	186	1,760
Point 22	193	1,768
Point 23	228	1,778
Point 24	249	1,786
Point 25	275	1,798
Point 26	289	1,802
Point 27	334	1,802
Point 28	373	1,807
Point 29	397	1,821
Point 30	429	1,831
Point 31	482	1,840
Point 32	-182	1,7318723
Point 33	-138	1,733
Point 34	-106	1,740

Point 35	-67	1,754
Point 36	-25	1,765
Point 37	6	1,773
Point 38	108	1,776
Point 39	171	1,790
Point 40	231	1,798
Point 41	293	1,810
Point 42	353	1,820
Point 43	539	1,849
Point 44	571	1,856
Point 45	599	1,862
Point 46	661	1,837
Point 47	-106	$1,711.7143$
Point 48	-69	1,713
Point 49	-26	1,714
Point 50	39	1,720
Point 51	92	1,725
Point 52	215	1,740
Point 53	337	1,758
Point 54	466	1,783
Point 55	528	1,794
Point 56	38.3636	1,718
Point 57	-69	1,711
Point 58	497	1,756
Point 59	647	1,756
Point 60	808.3834	1,756

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs	$13,12,11,10,9,8,7,58,59,60$	22,189
Region 2	Qls	$31,30,29,28,27,26,25,24,23,22,21,20,19,18,17,16,47,48,49,50,51,52,53,54,55$	21,534
Region 3	Fill	$32,33,34,35,36,37,38,39,40,41,42,29,28,27,26,25,24,23,22,21,20,19,18,17,16,47,3,2$	11,851
Region 4	Fill	$31,43,44,45,46,11,10,9,55$	7,412
Region 5	Clay	$47,3,57,4,56,5,6,7,7,9,95,54,53,52,51,50,49,48$	$1,274.4$
Region 6	Tmc	$7,6,5,56,4,57,3,2,32,1,15,14,60,59,58$	$1.4185 \mathrm{e}+005$

Current Slip Surface

Slip Surface: 18,976
Fof $\mathrm{S}: 2.03$
Wolume: $19,868.061 \mathrm{ft}^{3}$
Resisting Force: 580,155 . 77 Ib
Resisting Force: $580,155.7 \mathrm{lbs}$
Activating Force: $285,492.6 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 131,769 slip surface

F of S Rank (Query): 1 of 15 slip surfaces
Exit: (157.5888, 1,787.0197) ft
Entry: (590.59677, 1,860. 1993) ft
Radius: 189.22041 ft
Center: (364.81712, 1,878.4942) ft
Slip Slices

	X (ft)	Y (ft)	$\begin{aligned} & \text { PWP } \\ & \text { (psf) } \end{aligned}$	$\begin{aligned} & \text { Base Normal Stress } \\ & \text { (psf) } \end{aligned}$	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	164.2944	1,784.2422	0	637.4732	413.97993	200
Slice 2	178.05442	1,778.5426	0	1,762.2363	1,144.4096	200
Slice 3	192.16327	1,772.6985	0	2,830.9633	1,838.4491	200
Slice 4	206.41327	1,766.796	0	3,511.2869	1,278.0039	0
Slice 5	220.80442	1,760.835	0	4,315.1451	1,570.5844	0
Slice 6	229.5	1,757.2331	0	4,797.7743	1,746.2471	0
Slice 7	240	1,752.8839	0	5,432.9284	1,977.4242	0
Slice 8	252.68451	1,747.6298	0	6,207.9552	2,259.5109	0
Slice 9	258.14916	1,745.3663		6,283.2813	995.17399	150
$\begin{aligned} & \hline \text { Slice } \\ & 10 \end{aligned}$	261.31624	1,744.0544	0	7,579.9393	6,360.3242	200
Slice 11	268.85159	1,744.6263	0	6,165.4235	1,310.5012	150
$\begin{aligned} & \hline \text { Slice } \\ & 12 \end{aligned}$	282	1,747.0778	0	6,119.5675	1,300.7542	150
$\begin{aligned} & \hline \text { Slice } \\ & 13 \\ & \hline \end{aligned}$	291	1,748.7558	0	6,113.9048	1,299.5506	150
$\begin{aligned} & \hline \text { Slice } \\ & 14 \\ & \hline \end{aligned}$	297.87724	1,750.038	0	6,124.1259	1,301.7232	150
$\begin{aligned} & \text { Slice } \\ & 15 \end{aligned}$	310.56586	1,752.4038	0	6,167.3856	976.81791	150
$\begin{aligned} & \hline \text { Slice } \\ & 16 \\ & \hline \end{aligned}$	326.18862	1,755.3166	0	6,188.255	980.1233	150
$\begin{aligned} & \hline \text { Slice } \\ & 17 \\ & \hline \end{aligned}$	335.5	1,757.0527	0	6,196.9024	981.49293	150
$\begin{aligned} & \hline \text { Slice } \\ & 18 \end{aligned}$	345	1,758.8239	0	6,185.5834	979.70016	150
$\begin{aligned} & \text { Slice } \\ & 19 \end{aligned}$	363	1,762.18	0	5,993.8874	949.3385	150
$\begin{aligned} & \text { Slice } \\ & 20 \end{aligned}$	379	1,765.1631	0	5,648.593	894.64924	150
$\begin{aligned} & \hline \text { Slice } \\ & 21 \\ & \hline \end{aligned}$	391	1,767.4005	0	5,322.3324	842.97463	150
$\begin{aligned} & \hline \text { Slice } \\ & 22 \\ & \hline \end{aligned}$	405	1,770.0108	0	5,258.5975	832.88003	150
$\begin{aligned} & \hline \text { Slice } \\ & 23 \\ & \hline \end{aligned}$	421	1,772.9939	0	5,457.3885	864.36543	150
$\begin{aligned} & \text { Slice } \\ & 24 \end{aligned}$	435.16667	1,775.6353	0	5,546.6724	878.5066	150
$\begin{aligned} & \text { Slice } \\ & 25 \end{aligned}$	447.5	1,777.9348	0	5,526.4491	875.30355	150
$\begin{aligned} & \text { Slice } \\ & 26 \end{aligned}$	459.83333	1,780.2343	0	5,506.2258	872.10049	150
$\begin{aligned} & \hline \text { Slice } \\ & 27 \\ & \hline \end{aligned}$	474	1,782.8756	0	5,482.9964	868.42131	150

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/14/2016
2 - Translational

Slice 28	488.71226	$1,785.6187$	0	$5,604.2002$	887.61811	150
Slice 29	502.13678	$1,788.1217$	0	$5,872.8433$	930.167	150
Slice 30	515.56131	$1,790.6246$	0	$6,141.4865$	972.7159	150
Slice 31	522.94701	$1,792.5495$	0	$5,812.1572$	920.55526	150
Slice 32	524.90959	$1,794.5121$	0	$5,273.882$	$1,919.5361$	0
Slice 33	532.59937	$1,802.2019$	0	$4,087.5481$	$2,654.4848$	200
Slice 34	547	$1,816.6025$	0	$3,029.4351$	$1,967.3381$	200
Slice 35	563	$1,832.6025$	0	$1,893.1461$	$1,229.4235$	200
Slice 36	580.79838	$1,850.4009$	0	625.1631	405.98566	200

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/14/2016

2-Translational

2 - Translational

Eeport generated using Geostudio 2012. Copyright © 1991-2016 GEO-SLOPE International Ltd.

File Information
File Version: 8.15
Title: Static
Title: Static Slope Stability Analyses for Skyline Ranch Development project, Tract 60922, Los Angeles CA
Comments: Run By: Dr. Alexander Bykovtsev, Ph.D., P.E.
Last Edited By: Alexand
Revision Number: 169
Revision Number.
Date: $3 / 14 / 2016$
Time: 6:48:09 PM
Tool Version: 8.15.5.11777
File Name: Section 34-34 Pseudostatic SSA for Skyline Ranch.gsz
Directory: P:\/FINAL PROJECTS\PARDEE\Skyline Ranch\SLOPE RESULTS\Section $34-34$ results\}
Last Solved Date: 3/14/2016
Last Solved Time: 6:48:11 PM

Project Settings

Length(L) Units: Feet
Time(t) Units: Seconds
Force(f) Units: Pounds
Pressure(p) Units: ps
Strength Units: psf
Unit Weight of Water: 62.4 pcf
View: 2D Wate
Element Thickness: 1

Analysis Settings

2 - Translational

Kind: SLOPE/W
Method: Spencer
Settings
PWP Conditions Source: (none)
Initial Slip Surface Source: Other GeoStudio Analysis
Slip Surface Other Analysis: ".|Section 34-34 Static SSA for Skyline Ranch.gsz" - 2 - Translational [(last)]

Slip Surface

Direction of movement: Right to Left
Use Passive Mode: No
Slip Surface Option: Critical Slip Surfaces from Othe
Critical slip surfaces saved: 10
Resisting Side Maximum Convex Angle: 1
Driving Side Maximum Convex Angle: 5°
Optimize Critical Slip Surface Location: №
Tension Crack
Tension Crack Option: (none)
F of S Distribution
F of S Calculation Option: Constant
Advanced
Number of Slices: 30
Minimum Slip Surface Depth: 0.1 ft

2 - Translational

Search Method: Root Finder
Tolerable difference between starting and converged F of $\mathrm{S}: 3$
Maximum iterations to calculate converged lambda: 20
Max Absolute Lambda: 2

Materials

TQs
Model. Anisotropic Fn
Unit Weight: 120 pcf
Cohesion':
Phi': 40°
Phi': 40°
Phi-Anisotropic Strength Fn.: 11° (TQs Along Bedding $10^{\circ}-25^{\circ}$)
Phi-Anisotropic Strength Fn.: $11^{\circ}\left(\right.$ TQS Along Bedding $\left.10^{\circ}-25^{\circ}\right)$
C-Anisotropic Strength Fn.: 150 pcf (TQs Along Bedding $10-25^{\circ}$)
Phi-B: 0°
Qls
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 0 psf
Phi': 20°

Fill
Model: Mohr-Coulomb
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi': 33
lay
Model: Mohr-Coulomb
Unit Weight: 100 pcf
Cohesion': 150 psf
Phi': 9°
Phi-B: 0°
Tmc
Model: Anisotropic Fn
Unit Weight: 120 pcf
Cohesion': 200 psf
Phi-Anisotropic Strength Fn.: 12° (Tmc Along Bedding 10-25
C-Anisotropic Strength Fn.: 150 pcf (Tmc Along Bedding 10-25 ${ }^{\circ}$) Phi-B: 0

Slip Surface Limits
 Left Coordinate: $(-200,1,738)$ t
 Right Coordinate: $(809,1,600) \mathrm{ft}$

Seismic Coefficients

Horz Seismic Coef.: 0.1
Vert Seismic Coef.: 0

Anisotropic Strength Functions

12° (Tmc Along Bedding 10-25 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination Curve Fit to Data: 100%
Segment Curvature: 0%
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: (-90, 1)
Data Point: $(9.9,1)$
Data Point: $(10,0.3)$
Data Point: ($25,0.3$)
Data Point: $(25.1,1)$
150 pcf (Tmc Along Bedding 10-25 ${ }^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: $(-90,1)$
Data Point: $(9.9,1)$
Data Point: $(10,0.75)$
Data Point: (25.1, 1)
11° (TQs Along Bedding $10^{\circ}-25^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0\%
Y-Intercept:1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor Data Point: $(-90,1)$
Data Point: $(9.9,1)$
Data Point: $(10,0.275)$
Data Point: ($10,0.275$)
Data Point: $(25,0.275)$
Data Point: (25.1, 1)
150 pcf (TQs Along Bedding $10-25^{\circ}$)
Model: Spline Data Point Function
Function: Modifier Factor vs. Inclination
Curve Fit to Data: 100%
Segment Curvature: 0%
Y-Intercept: 1
Data Points: Inclination (${ }^{\circ}$), Modifier Factor
Data Point: $(-90,1)$
Data Point: $(9.9,1)$
Data Point: $(10,0.667)$
Data Point: $(25,0.667)$
Data Point: $(25.1,1)$

Points

	$\mathrm{X}(\mathrm{ft})$	Y (ft)
Point 1	-200	1,738
Point 2	-153	1,722
Point 3	-112	1,710
Point 4	-26	1,712
Point 5	92	1,723
Point 6	215	1,738
Point 7	337	1,756
Point 8	466	1,781
Point 9	530	1,792
Point 10	627	1,816
Point 11	710	1,836
Point 12	767	1,835
Point 13	808	1,853
Point 14	809	1,600
Point 15	-200	1,600
Point 16	-42	1,730
Point 17	-2	1,746
Point 18	71	1,752
Point 19	140	1,755
Point 20	156	1,763
Point 21	186	1,760
Point 22	193	1,768
Point 23	228	1,778
Point 24	249	1,786
Point 25	275	1,798
Point 26	289	1,802
Point 27	334	1,802
Point 28	373	1,807
Point 29	397	1,821
Point 30	429	1,831
Point 31	482	1,840
Point 32	-182	1,731.8723
Point 33	-138	1,733
Point 34	-106	1,740
Point 35	-67	1,754
Point 36	-25	1,765
Point 37	6	1,773
Point 38	108	1,776
Point 39	171	1,790
Point 40	231	1,798
Point 41	293	1,810
Point 42	353	1,820
Point 43	539	1,849
Point 44	571	1,856
Point 45	599	1,862
Point 46	661	1,837

Point 47	-106	$1,711.7143$
Point 48	-69	1,713
Point 49	-26	1,714
Point 50	39	1,720
Point 51	92	1,725
Point 52	215	1,740
Point 53	337	1,758
Point 54	466	1,783
Point 55	528	1,794
Point 56	38.3636	1,718
Point 57	-69	1,711
Point 58	497	1,756
Point 59	647	1,756
Point 60	808.3834	1,756

Regions

	Material	Points	Area $\left(\mathrm{ft}^{2}\right)$
Region 1	TQs	$13,12,11,10,9,8,7,58,59,60$	22,189
Region 2	Qls	$31,30,29,28,27,26,25,24,23,22,21,20,19,18,17,16,47,48,49,50,51,52,53,54,55$	21,534
Region 3	Fill	$32,33,34,35,36,37,38,39,40,41,42,29,28,27,26,25,24,23,22,21,20,19,18,17,16,47,3,2$	11,851
Region 4	Fill	$31,43,44,45,46,11,10,9,55$	7,412
Region 5	Clay	$47,3,57,4,56,5,6,7,8,9,55,54,53,52,51,50,49,48$	$1,274.4$
Region 6	Tmc	$7,6,5,56,4,57,3,2,32,1,15,14,60,59,58$	$1.4185 \mathrm{e}+005$

Current Slip Surface

Slip Surface: 4
F of S: 1.18
Volume: $22,880.08 \mathrm{ft}^{3}$
Weight: $2,464,111.4 \mathrm{lbs}$
Resisting Moment: $1.0284906 \mathrm{e}+008 \mathrm{lbs}$-ft
Activating Moment: $86,923,335 \mathrm{lbs}-\mathrm{ft}$
Resisting Force: $688,887.8 \mathrm{lbs}$
Resisting Force: $688,887.88 \mathrm{lbs}$
Activating Force: $582,224.48 \mathrm{lbs}$
F of S Rank (Analysis): 1 of 10 slip surface
F of S Rank (Query): 1 of 10 slip surfaces
Exit: ($157.5888,1,787.0197$) ft
Entry: (619.1507, 1,853.8747) ft
Radius: 194.07119 ft
Center: $(381.10704,1,870.5885) \mathrm{ft}$
Slip Slices

	$X(\mathrm{ft})$	$\mathrm{Y}(\mathrm{ft})$	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
Slice 1	164.2944	$1,784.2422$	0	$1,047.907$	680.51874	200
Slice 2	178.05442	$1,778.5426$	0	$2,695.7509$	$1,750.6411$	200

Slice 3	192.16327	$1,772.6985$	0	$4,261.4981$	$2,767.4492$	200
Slice 4	206.41327	$1,766.796$	0	$4,353.7437$	$1,584.6331$	0
Slice 5	220.80442	$1,760.835$	0	$5,350.4701$	$1,947.4119$	0
Slice 6	229.5	$1,757.2331$	0	$5,948.8962$	$2,165.2212$	0
Slice 7	240	$1,752.8839$	0	$6,736.4412$	$2,451.8641$	0
Slice 8	252.68451	$1,747.6298$	0	$7,697.4185$	$2,801.6312$	0
Slice 9	258.14916	$1,745.3663$	0	$7,146.1451$	$1,131.8382$	150
Slice 10	261.31624	$1,744.0544$	0	$12,962.851$	$10,877.123$	200
Slice 11	268.85159	$1,744.5762$	0	$5,925.6355$	$1,259.5327$	150
Slice 12	282	$1,746.9205$	0	$5,893.805$	$1,252.7669$	150
Slice 13	291	$1,748.5252$	0	$5,896.6499$	$1,253.3716$	150
Slice 14	303.18414	$1,750.6976$	0	$5,920.5055$	$1,258.4423$	150
Slice 15	323.68414	$1,754.3526$	0	$5,948.9415$	942.21978	150
Slice 16	335.5	$1,756.4594$	0	$5,969.3885$	945.45825	150
Slice 17	345	$1,758.1532$	0	$5,965.8792$	944.90243	150
Slice 18	363	$1,761.3625$	0	$5,797.2114$	918.18809	150
Slice 19	378.44304	$1,764.116$	0	$5,494.8265$	870.29501	150
Slice 20	390.44304	$1,7666.2555$	0	$5,199.7517$	$1,010.7293$	150.075
Slice 21	405	$1,768.851$	0	$5,139.9996$	999.11471	150.075
Slice 22	421	$1,771.7037$	0	$5,346.2378$	$1,039.2034$	150.075
Slice 23	438.25	$1,774.7794$	0	$5,444.6804$	$1,058.3387$	150.075
Slice 24	456.75	$1,778.0779$	0	$5,435.3277$	$1,056.5207$	150.075
Slice 25	474	$1,781.1535$	0	$5,423.3141$	$1,054.1855$	150.075
Slice 26	489.66667	$1,783.9468$	0	$5,567.044$	$1,082.1237$	150.075
Slice 27	505	$1,786.6807$	0	$5,869.1789$	$1,140.8528$	150.075
Slice 28	520.33333	$1,789.4146$	0	$6,171.3137$	$1,199.5819$	150.075
Slice 29	529	$1,790.9598$	0	$6,342.085$	$1,232.7764$	150.075
Slice 30	534.5	$1,791.9404$	0	$6,351.4472$	$1,234.5963$	150.075
Slice 31	547	$1,794.1691$	0	$6,377.5625$	$1,239.6726$	150.075
Slice 32	563	$1,797.0219$	0	$6,450.4781$	$1,253.8459$	150.075
Slice	576.33658	$1,799.3998$	0	$6,508.5723$	$1,265.1383$	150.075

file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/14/2016

2-Translational							Page 7 of 7
33							
$\begin{aligned} & \text { Slice } \\ & 334 \end{aligned}$	583.55076	1,803.0327	0	2,887.3957	2,422.8127	225	
$\begin{aligned} & \text { Slice } \\ & 35 \end{aligned}$	592.21418	1,815.4054	0	2,566.0884	1,666.4373	200	
$\begin{array}{\|l\|} \hline \text { Slice } \\ 36 \\ \hline \end{array}$	609.07535	1,839.4856	0	986.83337	640.85708	200	

APPENDIX E

LGC VALLEY, INC.

General Earthwork and Grading Specifications For Rough Grading

1.0 General

1.1 Intent: These General Earthwork and Grading Specifications are for the grading and earthwork shown on the approved grading plan(s) and/or indicated in the geotechnical report(s). These Specifications are a part of the recommendations contained in the geotechnical report(s). In case of conflict, the specific recommendations in the geotechnical report shall supersede these more general Specifications. Observations of the earthwork by the project Geotechnical Consultant during the course of grading may result in new or revised recommendations that could supersede these specifications or the recommendations in the geotechnical report(s).
1.2 The Geotechnical Consultant of Record: Prior to commencement of work, the owner shall employ a qualified Geotechnical Consultant of Record (Geotechnical Consultant). The Geotechnical Consultant shall be responsible for reviewing the approved geotechnical report(s) and accepting the adequacy of the preliminary geotechnical findings, conclusions, and recommendations prior to the commencement of the grading.

Prior to commencement of grading, the Geotechnical Consultant shall review the "work plan" prepared by the Earthwork Contractor (Contractor) and schedule sufficient personnel to perform the appropriate level of observation, mapping, and compaction testing.

During the grading and earthwork operations, the Geotechnical Consultant shall observe, map, and document the subsurface exposures to verify the geotechnical design assumptions. If the observed conditions are found to be significantly different than the interpreted assumptions during the design phase, the Geotechnical Consultant shall inform the owner, recommend appropriate changes in design to accommodate the observed conditions, and notify the review agency where required.

The Geotechnical Consultant shall observe the moisture-conditioning and processing of the subgrade and fill materials and perform relative compaction testing of fill to confirm that the attained level of compaction is being accomplished as specified. The Geotechnical Consultant shall provide the test results to the owner and the Contractor on a routine and frequent basis.

LGC Valley, Inc.

General Earthwork and Grading Specifications
Page 1 of 6
1.3 The Earthwork Contractor: The Earthwork Contractor (Contractor) shall be qualified, experienced, and knowledgeable in earthwork logistics, preparation and processing of ground to receive fill, moisture-conditioning and processing of fill, and compacting fill. The Contractor shall review and accept the plans, geotechnical report(s), and these Specifications prior to commencement of grading. The Contractor shall be solely responsible for performing the grading in accordance with the project plans and specifications. The Contractor shall prepare and submit to the owner and the Geotechnical Consultant a work plan that indicates the sequence of earthwork grading, the number of "equipment" of work and the estimated quantities of daily earthwork contemplated for the site prior to commencement of grading. The Contractor shall inform the owner and the Geotechnical Consultant of changes in work schedules and updates to the work plan at least 24 hours in advance of such changes so that appropriate personnel will be available for observation and testing. . The Contractor shall not assume that the Geotechnical Consultant is aware of all grading operations.

The Contractor shall have the sole responsibility to provide adequate equipment and methods to accomplish the earthwork in accordance with the applicable grading codes and agency ordinances, these Specifications, and the recommendations in the approved geotechnical report(s) and grading plan(s). If, in the opinion of the Geotechnical Consultant, unsatisfactory conditions, such as unsuitable soil, improper moisture condition, inadequate compaction, insufficient buttress key size, adverse weather, etc., are resulting in a quality of work less than required in these specifications, the Geotechnical Consultant shall reject the work and may recommend to the owner that construction be stopped until the conditions are rectified. It is the contractor's sole responsibility to provide proper fill compaction.

2.0 Preparation of Areas to be Filled

2.1 Clearing and Grubbing: Vegetation, such as brush, grass, roots, and other deleterious material shall be sufficiently removed and properly disposed of in a method acceptable to the owner, governing agencies, and the Geotechnical Consultant.

The Geotechnical Consultant shall evaluate the extent of these removals depending on specific site conditions. Earth fill material shall not contain more than 1 percent of organic materials (by volume). No fill lift shall contain more than 10 percent of organic matter. Nesting of the organic materials shall not be allowed.

If potentially hazardous materials are encountered, the Contractor shall stop work in the affected area, and a hazardous material specialist shall be informed immediately for proper evaluation and handling of these materials prior to continuing to work in that area.

As presently defined by the State of California, most refined petroleum products (gasoline, diesel fuel, motor oil, grease, coolant, etc.) have chemical constituents that are considered to be hazardous waste. As such, the indiscriminate dumping or spillage of these fluids onto the ground may constitute a misdemeanor, punishable by fines and/or imprisonment, and shall not be allowed. The contractor is responsible for all hazardous waste relating to his work. The Geotechnical Consultant does not have expertise in this area. If hazardous waste is a concern, then the Client should acquire the services of a qualified environmental assessor.
2.2 Processing: Existing ground that has been declared satisfactory for support of fill by the Geotechnical Consultant shall be scarified to a minimum depth of 6 inches. Existing ground that is not satisfactory shall be overexcavated as specified in the following section. Scarification shall continue until soils are broken down and free from oversize material and the working surface is reasonably uniform, flat, and free from uneven features that would inhibit uniform compaction.
2.3 Overexcavation: In addition to removals and overexcavations recommended in the approved geotechnical report(s) and the grading plan, soft, loose, dry, saturated, spongy, organic-rich, highly fractured or otherwise unsuitable ground shall be overexcavated to competent ground as evaluated by the Geotechnical Consultant during grading.
2.4 Benching: Where fills are to be placed on ground with slopes steeper than 5:1 (horizontal to vertical units), the ground shall be stepped or benched. Please see the Standard Details for a graphic illustration. The lowest bench or key shall be a minimum of 15 feet wide and at least 2 feet deep, into competent material as evaluated by the Geotechnical Consultant. Other benches shall be excavated a minimum height of 4 feet into competent material or as otherwise recommended by the Geotechnical Consultant. Fill placed on ground sloping flatter than $5: 1$ shall also be benched or otherwise overexcavated to provide a flat subgrade for the fill.
2.5 Evaluation/Acceptance of Fill Areas: All areas to receive fill, including removal and processed areas, key bottoms, and benches, shall be observed, mapped, elevations recorded, and/or tested prior to being accepted by the Geotechnical Consultant as suitable to receive fill. The Contractor shall obtain a written acceptance from the Geotechnical Consultant prior to fill placement. A licensed surveyor shall provide the survey control for determining elevations of processed areas, keys, and benches.
3.1 General: Material to be used as fill shall be essentially free from organic matter and other deleterious substances evaluated and accepted by the Geotechnical Consultant prior to placement. Soils of poor quality, such as those with unacceptable gradation, high expansion potential, or low strength shall be placed in areas acceptable to the Geotechnical Consultant or mixed with other soils to achieve satisfactory fill material.
3.2 Oversize: Oversize material defined as rock, or other irreducible material with a maximum dimension greater than 8 inches, shall not be buried or placed in fill unless location, materials, and placement methods are specifically accepted by the Geotechnical Consultant. Placement operations shall be such that nesting of oversized material does not occur and such that oversize material is completely surrounded by compacted or densified fill. Oversize material shall not be placed within 10 vertical feet of finish grade or within 2 feet of future utilities or underground construction.
3.3 Import: If importing of fill material is required for grading, proposed import material shall meet the requirements of Section 3.1. The potential import source shall be given to the Geotechnical Consultant at least 48 hours (2 working days) before importing begins so that its suitability can be determined and appropriate tests performed.

4.0 Fill Placement and Compaction

4.1 Fill Layers: Approved fill material shall be placed in areas prepared to receive fill (per Section 3.0) in near-horizontal layers not exceeding 8 inches in loose thickness. The Geotechnical Consultant may accept thicker layers if testing indicates the grading procedures can adequately compact the thicker layers. Each layer shall be spread evenly and mixed thoroughly to attain relative uniformity of material and moisture throughout.
4.2 Fill Moisture Conditioning: Fill soils shall be watered, dried back, blended, and/or mixed, as necessary to attain a relatively uniform moisture content at or slightly over optimum. Maximum density and optimum soil moisture content tests shall be performed in accordance with the American Society of Testing and Materials (ASTM Test Method D1557-12).
4.3 Compaction of Fill: After each layer has been moisture-conditioned, mixed, and evenly spread, it shall be uniformly compacted to not less than 90 percent of maximum dry density (ASTM Test Method D1557-12). Compaction equipment shall be adequately sized and be either specifically designed for soil compaction or of proven reliability to efficiently achieve the specified level of compaction with uniformity.
4.4 Compaction of Fill Slopes: In addition to normal compaction procedures specified above, compaction of slopes shall be accomplished by backrolling of slopes with sheepsfoot rollers at increments of 3 to 4 feet in fill elevation, or by other methods producing satisfactory results acceptable to the Geotechnical Consultant. Upon completion of grading, relative compaction of the fill, out to the slope face, shall be at least 90 percent of maximum density per ASTM Test Method D1557-12.
4.5 Compaction Testing: Field tests for moisture content and relative compaction of the fill soils shall be performed by the Geotechnical Consultant. Location and frequency of tests shall be at the Consultant's discretion based on field conditions encountered. Compaction test locations will not necessarily be selected on a random basis. Test locations shall be selected to verify adequacy of compaction levels in areas that are judged to be prone to inadequate compaction (such as close to slope faces and at the fill/bedrock benches).
4.6 Frequency of Compaction Testing: Tests shall be taken at intervals not exceeding 2 feet in vertical rise and/or 1,000 cubic yards of compacted fill soils embankment. In addition, as a guideline, at least one test shall be taken on slope faces for each 5,000 square feet of slope face and/or each 10 feet of vertical height of slope. The Contractor shall assure that fill construction is such that the testing schedule can be accomplished by the Geotechnical Consultant. The Contractor shall stop or slow down the earthwork construction if these minimum standards are not met.
4.7 Compaction Test Locations: The Geotechnical Consultant shall document the approximate elevation and horizontal coordinates of each test location. The Contractor shall coordinate with the project surveyor to assure that sufficient grade stakes are established so that the Geotechnical Consultant can determine the test locations with sufficient accuracy. At a minimum, two grade stakes within a horizontal distance of 100 feet and vertically less than 5 feet apart from potential test locations shall be provided.

5.0 Subdrain Installation

Subdrain systems shall be installed in accordance with the approved geotechnical report(s), the grading plan, and the Standard Details. The Geotechnical Consultant may recommend additional subdrains and/or changes in subdrain extent, location, grade, or material depending on conditions encountered during grading. All subdrains shall be surveyed by a land surveyor/civil engineer for line and grade after installation and prior to burial. Sufficient time should be allowed by the Contractor for these surveys.

6.0 Excavation

Excavations, as well as over-excavation for remedial purposes, shall be evaluated by the Geotechnical Consultant during grading. Remedial removal depths shown on geotechnical plans are estimates only. The actual extent of removal shall be determined by the Geotechnical Consultant based on the field evaluation of exposed conditions during grading. Where fill-over-cut slopes are to be graded, the cut portion of the slope shall be made, evaluated, and accepted by the Geotechnical Consultant prior to placement of materials for construction of the fill portion of the slope, unless otherwise recommended by the Geotechnical Consultant.

7.0 Trench Backfills

7.1 The Contractor shall follow all OHSA and $\mathrm{Cal} / \mathrm{OSHA}$ requirements for safety of trench excavations.
7.2 All bedding and backfill of utility trenches shall be done in accordance with the applicable provisions of Standard Specifications of Public Works Construction. Bedding material shall have a Sand Equivalent greater than 30 (SE>30). The bedding shall be placed to 1 foot over the top of the conduit and densified by jetting. Backfill shall be placed and densified to a minimum of 90 percent of maximum from 1 foot above the top of the conduit to the surface.
7.3 The jetting of the bedding around the conduits shall be observed by the Geotechnical Consultant.
7.4 The Geotechnical Consultant shall test the trench backfill for relative compaction. At least one test should be made for every 300 feet of trench and 2 feet of fill.
7.5 Lift thickness of trench backfill shall not exceed those allowed in the Standard Specifications of Public Works Construction unless the Contractor can demonstrate to the Geotechnical Consultant that the fill lift can be compacted to the minimum relative compaction by his alternative equipment and method.

Fill Slope

* Construct Cut Slope First

TYPICAL BUTTRESS DETAIL

Appendix B. Traffic Study and Memo

Appendices

This page intentionally left blank.

Skyline Ranch (Revised VTTM 060922) On-Site Roadway Analysis

Stantec

Prepared for:
TRI Pointe Group

Prepared by:
Stantec Consulting Services Inc.

October 18, 2016

Sign-off Sheet

This document entitled Skyline Ranch (Revised VTTM 060922) On-Site Roadway Analysis was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of TRI Pointe Group (the "Client").

Sandhya Perumalla

(949) 923-6074

Reviewed by

Daryl Zerfass, PE, PTP
(949) 923-6058
Table of Contents
1.0 INTRODUCTION 1
2.0 TRIP GENERATION 1
3.0 CONCLUSION 10
LIST OF TABLES
Table 1 Land Use and Trip Generation Summary - Current Project 3
Table 2 Land Use and Trip Generation Summary - Previously Approved (2008) 3
Table 3 LOS \& Delay Summary at Roundabouts 8
Table 4 Queue Lengths for Each Leg of Roundabouts 9
Table 5 LOS, Delay \& Queue Summary at School and Park 9
LIST OF FIGURES
Figure 1 Proposed Conceptual Site Plan 2
Figure 2 Conceptual Striping Exhibit 5
Figure 3 AM Peak Hour Turning Movement Volumes 6
Figure 4 PM Peak Hour Turning Movement Volumes 7
Figure 5 Peak Hour Signal Warrant 8
LIST OF APPENDICES
APPENDIX A SIDRA WORKSHEETS A. 1
APPENDIX B SYNCHRO/SIMTRAFFIC WORKSHEET B. 1

SKYLINE RANCH (REVISED VITM 060922) ON-SITE ROADWAY ANALYSIS

INTRODUCTION
October, 2016

1.0 INTRODUCTION

This report presents the traffic study evaluation of access to the Skyline Ranch (VTTM 060922) development, including a new elementary school intersection. The project is located in the Santa Clarita Valley area of unincorporated Los Angeles County, immediately north of the City of Santa Clarita. More specifically, the project site is located in an undeveloped area generally between Whites Canyon Road/Plum Canyon Road and Sierra Highway. The project is submitting a revised tentative map and this study evaluates an on-site roadway system that has been changed subsequent to the approval of VTTM 060922 in 2008.

The proposed project consists of 1,035 single-family residential units, 165 detached condominium units (for a total of 1,200 residential units), an elementary school and a public park. Figure 1 illustrates the proposed conceptual site plan for the project. The project site is currently vacant with no prior land usage. The site is zoned for residential use and the proposed project is consistent with the land use designations under the Santa Clarita One Valley One Vision (OVOV) Area Plan.

A Traffic Impact Analysis was approved by the County of Los Angeles Department of Public Works in October 2008 for a project description that included slightly more residential units and a different roadway layout on-site.

2.0 TRIP GENERATION

Table 1 summarizes the anticipated trip generation of the proposed project. Vehicle trip generation estimates for the site have been calculated using the Institute of Transportation Engineers (ITE) "Trip Generation" rates for Single Family Residential and the Elementary School, and the LA County trip generation rates have been used for the Townhouse/Condominium uses.

For the residential land use, the proposed project consists of fewer dwelling units than the approved traffic study. The proposed project is forecast to generate a total of approximately 11,173 vehicle trips per day, with 865 occurring in the AM peak hour (661 outbound), and 1,156 occurring in the PM peak hour (730 inbound). In comparison, the projects approved traffic study evaluated 12,154 ADT, 953 AM peak hour trips (711 outbound), and 1,283 PM peak hour trips (813 inbound). See Table 2 for trip generation summary from previously (October 2008) approved land use traffic study. As shown, the revised project generates less traffic than what was approved.

TRI POINTE

Conceptual Lot Study
SKYLINE RANCH | TRI POINTE GROUP
(1)

C3 PLACEWORKS

SKYLINE RANCH (REVISED VITM 060922) ON-SITE ROADWAY ANALYSIS

TRIP GENERATION
October, 2016
Table 1 Land Use and Trip Generation Summary - Current Project

Land Use	Amount	Units	AM Peak Hour			PM Peak Hour			ADT
			IB	OB	Total	IB	OB	Total	
Trip Rates									
Single Family (210)		DU	0.19	0.56	0.75	0.63	0.37	1.00	9.52
Detached Condominium		DU	0.06	0.48	0.54	0.47	0.26	0.73	8.00
Elementary School (520)		STU	0.25	0.20	0.45	--	--	--	1.29
Trip Generation									
Single Family	1035	DU	194	582	776	652	383	1,035	9,853
Detached Condominium	165	DU	10	79	89	78	43	121	1,320
Sub-Total			204	661	865	730	426	1,156	11,173
Elementary School	750	STU	186	152	338	--	--	--	968
Total			390	813	1,203	730	426	1,156	12,141

Trip Rate Source:
Single Family \& Elementary School: Institute of Transportation Engineers (ITE), 9th Edition, 2012.
Condominium: Los Angeles County Department of Public Works Traffic Impact Analysis Report Guidelines, 1997.
Notes:

1. DU-Dwelling Units
2. STU-Students
3. ADT - Average Daily Trips

The volume of off-off site elementary school traffic in the PM peak hour was considered negligible in the 2008 traffic study.

Table 2 Land Use and Trip Generation Summary - Previously Approved (2008)

Land Use	Amount	Units	AM Peak Hour			PM Peak Hour			ADT
			IB	OB	Total	IB	OB	Total	
Trip Rates									
Single Family (210)		DU	0.19	0.56	0.75	0.64	0.37	1.01	9.57
Elementary School (520)		STU	0.23	0.19	0.42	--	--	--	1.29
Trip Generation									
Single Family Residential	1,270	DU	241	711	953	813	470	1,283	12,154
Elementary School	750	STU	173	143	315	--	--	--	968
Total			414	854	1,268	813	470	1,283	13,121

Trip Rate Sources:
Single Family \& Elementary School: Institute of Transportation Engineers (ITE), 7th Edition, 2003.
Notes:

1. DU - Dwelling Units
2. STU-Students
3. ADT - Average Daily Trips

The volume of off-off site elementary school traffic in the PM peak hour was considered negligible in the 2008 traffic study.

Stantec

SKYLINE RANCH (REVISED VITM 060922) ON-SITE ROADWAY ANALYSIS

TRIP GENERATION
October, 2016
Access to the project site will be via a new roadway referred to here as Skyline Ranch Road. The project site has been redesigned such that Skyline Ranch Road is aligned along the west of the proposed project. It provides access to the development through two roundabouts-one on the north end of the development and the other towards the south end of the developmentapproximately 3,500 feet apart. The use of a single-lane roundabout can be very effective as a traffic management tool. It provides better speed control opportunities and a better safety record than traffic signals.

The elementary school, which will be part of the Sulphur Springs School District, will predominantly serve students from the project site. The access to the school is located approximately 1,100 feet north of the south roundabout. The public park, which is adjacent to the school, has access approximately 600 feet north of the school intersection.

Figure 2 shows a conceptual striping plan for Skyline Ranch Road. See Figure 3 and Figure 4 for AM and PM peak hour turning movements volumes at the site access locations. This traffic analysis evaluates long-range cumulative conditions, which are derived from the Santa Clarita Valley Consolidated Traffic Model (SCVCTM) for a scenario that includes build-out of the area consistent with the OVOV Area Plan.

Initially, four concepts were explored for traffic management at the school in draft reports dated May 17 and July 21, 2016.

1. Full access unsignalized intersection
2. A roundabout at the school entrance
3. A right/left-in and right-out only access at school with a roundabout at the park
4. A right/left-in and right-out only access at school with a U-turn at the park

A fifth alternative was subsequently developed through consultation with the LA County Public Works staff and the findings of that analysis is discussed in this report. This preferred alternative consists of a full access unsignalized intersection at the school with a channelized/dedicated right-turn lane into the school. A dedicated acceleration/merge lane will be provided for the exiting school traffic turning left onto southbound Skyline Ranch Road. A U-turn at the park will also be allowed as a secondary means for traffic to head south on Skyline Ranch Road. County Public Works anticipates prohibiting left-turn into the school during the peak times, preferring instead to have the inbound traffic proceed to the southerly roundabout to make a U-turn and return to the school in the northbound direction and enter as right-turns.

Based on the peak hour signal warrant analysis, a traffic signal is not warranted at the school intersection (see Figure 5 for the peak hour traffic signal warrant analysis). A traffic signal is not recommended for the school entrance due to the close proximity to the south roundabout and because the traffic signal would not meet the minimum volume warrants.

SKYLINE RANCH (REVISED VITM 060922) ON-SITE ROADWAY ANALYSIS

TRIP GENERATION
October, 2016
Figure 5 Peak Hour Signal Warrant

California MUTCD 2014 Edition
Page 837
(FHWA's MUTCD 2009 Edition, including Revisions $1 \& 2$, as amended for use in California)

Figure 4C-3. Warrant 3, Peak Hour

"Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower
AM Peak (Minor St - 152; Major - 1140) threshold volume for a minor-street approach with one lane.
PM Peak (Minor St - 116; Major - 1147)

An evaluation of the roundabout concepts has been prepared with SIDRA software. Appendix A contains summary worksheets for the SIDRA analysis. The analysis indicates that both the north and the south roundabouts would operate at good LOS based on a single-lane roundabout configuration, as shown in Table 3, below.

Table 3 LOS \& Delay Summary at Roundabouts

Roundabout Locations	AM		PM	
	LOS	Average Delay (sec)	LOS	Average Delay (sec)
Skyline Ranch Rd \& North Roundabout	A	9.7	B	13.0
Skyline Ranch Rd \& South Roundabout	B	10.6	B	10.4

Stantec

SKYLINE RANCH (REVISED VITM 060922) ON-SITE ROADWAY ANALYSIS

TRIP GENERATION
October, 2016
The queue lengths for each leg of the north and south roundabouts on Skyline Ranch Road are shown in Table 4, below

Table 4 Queue Lengths for Each Leg of Roundabouts

	North Roundabout Queve Length (Ft.)		South Roundabout Queue Length (Ft.)	
	AM	PM	AM	PM
South Leg (Skyline Ranch Rd)	85.9	101.1	79.1	118.3
East Leg (Loop Road)	97.7	45.5	66.9	39.5
North Leg (Skyline Ranch Rd)	139.7	277.5	204.7	196.0

To evaluate the operation of the Skyline Ranch Road intersections, a Synchro/SimTraffic simulation model was prepared for Skyline Ranch Road and the north, south, park and school intersections. Worksheets with delay calculations are included in Appendix B.

Simulation results for the school driveway shows that the average vehicle, after dropped off students, would take approximately 24.1 seconds and 12.7 seconds to exit left and right, respectively, out of the school driveway during the AM peak.

The park intersection also provides a convenient location for exiting traffic to make a U-turn and proceed south on Skyline Ranch Road. Table 5 summarizes the lane LOS and approach delay at the school and park intersections during both AM and PM peak. The analysis indicates that the school site access would operate at LOS C or better during both AM \& PM peak hour with a maximum queve length of 136 feet during the AM peak.

Table 5 LOS, Delay \& Queue Summary at School and Park

Location		AM			PM		
		LOS	Delay (sec)	Queve (95th)	LOS	Delay (sec)	Queue (95th)
Skyline Ranch Rd \& School	WBL	C	24.1	136	B	14.2	71
	WBR	B	12.7	52	B	12.6	59
Skyline Ranch Rd \& Park	WBL/R	C	20.8	39	C	21.0	43
	SBL	A	8.6	27	A	8.4	21

Stantec

SKYLINE RANCH (REVISED VITM 060922) ON-SITE ROADWAY ANALYSIS

CONCLUSION
October, 2016

3.0 CONCLUSION

The revised project consists of fewer dwelling units than the approved traffic study. The revised project is forecast to generate a total of approximately 11,173 vehicle trips per day, with 865 occurring in the AM peak hour (661 outbound), and 1,156 occurring in the PM peak hour (730 inbound). In comparison, the project's approved 2008 traffic study evaluated 12,154 ADT, 953 AM peak hour trips (711 outbound), and 1,283 PM peak hour trips (813 inbound). Therefore, the revised project generates less traffic than what was approved.

An analysis of the proposed roundabouts on Skyline Ranch Road indicates that each would operate acceptably during the peak hours. Specifically, each roundabout would operate at LOS B or better under long-range cumulative conditions.

Through consultation with County Department of Public Works Traffic and Lighting staff, a preferred alternative for the school access driveway was developed. The preferred configuration consists of a full access unsignalized intersection for the school driveway with a channelized/dedicated right-turn lane into the school. A dedicated acceleration/merge lane will be provided for the exiting school traffic turning left onto southbound Skyline Ranch Road. A U-turn at the park will also be allowed as a secondary means for traffic to head south on Skyline Ranch Road. County Public Works anticipates prohibiting left-turn into the school during the peak times, preferring instead to have the inbound traffic proceed to the southerly roundabout to make a U-turn and return to the school in the northbound direction and enter as right-turns.

Given the preferred school driveway configuration described above, the full access unsignalized intersection would result in LOS C conditions with average vehicular delay of 24.1 and 12.7 seconds for exiting left and right turning vehicles, respectively, during the AM peak hour.

A traffic signal is not recommended for the school entrance due to the close proximity to the south roundabout, and because the traffic signal would not meet the minimum volume warrants. A review of pedestrian access routes to the school also indicates that a traffic signal would not be necessary for pedestrian crossings of Skyline Ranch Road at the school driveway since there will be no development on the west side of Skyline Ranch Road (i.e., opposite of the school). Pedestrians will access the school from the neighborhood trail system that connects directly to the school site and from Skyline Ranch Road via sidewalks along the school frontage that connect to the site's internal roadway system.

Appendix A Sidra Worksheets
October, 2016

Appendix A SIDRA WORKSHEETS

LEVEL OF SERVICE

Site: SkylineRanchRd-North - AM
New Site
Roundabout

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane. LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).

INTERSECTION SUMMARY

Site: SkylineRanchRd-North - AM

New Site
Roundabout

Intersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Demand Flows (Total)	1558 veh/h	1869 pers/h
Percent Heavy Vehicles (Demand)	3.0 \%	
Degree of Saturation	0.588	
Practical Spare Capacity	44.5 \%	
Effective Intersection Capacity	2648 veh/h	
Control Delay (Total)	4.21 veh-h/h	5.05 pers-h/h
Control Delay (Average)	9.7 sec	9.7 sec
Control Delay (Worst Lane)	11.6 sec	
Control Delay (Worst Movement)	11.6 sec	11.6 sec
Geometric Delay (Average)	0.0 sec	
Stop-Line Delay (Average)	9.7 sec	
Idling Time (Average)	6.1 sec	
Intersection Level of Service (LOS)	LOS A	
95\% Back of Queue - Vehicles (Worst Lane)	5.5 veh	
95\% Back of Queue - Distance (Worst Lane)	139.7 ft	
Queue Storage Ratio (Worst Lane)	0.09	
Total Effective Stops	$660 \mathrm{veh} / \mathrm{h}$	792 pers/h
Effective Stop Rate	0.42 per veh	0.42 per pers
Proportion Queued	0.58	0.58
Performance Index	49.5	49.5
Travel Distance (Total)	721.2 veh-mi/h	865.5 pers-mi/h
Travel Distance (Average)	2445 ft	2445 ft
Travel Time (Total)	27.6 veh-h/h	33.2 pers-h/h
Travel Time (Average)	63.9 sec	63.9 sec
Travel Speed	26.1 mph	26.1 mph
Cost (Total)	459.57 \$/h	459.57 \$/h
Fuel Consumption (Total)	$18.2 \mathrm{gal} / \mathrm{h}$	
Carbon Dioxide (Total)	162.8 kg/h	
Hydrocarbons (Total)	$0.070 \mathrm{~kg} / \mathrm{h}$	
Carbon Monoxide (Total)	$0.535 \mathrm{~kg} / \mathrm{h}$	
NOx (Total)	$0.297 \mathrm{~kg} / \mathrm{h}$	

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Intersection LOS value for Vehicles is based on average delay for all vehicle movements
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Intersection Performance - Annual Values		
Performance Measure	Vehicles	Persons
Demand Flows (Total)	$747,652 \mathrm{veh} / \mathrm{y}$	$897,183 \mathrm{pers} / \mathrm{y}$
Delay	$2,019 \mathrm{veh}-\mathrm{h} / \mathrm{y}$	$2,423 \mathrm{pers}-\mathrm{h} / \mathrm{y}$
Effective Stops	$316,667 \mathrm{veh} / \mathrm{y}$	$380,000 \mathrm{pers} / \mathrm{y}$
Travel Distance	$346,188 \mathrm{veh}-\mathrm{mi} / \mathrm{y}$	$415,425 \mathrm{pers}-\mathrm{mi} / \mathrm{y}$
Travel Time	$13,261 \mathrm{veh}-\mathrm{h} / \mathrm{y}$	$15,913 \mathrm{pers}-\mathrm{h} / \mathrm{y}$
Cost	$220,593 \mathrm{\$} / \mathrm{y}$	$220,593 \mathrm{\$} / \mathrm{y}$
Fuel Consumption	$8,752 \mathrm{gal} / \mathrm{y}$	
Carbon Dioxide	$78,134 \mathrm{~kg} / \mathrm{y}$	
Hydrocarbons	$33 \mathrm{~kg} / \mathrm{y}$	
Carbon Monoxide	$257 \mathrm{~kg} / \mathrm{y}$	
NOx	$142 \mathrm{~kg} / \mathrm{y}$	

MOVEMENT SUMMARY

Site: SkylineRanchRd-North - AM

New Site
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \mathrm{Mov} \\ & \mathrm{ID} \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: SkylineRanchRd											
8	T1	483	3.0	0.416	6.9	LOS A	3.4	85.9	0.35	0.33	22.4
18	R2	50	3.0	0.416	6.9	LOS A	3.4	85.9	0.35	0.33	22.4
Appr		533	3.0	0.416	6.9	LOS A	3.4	85.9	0.35	0.16	22.4
East: LoopRd											
1	L2	184	3.0	0.500	11.6	LOS B	3.8	97.7	0.77	1.46	27.2
16	R2	207	3.0	0.500	11.6	LOS B	3.8	97.7	0.77	1.46	27.2
Appr		390	3.0	0.500	11.6	LOS B	3.8	97.7	0.77	0.73	27.2
North: SkylineRanchRd											
7	L2	74	3.0	0.588	10.9	LOS B	5.5	139.7	0.66	0.90	28.8
4	T1	561	3.0	0.588	10.9	LOS B	5.5	139.7	0.66	0.90	28.8
Approach		635	3.0	0.588	10.9	LOS B	5.5	139.7	0.66	0.45	28.8
All Vehicles		1558	3.0	0.588	9.7	LOS A	5.5	139.7	0.58	0.42	26.1

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010). Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LEVEL OF SERVICE

Site: SkylineRanchRd-North - PM
New Site
Roundabout

Lane LOS values are based on average delay and v/c ratio (degree of saturation) per lane.
LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).

INTERSECTION SUMMARY

Site: SkylineRanchRd-North - PM

New Site
Roundabout

Intersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Demand Flows (Total)	1692 veh/h	2031 pers/h
Percent Heavy Vehicles (Demand)	3.0 \%	
Degree of Saturation	0.778	
Practical Spare Capacity	9.3 \%	
Effective Intersection Capacity	2176 veh/h	
Control Delay (Total)	6.13 veh-h/h	7.35 pers-h/h
Control Delay (Average)	13.0 sec	13.0 sec
Control Delay (Worst Lane)	16.2 sec	
Control Delay (Worst Movement)	16.2 sec	16.2 sec
Geometric Delay (Average)	0.0 sec	
Stop-Line Delay (Average)	13.0 sec	
Idling Time (Average)	8.9 sec	
Intersection Level of Service (LOS)	LOS B	
95\% Back of Queue - Vehicles (Worst Lane)	10.8 veh	
95\% Back of Queue - Distance (Worst Lane)	277.5 ft	
Queue Storage Ratio (Worst Lane)	0.18	
Total Effective Stops	$792 \mathrm{veh} / \mathrm{h}$	951 pers/h
Effective Stop Rate	0.47 per veh	0.47 per pers
Proportion Queued	0.70	0.70
Performance Index	60.0	60.0
Travel Distance (Total)	793.7 veh-mi/h	952.5 pers-mi/h
Travel Distance (Average)	2476 ft	2476 ft
Travel Time (Total)	31.6 veh-h/h	37.9 pers-h/h
Travel Time (Average)	67.2 sec	67.2 sec
Travel Speed	25.1 mph	25.1 mph
Cost (Total)	523.83 \$/h	523.83 \$/h
Fuel Consumption (Total)	$20.6 \mathrm{gal} / \mathrm{h}$	
Carbon Dioxide (Total)	$183.9 \mathrm{~kg} / \mathrm{h}$	
Hydrocarbons (Total)	$0.080 \mathrm{~kg} / \mathrm{h}$	
Carbon Monoxide (Total)	$0.603 \mathrm{~kg} / \mathrm{h}$	
NOx (Total)	$0.337 \mathrm{~kg} / \mathrm{h}$	

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Intersection LOS value for Vehicles is based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Intersection Performance - Annual Values		
Performance Measure	Vehicles	Persons
Demand Flows (Total)	$812,348 \mathrm{veh} / \mathrm{y}$	$974,817 \mathrm{pers} / \mathrm{y}$
Delay	$2,941 \mathrm{veh}-\mathrm{h} / \mathrm{y}$	$3,529 \mathrm{pers}-\mathrm{h} / \mathrm{y}$
Effective Stops	$380,326 \mathrm{veh} / \mathrm{y}$	$456,392 \mathrm{pers} / \mathrm{y}$
Travel Distance	$380,999 \mathrm{veh}-\mathrm{mi} / \mathrm{y}$	$457,199 \mathrm{pers}-\mathrm{mi} / \mathrm{y}$
Travel Time	$15,160 \mathrm{veh}-\mathrm{h} / \mathrm{y}$	$18,192 \mathrm{pers}-\mathrm{h} / \mathrm{y}$
		$251,437 / \mathrm{y}$
Cost	$9,885 \mathrm{gal} / \mathrm{y}$	$251,437 \mathrm{\$} / \mathrm{y}$
Fuel Consumption	$88,248 \mathrm{~kg} / \mathrm{y}$	
Carbon Dioxide	$38 \mathrm{~kg} / \mathrm{y}$	
Hydrocarbons	$289 \mathrm{~kg} / \mathrm{y}$	
Carbon Monoxide	$162 \mathrm{~kg} / \mathrm{y}$	
NOx		

MOVEMENT SUMMARY

Site: SkylineRanchRd-North - PM

New Site
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: SkylineRanchRd											
8	T1	312	3.0	0.501	9.9	LOS A	3.9	101.1	0.67	1.02	21.3
18	R2	171	3.0	0.501	9.9	LOS A	3.9	101.1	0.67	1.02	21.3
Appr		483	3.0	0.501	9.9	LOS A	3.9	101.1	0.67	0.51	21.3
East: LoopRd											
1	L2	118	3.0	0.283	7.1	LOS A	1.8	45.5	0.59	0.91	29.2
16	R2	133	3.0	0.283	7.1	LOS A	1.8	45.5	0.59	0.91	29.2
Appr		251	3.0	0.283	7.1	LOS A	1.8	45.5	0.59	0.46	29.2
North: SkylineRanchRd											
7	L2	255	3.0	0.778	16.2	LOS B	10.8	277.5	0.75	0.90	26.1
4	T1	703	3.0	0.778	16.2	LOS B	10.8	277.5	0.75	0.90	26.1
Appr		959	3.0	0.778	16.2	LOS B	10.8	277.5	0.75	0.45	26.1
All V		1692	3.0	0.778	13.0	LOS B	10.8	277.5	0.70	0.47	25.1

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LEVEL OF SERVICE

Site: SkylineRanchRd-South - AM

New Site
Roundabout

Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane. LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).

INTERSECTION SUMMARY

Site: SkylineRanchRd-South - AM

New Site
Roundabout

Intersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Demand Flows (Total)	1632 veh/h	1958 pers/h
Percent Heavy Vehicles (Demand)	3.0 \%	
Degree of Saturation	0.701	
Practical Spare Capacity	21.2 \%	
Effective Intersection Capacity	2326 veh/h	
Control Delay (Total)	4.79 veh-h/h	5.74 pers-h/h
Control Delay (Average)	10.6 sec	10.6 sec
Control Delay (Worst Lane)	14.0 sec	
Control Delay (Worst Movement)	14.0 sec	14.0 sec
Geometric Delay (Average)	0.0 sec	
Stop-Line Delay (Average)	10.6 sec	
Idling Time (Average)	6.9 sec	
Intersection Level of Service (LOS)	LOS B	
95\% Back of Queue - Vehicles (Worst Lane)	8.0 veh	
95\% Back of Queue - Distance (Worst Lane)	204.7 ft	
Queue Storage Ratio (Worst Lane)	0.14	
Total Effective Stops	$658 \mathrm{veh} / \mathrm{h}$	790 pers/h
Effective Stop Rate	0.40 per veh	0.40 per pers
Proportion Queued	0.58	0.58
Performance Index	52.6	52.6
Travel Distance (Total)	755.5 veh-mi/h	906.6 pers-mi/h
Travel Distance (Average)	2445 ft	2445 ft
Travel Time (Total)	29.0 veh-h/h	34.8 pers-h/h
Travel Time (Average)	64.0 sec	64.0 sec
Travel Speed	26.1 mph	26.1 mph
Cost (Total)	482.89 \$/h	482.89 \$/h
Fuel Consumption (Total)	$19.2 \mathrm{gal} / \mathrm{h}$	
Carbon Dioxide (Total)	$171.3 \mathrm{~kg} / \mathrm{h}$	
Hydrocarbons (Total)	$0.073 \mathrm{~kg} / \mathrm{h}$	
Carbon Monoxide (Total)	$0.561 \mathrm{~kg} / \mathrm{h}$	
NOx (Total)	$0.315 \mathrm{~kg} / \mathrm{h}$	

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Intersection LOS value for Vehicles is based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Intersection Performance - Annual Values		
Performance Measure	Vehicles	Persons
Demand Flows (Total)	$783,130 \mathrm{veh} / \mathrm{y}$	$939,757 \mathrm{pers} / \mathrm{y}$
Delay	$2,298 \mathrm{veh}-\mathrm{h} / \mathrm{y}$	$2,757 \mathrm{pers}-\mathrm{h} / \mathrm{y}$
Effective Stops	$315,829 \mathrm{veh} / \mathrm{y}$	$378,994 \mathrm{pers} / \mathrm{y}$
Travel Distance	$362,626 \mathrm{veh}-\mathrm{mi} / \mathrm{y}$	$435,151 \mathrm{pers}-\mathrm{mi} / \mathrm{y}$
Travel Time	$13,918 \mathrm{veh}-\mathrm{h} / \mathrm{y}$	$16,702 \mathrm{pers}-\mathrm{h} / \mathrm{y}$
	$231,787 / \mathrm{y}$	$231,787 \mathrm{\$} / \mathrm{y}$
Cost	$9,208 \mathrm{gal} / \mathrm{y}$	
Fuel Consumption	$82,212 \mathrm{~kg} / \mathrm{y}$	
Carbon Dioxide	$35 \mathrm{~kg} / \mathrm{y}$	
Hydrocarbons	$269 \mathrm{~kg} / \mathrm{y}$	
Carbon Monoxide	$151 \mathrm{~kg} / \mathrm{y}$	
NOx		

MOVEMENT SUMMARY

Site: SkylineRanchRd-South - AM

New Site
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \text { Mov } \\ & \text { ID } \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{aligned} & \text { lows } \\ & \text { HV } \\ & \% \end{aligned}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: SkylineRanchRd											
8	T1	461	3.0	0.379	6.1	LOS A	3.1	79.1	0.25	0.18	22.6
18	R2	61	3.0	0.379	6.1	LOS A	3.1	79.1	0.25	0.18	22.6
Appr		522	3.0	0.379	6.1	LOS A	3.1	79.1	0.25	0.09	22.6
East: LoopRd											
1	L2	175	3.0	0.410	9.6	LOS A	2.6	66.9	0.70	1.24	27.9
16	R2	155	3.0	0.410	9.6	LOS A	2.6	66.9	0.70	1.24	27.9
Appr		330	3.0	0.410	9.6	LOS A	2.6	66.9	0.70	0.62	27.9
North: SkylineRanchRd											
7	L2	41	3.0	0.701	14.0	LOS B	8.0	204.7	0.75	1.04	27.6
4	T1	738	3.0	0.701	14.0	LOS B	8.0	204.7	0.75	1.04	27.6
Appr		779	3.0	0.701	14.0	LOS B	8.0	204.7	0.75	0.52	27.6
All Ve		1632	3.0	0.701	10.6	LOS B	8.0	204.7	0.58	0.40	26.1

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v / c ratio (degree of saturation) per movement LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

LEVEL OF SERVICE

Site: SkylineRanchRd-South - PM

New Site
Roundabout

Lane LOS values are based on average delay and v / c ratio (degree of saturation) per lane. LOS F will result if $\mathrm{v} / \mathrm{c}>$ irrespective of lane delay value (does not apply for approaches and intersection).

INTERSECTION SUMMARY

Site: SkylineRanchRd-South - PM

New Site
Roundabout

Intersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Demand Flows (Total)	1650 veh/h	1980 pers/h
Percent Heavy Vehicles (Demand)	3.0 \%	
Degree of Saturation	0.673	
Practical Spare Capacity	26.2 \%	
Effective Intersection Capacity	2451 veh/h	
Control Delay (Total)	4.78 veh-h/h	5.74 pers-h/h
Control Delay (Average)	10.4 sec	10.4 sec
Control Delay (Worst Lane)	12.1 sec	
Control Delay (Worst Movement)	12.1 sec	12.1 sec
Geometric Delay (Average)	0.0 sec	
Stop-Line Delay (Average)	10.4 sec	
Idling Time (Average)	6.8 sec	
Intersection Level of Service (LOS)	LOS B	
95\% Back of Queue - Vehicles (Worst Lane)	7.7 veh	
95\% Back of Queue - Distance (Worst Lane)	196.0 ft	
Queue Storage Ratio (Worst Lane)	0.13	
Total Effective Stops	$609 \mathrm{veh} / \mathrm{h}$	731 pers/h
Effective Stop Rate	0.37 per veh	0.37 per pers
Proportion Queued	0.59	0.59
Performance Index	53.1	53.1
Travel Distance (Total)	759.9 veh-mi/h	911.9 pers-mi/h
Travel Distance (Average)	2432 ft	2432 ft
Travel Time (Total)	29.7 veh-h/h	35.6 pers-h/h
Travel Time (Average)	64.7 sec	64.7 sec
Travel Speed	25.6 mph	25.6 mph
Cost (Total)	491.09 \$/h	491.09 \$/h
Fuel Consumption (Total)	$19.3 \mathrm{gal} / \mathrm{h}$	
Carbon Dioxide (Total)	$172.5 \mathrm{~kg} / \mathrm{h}$	
Hydrocarbons (Total)	$0.075 \mathrm{~kg} / \mathrm{h}$	
Carbon Monoxide (Total)	$0.568 \mathrm{~kg} / \mathrm{h}$	
NOx (Total)	$0.310 \mathrm{~kg} / \mathrm{h}$	

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Intersection LOS value for Vehicles is based on average delay for all vehicle movements.
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.

Intersection Performance - Annual Values		
Performance Measure	Vehicles	Persons
Demand Flows (Total)	792,000 veh/y	950,400 pers/y
Delay	2,294 veh-h/y	2,753 pers-h/y
Effective Stops	292,223 veh/y	350,668 pers/y
Travel Distance	364,752 veh-mi/y	437,702 pers-mi/y
Travel Time	14,237 veh-h/y	17,084 pers-h/y
Cost	235,725 \$/y	235,725 \$/y
Fuel Consumption	9,274 gal/y	
Carbon Dioxide	82,799 kg/y	
Hydrocarbons	$36 \mathrm{~kg} / \mathrm{y}$	
Carbon Monoxide	273 kg/y	
NOx	$149 \mathrm{~kg} / \mathrm{y}$	

MOVEMENT SUMMARY

Site: SkylineRanchRd-South - PM

New Site
Roundabout

Movement Performance - Vehicles											
$\begin{aligned} & \mathrm{Mov} \\ & \mathrm{ID} \end{aligned}$	$\begin{aligned} & \text { OD } \\ & \text { Mov } \end{aligned}$	Dema Total veh/h	$\begin{array}{r} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{array}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: SkylineRanchRd											
8	T1	388	3.0	0.532	9.3	LOS A	4.6	118.3	0.55	0.69	21.5
18	R2	221	3.0	0.532	9.3	LOS A	4.6	118.3	0.55	0.69	21.5
Appr		609	3.0	0.532	9.3	LOS A	4.6	118.3	0.55	0.34	21.5
East: LoopRd											
1	L2	113	3.0	0.256	7.1	LOS A	1.5	39.5	0.62	1.01	29.0
16	R2	100	3.0	0.256	7.1	LOS A	1.5	39.5	0.62	1.01	29.0
Appr		213	3.0	0.256	7.1	LOS A	1.5	39.5	0.62	0.50	29.0
North: SkylineRanchRd											
7	L2	147	3.0	0.673	12.1	LOS B	7.7	196.0	0.61	0.71	28.1
4	T1	682	3.0	0.673	12.1	LOS B	7.7	196.0	0.61	0.71	28.1
Appr		828	3.0	0.673	12.1	LOS B	7.7	196.0	0.61	0.35	28.1
All Ve		1650	3.0	0.673	10.4	LOS B	7.7	196.0	0.59	0.37	25.6

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Signalised Intersections.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection). Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: SIDRA Standard.
HCM Delay Formula option is used. Control Delay does not include Geometric Delay since Exclude Geometric Delay option applies.
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).
HV (\%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SKYLINE RANCH (REVISED VTTM 060922) ON-SITE ROADWAY ANALYSIS

Appendix B Synchro/SimTraffic Worksheet
October, 2016

Appendix B SYNCHRO/SIMTRAFFIC WORKSHEET

(1) Southbound through volume of 685 vph would be a non-conflicting movment due to the provision of a decicated acceleration/merge lane for westbound left-turns.

(1) Southbound through volume of 755 vph would be a non-conflicting movment due to the provision of a decicated acceleration/merge lane for westbound left-turns.

Intersection: 3: Skyline Ranch Rd

Movement	WB	NB	SB
Directions Served	LR	TR	LT
Maximum Queue (ft)	85	50	130
Average Queue (ft)	46	15	58
95th Queue (ft)	85	45	129
Link Distance (ft)	192	692	1416
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Intersection: 7: Skyline Ranch Rd

Movement	SE	NW	SW
Directions Served	ULT	TR	LR
Maximum Queue (ft)	520	41	78
Average Queue (ft)	259	9	41
95th Queue (ft)	584	34	74
Link Distance (ft)	671	439	359
Upstream Blk Time (\%)	0		
Queuing Penalty (veh)	0		
Storage Bay Dist (ft)			
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Intersection: 93: Skyline Ranch Rd \& School

Movement	WB	WB
Directions Served	L	R
Maximum Queue (ft)	149	60
Average Queue (ft)	72	32
95th Queue (ft)	136	52
Link Distance (ft)	276	276
Upstream Blk Time (\%)	0	
Queuing Penalty (veh)	0	
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Queuing and Blocking Report
Long-range Buildout - Alternative 5
Intersection: 97: Park

Movement	WB	SB
Directions Served	LR	L
Maximum Queue (ft)	44	35
Average Queue (ft)	19	6
95th Queue (ft)	39	27
Link Distance (ft)	315	
Upstream Blk Time (\%)		
Queuing Penalty (veh)		150
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Zone Summary
Zone wide Queuing Penalty: 0

Intersection: 3: Skyline Ranch Rd

Movement	WB	NB	SB
Directions Served	LR	TR	LT
Maximum Queue (ft)	47	75	1349
Average Queue (ft)	23	37	917
95th Queue (ft)	51	79	1646
Link Distance (ft)	192	692	1416
Upstream Blk Time (\%)			21
Queuing Penalty (veh)			0
Storage Bay Dist (ft)			
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Intersection: 7: Skyline Ranch Rd

Movement	SE	NW	SW
Directions Served	ULT	TR	LR
Maximum Queue (ft)	250	68	57
Average Queue (ft)	97	27	28
95th Queue (ft)	242	65	56
Link Distance (ft)	671	439	359
Upstream Blk Time (\%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			
Storage Blk Time (\%)			
Queuing Penalty (veh)			

Intersection: 93: Skyline Ranch Rd \& School

Movement	WB	WB
Directions Served	L	R
Maximum Queue (ft)	77	63
Average Queue (ft)	38	37
95th Queue (ft)	71	59
Link Distance (ft)	276	276
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Queuing and Blocking Report
Long-range Buildout - Alternative 5
Intersection: 97: Park

Movement	WB	SB
Directions Served	LR	L
Maximum Queue (ft)	52	31
Average Queue (ft)	20	4
95th Queue (ft)	43	21
Link Distance (ft)	315	
Upstream Blk Time (\%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		150
Storage Blk Time (\%)		
Queuing Penalty (veh)		

Zone Summary
Zone wide Queuing Penalty: 0

Memo

To:	Scott Ashlock Placeworks 2073009990	From:	Daryl Zerfass Ftantec
File:	Date:	December 5, 2016	

Reference: \quad Skyline Ranch (Revised VTTM 060922) Land Use and Trip Generation Update

This memorandum addresses updates to the residential unit mix and the total number of units for the Skyline Ranch Revised Tract Map No. 060922, and the resulting change in trip generation. Skyline Ranch (Revised VTTM 060922), is a development project located in the Santa Clarita Valley area of unincorporated Los Angeles County. In October 2008, a Traffic Impact Analysis was approved by the County of Los Angeles Department of Public works (LADPW) and in October 2016, the Skyline Ranch (Revised VTTM 060922) On-Site Roadway Analysis, prepared by Stantec, was approved by LADPW.

The On-Site Roadway Analysis evaluated the on-site roadway system for the revised VTTM 060922, and was based on 1,035 single-family residential units, 165 detached condominium units (a total of 1,200 residential units), an elementary school and a public park. The mix and total number of residential units have since changed slightly from a total of 1,200 units to 1,220 units, a net increase of 20 units. The attached Table 1 summarizes the land use and the corresponding trip generation and gives a comparison between the land use assumed in the approved On-Site Roadway Analysis, and the most recent VTTM 060922 land use.

Although the total number of residential units increased by 20 units, the change in the mix of residential units resulted in less net trips generated by VTTM 060922 . Specifically, 82 less daily trips (ADT), 22 less AM peak hour trips, and 29 less PM peak hour trips. Therefore, the approved Skyline Ranch (Revised VTTM 060922) On-Site Roadway Analysis represents a conservative worst-case scenario and the subsequent change in net trips is negligible.

Stantec Consulting Services Inc.

Daryl Zerfass, PE, PTP
Principal, Transportation Planning \& Traffic Engineering
Phone: (949) 923-6058
Daryl.Zerfass@stantec.com
Attachment: Table 1 Land Use and Trip Generation Comparison

Memo

Table 1: Land Use and Trip Generation Comparison

Land Use	Amount	Units	AM Peak Hour			PM Peak Hour			ADT
			IB	OB	Total	IB	OB	Total	
Trip Rates									
Single Family (210)		DU	0.19	0.56	0.75	0.63	0.37	1.00	9.52
Detached Condominium		DU	0.06	0.48	0.54	0.47	0.26	0.73	8.00
Elementary School (520)		STU	0.25	0.20	0.45	0.13	0.15	0.28	1.29
Land Use and Trip Generation in the On-Site Roadway Analysis (October 2016)									
Single Family	1,035	DU	194	582	776	652	383	1,035	9,853
Detached Condominium	165	DU	10	79	89	78	43	121	1,320
Total Residential			204	661	865	730	426	1,156	11,173
Elementary School	750	STU	186	152	338	--	--	--	968
Total			390	813	1,203	730	426	1,156	12,141
Revised Land Use and Trip Generation (VITM 060922)									
Single Family	876	DU	164	493	657	552	324	876	8,340
Detached Condominium	344	DU	21	165	186	162	89	251	2,752
Total Residential			185	658	843	714	413	1,127	11,092
Elementary School	750	STU	186	152	338	--	--	--	968
Total			371	810	1,181	714	413	1,127	12,059
Net Difference			-19	-3	-22	-16	-13	-29	-82

Trip Rate Source:

Single Family \& Elementary School: Institute of Transportation Engineers (ITE), 9th Edition, 2012.
Condominium: Los Angeles County Department of Public Works Traffic Impact Analysis Report
Guidelines, 1997.
Notes:
DU = dwelling unit; STU = student; ADT = average daily trips; IB = inbound; OB = outbound
The volume of off-off site elementary school traffic in the PM peak hour was considered negligible in the 2008 traffic study.

[^0]: ${ }^{1}$ The California Air Resources Board (CARB) approved the SCAQMD's request to redesignate the SoCAB from serious nonattainment for PM_{10} to attainment for PM_{10} under the national AAQS on March 25, 2010, because the SoCAB has not violated federal 24-hour PM_{10} standards during the period from 2004 to 2007. In June 2013, the Environmental Protection Agency (EPA) approved the State of California's request to redesignate the South Coast PM_{10} nonattainment area to attainment of the PM_{10} National AAQS, effective on July 26, 2013.
 ${ }^{2}$ CARB has proposed to redesignate the SoCAB as attainment for lead and NO_{2} under the California AAQS (CARB 2013).

[^1]: Consistent: The Modified Project would be compatible with neighboring existing and planned communities, including the Plum Canyon community west of the project site and the existing residential neighborhoods south of the site in the City of Santa Clarita. The

[^2]: ICAL LOG REVIEVED TO DEIERMINE FEATURE TYPE

[^3]: ADDITIONAL COMMENTS:

[^4]: Project
 Skyline Ranch
 Location B80
 Depth
 Material Landslide Debris - clayey SAND with gravel

[^5]: | Project | Skyline Ranch |
 | :--- | :--- |
 | | |
 | Location | B80 |
 | Depth | 30^{\prime} |

 Material Saugus Formation - CONGLOMERATE

[^6]: Project Skyline Ranch
 Location B83
 Depth
 Material Landslide Debris - sandy GRAVEL with clay

[^7]: | Project | Skyline Ranch |
 | :--- | :--- |
 | | B85 |

 Depth 8'
 Material Landslide Debris - clayey SAND with gvl

[^8]: | Project | Skyline Ranch |
 | :--- | :--- |
 | | |
 | Location | B85 |
 | Depth | 29^{\prime} |

 Material Saugus Formation - CONGLOMERATE

[^9]: Project $\begin{array}{ll}\text { Skyline Ranch } \\ \end{array}$
 Depth 7'
 Material Landslide Debris - clayey SAND with gvl

[^10]: $\begin{array}{ll}\text { Project } & \text { Skyline Ranch } \\ & \text { B86 }\end{array}$
 Depth 29'
 Material Landslide Debris - SAND with trace gvl

[^11]: | Project | Skyline Ranch |
 | :--- | :--- |
 | | |
 | Location | B88 |
 | Depth | 40^{\prime} |
 | | |

 Material Landslide Debris - silty SAND and GRAVEL

[^12]: | Project | Skyline Ranch |
 | :--- | :--- |
 | | |
 | Location | B89 |
 | Depth | 19^{\prime} |
 | | |

 Material Landslide Debris - gravelly SAND

[^13]: | Project | Skyline Ranch |
 | :--- | :--- |
 | | B89 |

 Depth 40'
 Material Landslide Debris - clayey SAND with gvl

[^14]: | Project | Skyline Ranch |
 | :--- | :--- |
 | | |
 | Location | B89 |
 | Depth | 50^{\prime} |
 | | |

 Material Landslide Debris - clayey SAND with gvl

[^15]: | Project | Skyline Ranch |
 | :--- | :--- |
 | | |
 | Location | B90 |
 | Depth | 10^{\prime} |
 | | |

 Material Landslide Debris - gravelly SAND

[^16]: <,

[^17]: file:///P:/FINAL\%20PROJECTS/PARDEE/Skyline\%20Ranch/SLOPE\%20RESULTS/Sect... 3/19/2016

[^18]: Tmc (150 psf $\mathbf{1 7}^{\circ}$ A-Bed 4-8ㅇ)
 Model: Spline Data Point Function
 Function: Modifier Factor vs. Inclination

[^19]: Tmc (150 psf 17° A-Bed 4-8ㅇ
 Model: Spline Data Point Function
 Function: Modifier Factor vs. Inclination

[^20]: file://C:/Users/Alexander/Desktop/LGC\%20valley/original\%20sections/section\%2010-10... 3/19/2016

